1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
`timescale 1ns / 1ps
// Documented Verilog UART
// Copyright (C) 2010 Timothy Goddard (tim@goddard.net.nz)
// Distributed under the MIT licence.
//
// Permission is hereby granted, free of charge, to any person obtaining a copy
// of this software and associated documentation files (the "Software"), to deal
// in the Software without restriction, including without limitation the rights
// to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
// copies of the Software, and to permit persons to whom the Software is
// furnished to do so, subject to the following conditions:
//
// The above copyright notice and this permission notice shall be included in
// all copies or substantial portions of the Software.
//
// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
// THE SOFTWARE.
//
module simple_uart (
input clk, // The master clock for this module
input rst, // Synchronous reset.
input rx, // Incoming serial line
output tx, // Outgoing serial line
input transmit, // Signal to transmit
input [7:0] tx_byte, // Byte to transmit
output received, // Indicated that a byte has been received.
output [7:0] rx_byte, // Byte received
output is_receiving, // Low when receive line is idle.
output is_transmitting, // Low when transmit line is idle.
output recv_error // Indicates error in receiving packet.
);
//parameter CLOCK_DIVIDE = 3255; // clock rate (125Mhz) / (baud rate (9600) * 4)
parameter CLOCK_DIVIDE = 313; // clock rate (25Mhz) / (baud rate (9600) * 4)
// States for the receiving state machine.
// These are just constants, not parameters to override.
localparam RX_IDLE = 3'd0;
localparam RX_CHECK_START = 3'd1;
localparam RX_READ_BITS = 3'd2;
localparam RX_CHECK_STOP = 3'd3;
localparam RX_DELAY_RESTART = 3'd4;
localparam RX_ERROR = 3'd5;
localparam RX_RECEIVED = 3'd6;
// States for the transmitting state machine.
// Constants - do not override.
localparam TX_IDLE = 2'd0;
localparam TX_SENDING = 2'd1;
localparam TX_DELAY_RESTART = 2'd2;
reg [10:0] rx_clk_divider = CLOCK_DIVIDE;
reg [10:0] tx_clk_divider = CLOCK_DIVIDE;
reg [2:0] recv_state = RX_IDLE;
reg [5:0] rx_countdown;
reg [3:0] rx_bits_remaining;
reg [7:0] rx_data = 0;
reg tx_out = 1'b1;
reg [1:0] tx_state = TX_IDLE;
reg [5:0] tx_countdown;
reg [3:0] tx_bits_remaining;
reg [7:0] tx_data;
assign received = recv_state == RX_RECEIVED;
assign recv_error = recv_state == RX_ERROR;
assign is_receiving = recv_state != RX_IDLE;
assign rx_byte = rx_data;
assign tx = tx_out;
assign is_transmitting = tx_state != TX_IDLE;
always @(posedge clk) begin
if (rst) begin
recv_state = RX_IDLE;
tx_state = TX_IDLE;
end
// The clk_divider counter counts down from
// the CLOCK_DIVIDE constant. Whenever it
// reaches 0, 1/16 of the bit period has elapsed.
// Countdown timers for the receiving and transmitting
// state machines are decremented.
rx_clk_divider = rx_clk_divider - 11'd1;
if (!rx_clk_divider) begin
rx_clk_divider = CLOCK_DIVIDE;
rx_countdown = rx_countdown - 6'd1;
end
tx_clk_divider = tx_clk_divider - 11'd1;
if (!tx_clk_divider) begin
tx_clk_divider = CLOCK_DIVIDE;
tx_countdown = tx_countdown - 6'd1;
end
// Receive state machine
case (recv_state)
RX_IDLE: begin
// A low pulse on the receive line indicates the
// start of data.
if (!rx) begin
// Wait half the period - should resume in the
// middle of this first pulse.
rx_clk_divider = CLOCK_DIVIDE;
rx_countdown = 2;
recv_state = RX_CHECK_START;
end
end
RX_CHECK_START: begin
if (!rx_countdown) begin
// Check the pulse is still there
if (!rx) begin
// Pulse still there - good
// Wait the bit period to resume half-way
// through the first bit.
rx_countdown = 4;
rx_bits_remaining = 8;
recv_state = RX_READ_BITS;
end else begin
// Pulse lasted less than half the period -
// not a valid transmission.
recv_state = RX_ERROR;
end
end
end
RX_READ_BITS: begin
if (!rx_countdown) begin
// Should be half-way through a bit pulse here.
// Read this bit in, wait for the next if we
// have more to get.
rx_data = {rx, rx_data[7:1]};
rx_countdown = 4;
rx_bits_remaining = rx_bits_remaining - 4'd1;
recv_state = rx_bits_remaining ? RX_READ_BITS : RX_CHECK_STOP;
end
end
RX_CHECK_STOP: begin
if (!rx_countdown) begin
// Should resume half-way through the stop bit
// This should be high - if not, reject the
// transmission and signal an error.
recv_state = rx ? RX_RECEIVED : RX_ERROR;
end
end
RX_DELAY_RESTART: begin
// Waits a set number of cycles before accepting
// another transmission.
recv_state = rx_countdown ? RX_DELAY_RESTART : RX_IDLE;
end
RX_ERROR: begin
// There was an error receiving.
// Raises the recv_error flag for one clock
// cycle while in this state and then waits
// 2 bit periods before accepting another
// transmission.
rx_countdown = 8;
recv_state = RX_DELAY_RESTART;
end
RX_RECEIVED: begin
// Successfully received a byte.
// Raises the received flag for one clock
// cycle while in this state.
recv_state = RX_IDLE;
end
endcase
// Transmit state machine
case (tx_state)
TX_IDLE: begin
if (transmit) begin
// If the transmit flag is raised in the idle
// state, start transmitting the current content
// of the tx_byte input.
tx_data = tx_byte;
// Send the initial, low pulse of 1 bit period
// to signal the start, followed by the data
tx_clk_divider = CLOCK_DIVIDE;
tx_countdown = 4;
tx_out = 0;
tx_bits_remaining = 8;
tx_state = TX_SENDING;
end
end
TX_SENDING: begin
if (!tx_countdown) begin
if (tx_bits_remaining) begin
tx_bits_remaining = tx_bits_remaining - 4'd1;
tx_out = tx_data[0];
tx_data = {1'b0, tx_data[7:1]};
tx_countdown = 4;
tx_state = TX_SENDING;
end else begin
// Set delay to send out 2 stop bits.
tx_out = 1;
tx_countdown = 8;
tx_state = TX_DELAY_RESTART;
end
end
end
TX_DELAY_RESTART: begin
// Wait until tx_countdown reaches the end before
// we send another transmission. This covers the
// "stop bit" delay.
tx_state = tx_countdown ? TX_DELAY_RESTART : TX_IDLE;
end
endcase
end
endmodule
|