aboutsummaryrefslogtreecommitdiffstats
path: root/modular.scm
blob: 78c78bb2c66c89b3452e7e405307ae6819175de0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
;;;; "modular.scm", modular fixnum arithmetic for Scheme
;;; Copyright (C) 1991, 1993, 1995, 2001, 2002, 2006 Aubrey Jaffer
;
;Permission to copy this software, to modify it, to redistribute it,
;to distribute modified versions, and to use it for any purpose is
;granted, subject to the following restrictions and understandings.
;
;1.  Any copy made of this software must include this copyright notice
;in full.
;
;2.  I have made no warranty or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3.  In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.

;;@code{(require 'modular)}
;;@ftindex modular

;;@args n1 n2
;;Returns a list of 3 integers @code{(d x y)} such that d = gcd(@var{n1},
;;@var{n2}) = @var{n1} * x + @var{n2} * y.
(define (extended-euclid x y)
  (define q 0)
  (do ((r0 x r1) (r1 y (remainder r0 r1))
       (u0 1 u1) (u1 0 (- u0 (* q u1)))
       (v0 0 v1) (v1 1 (- v0 (* q v1))))
      ((zero? r1) (list r0 u0 v0))
    (set! q (quotient r0 r1))))

(define modular:extended-euclid extended-euclid)

;;@body
;;For odd positive integer @1, returns an object suitable for passing
;;as the first argument to @code{modular:} procedures, directing them
;;to return a symmetric modular number, ie. an @var{n} such that
;;@example
;;(<= (quotient @var{m} -2) @var{n} (quotient @var{m} 2)
;;@end example
(define (symmetric:modulus m)
  (cond ((or (not (number? m)) (not (positive? m)) (even? m))
	 (slib:error 'symmetric:modulus m))
	(else (quotient (+ -1 m) -2))))

;;@args modulus
;;Returns the non-negative integer characteristic of the ring formed when
;;@var{modulus} is used with @code{modular:} procedures.
(define (modular:characteristic m)
  (cond ((negative? m) (- 1 (+ m m)))
	((zero? m) #f)
	(else m)))

;;@args modulus n
;;Returns the integer @code{(modulo @var{n} (modular:characteristic
;;@var{modulus}))} in the representation specified by @var{modulus}.
(define modular:normalize
  (if (provided? 'bignum)
      (lambda (m k)
	(cond ((positive? m) (modulo k m))
	      ((zero? m) k)
	      ((<= m k (- m)) k)
	      (else
	       (let* ((pm (+ 1 (* -2 m)))
		      (s (modulo k pm)))
		 (if (<= s (- m)) s (- s pm))))))
      (lambda (m k)
	(cond ((positive? m) (modulo k m))
	      ((zero? m) k)
	      ((<= m k (- m)) k)
	      ((<= m (quotient (+ -1 most-positive-fixnum) 2))
	       (let* ((pm (+ 1 (* -2 m)))
		      (s (modulo k pm)))
		 (if (<= s (- m)) s (- s pm))))
	      ((positive? k) (+ (+ (+ k -1) m) m))
	      (else  (- (- (+ k 1) m) m))))))

;;;; NOTE: The rest of these functions assume normalized arguments!

;;@noindent
;;The rest of these functions assume normalized arguments; That is, the
;;arguments are constrained by the following table:
;;
;;@noindent
;;For all of these functions, if the first argument (@var{modulus}) is:
;;@table @code
;;@item positive?
;;Integers mod @var{modulus}.  The result is between 0 and
;;@var{modulus}.
;;
;;@item zero?
;;The arguments are treated as integers.  An integer is returned.
;;@end table
;;
;;@noindent
;;Otherwise, if @var{modulus} is a value returned by
;;@code{(symmetric:modulus @var{radix})}, then the arguments and
;;result are treated as members of the integers modulo @var{radix},
;;but with @dfn{symmetric} representation; i.e.
;;@example
;;(<= (quotient @var{radix} 2) @var{n} (quotient (- -1 @var{radix}) 2)
;;@end example

;;@noindent
;;If all the arguments are fixnums the computation will use only fixnums.

