aboutsummaryrefslogtreecommitdiffstats
path: root/common/polylib.h
blob: 5feb932345cedf9c18d005d1df3c5a28d2993a84 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.

This file is part of Quake III Arena source code.

Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Foobar; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
===========================================================================
*/

typedef struct
{
	int		numpoints;
	vec3_t	p[4];		// variable sized
} winding_t;

#define	MAX_POINTS_ON_WINDING	64

// you can define on_epsilon in the makefile as tighter
#ifndef	ON_EPSILON
#define	ON_EPSILON	0.1
#endif

winding_t	*AllocWinding (int points);
vec_t	WindingArea (winding_t *w);
void	WindingCenter (winding_t *w, vec3_t center);
void	ClipWindingEpsilon (winding_t *in, vec3_t normal, vec_t dist, 
				vec_t epsilon, winding_t **front, winding_t **back);
winding_t	*ChopWinding (winding_t *in, vec3_t normal, vec_t dist);
winding_t	*CopyWinding (winding_t *w);
winding_t	*ReverseWinding (winding_t *w);
winding_t	*BaseWindingForPlane (vec3_t normal, vec_t dist);
void	CheckWinding (winding_t *w);
void	WindingPlane (winding_t *w, vec3_t normal, vec_t *dist);
void	RemoveColinearPoints (winding_t *w);
int		WindingOnPlaneSide (winding_t *w, vec3_t normal, vec_t dist);
void	FreeWinding (winding_t *w);
void	WindingBounds (winding_t *w, vec3_t mins, vec3_t maxs);

void	AddWindingToConvexHull( winding_t *w, winding_t **hull, vec3_t normal );

void	ChopWindingInPlace (winding_t **w, vec3_t normal, vec_t dist, vec_t epsilon);
// frees the original if clipped

void pw(winding_t *w);