;;@args modulus k
;;Returns @code{#t} if there exists an integer n such that @var{k} * n
;;@equiv{} 1 mod @var{modulus}, and @code{#f} otherwise.
(define (modular:invertable? m a)
  (eqv? 1 (gcd (or (modular:characteristic m) 0) a)))

;;@args modulus n2
;;Returns an integer n such that 1 = (n * @var{n2}) mod @var{modulus}.  If
;;@var{n2} has no inverse mod @var{modulus} an error is signaled.
(define (modular:invert m a)
  (define (barf) (slib:error 'modular:invert "can't invert" m a))
  (cond ((eqv? 1 (abs a)) a)		; unit
	(else
	 (let ((pm (modular:characteristic m)))
	   (cond
	    (pm
	     (let ((d (modular:extended-euclid (modular:normalize pm a) pm)))
	       (if (= 1 (car d))
		   (modular:normalize m (cadr d))
		   (barf))))
	    (else (barf)))))))

;;@args modulus n2
;;Returns (@minus{}@var{n2}) mod @var{modulus}.
(define (modular:negate m a)
  (cond ((zero? a) 0)
	((negative? m) (- a))
	(else (- m a))))

;;; Being careful about overflow here

;;@args modulus n2 n3
;;Returns (@var{n2} + @var{n3}) mod @var{modulus}.
(define (modular:+ m a b)
  (cond ((positive? m) (modulo (+ (- a m) b) m))
	((zero? m) (+ a b))
	;; m is negative
	((negative? a)
	 (if (negative? b)
	     (let ((s (+ (- a m) b)))
	       (if (negative? s)
		   (- s (+ -1 m))
		   (+ s m)))
	     (+ a b)))
	((negative? b) (+ a b))
	(else (let ((s (+ (+ a m) b)))
		(if (positive? s)
		    (+ s -1 m)
		    (- s m))))))

;;@args modulus n2 n3
;;Returns (@var{n2} @minus{} @var{n3}) mod @var{modulus}.
(define (modular:- m a b)
  (modular:+ m a (modular:negate m b)))

;;; See: L'Ecuyer, P. and Cote, S. "Implementing a Random Number Package
;;; with Splitting Facilities." ACM Transactions on Mathematical
;;; Software, 17:98-111 (1991)

;;; modular:r = 2**((nb-2)/2) where nb = number of bits in a word.
(define modular:r
  (do ((mpf most-positive-fixnum (quotient mpf 4))
       (r 1 (* 2 r)))
      ((<= mpf 0) (quotient r 2))))

;;@args modulus n2 n3
;;Returns (@var{n2} * @var{n3}) mod @var{modulus}.
;;
;;The Scheme code for @code{modular:*} with negative @var{modulus} is
;;not completed for fixnum-only implementations.
(define modular:*
  (if (provided? 'bignum)
      (lambda (m a b)
	(cond ((zero? m) (* a b))
	      ((positive? m) (modulo (* a b) m))
	      (else (modular:normalize m (* a b)))))
      (lambda (m a b)
	(define a0 a)
	(define p 0)
	(cond
	 ((zero? m) (* a b))
	 ((negative? m)
	  ;; Need algorighm to work with symmetric representation.
	  (modular:normalize m (* (modular:normalize m a)
				  (modular:normalize m b))))
	 (else
	  (set! a (modulo a m))
	  (set! b (modulo b m))
	  (set! a0 a)
	  (cond ((< a modular:r))
		((< b modular:r) (set! a b) (set! b a0) (set! a0 a))
		(else
		 (set! a0 (modulo a modular:r))
		 (let ((a1 (quotient a modular:r))
		       (qh (quotient m modular:r))
		       (rh (modulo m modular:r)))
		   (cond ((>= a1 modular:r)
			  (set! a1 (- a1 modular:r))
			  (set! p (modulo (- (* modular:r (modulo b qh))
					     (* (quotient b qh) rh)) m))))
		   (cond ((not (zero? a1))
			  (let ((q (quotient m a1)))
			    (set! p (- p (* (quotient b q) (modulo m a1))))
			    (set! p (modulo (+ (if (positive? p) (- p m) p)
					       (* a1 (modulo b q))) m)))))
		   (set! p (modulo (- (* modular:r (modulo p qh))
				      (* (quotient p qh) rh)) m)))))
	  (if (zero? a0)
	      p
	      (let ((q (quotient m a0)))
		(set! p (- p (* (quotient b q) (modulo m a0))))
		(modulo (+ (if (positive? p) (- p m) p)
			   (* a0 (modulo b q))) m))))))))

;;@args modulus n2 n3
;;Returns (@var{n2} ^ @var{n3}) mod @var{modulus}.
(define (modular:expt m base xpn)
  (cond ((zero? m) (expt base xpn))
	((= base 1) 1)
	((if (negative? m) (= -1 base) (= (- m 1) base))
	 (if (odd? xpn) base 1))
	((negative? xpn)
	 (modular:expt m (modular:invert m base) (- xpn)))
	((zero? base) 0)
	(else
	 (do ((x base (modular:* m x x))
	      (j xpn (quotient j 2))
	      (acc 1 (if (even? j) acc (modular:* m x acc))))
	     ((<= j 1)
	      (case j
		((0) acc)
		((1) (modular:* m x acc))))))))