aboutsummaryrefslogtreecommitdiffstats
path: root/code/renderer/tr_surface.c
blob: cb535fd82af8f43b9ad9da13c6b222f5fd733bb6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.

This file is part of Quake III Arena source code.

Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
===========================================================================
*/
// tr_surf.c
#include "tr_local.h"
#if idppc_altivec && !defined(MACOS_X)
#include <altivec.h>
#endif

/*

  THIS ENTIRE FILE IS BACK END

backEnd.currentEntity will be valid.

Tess_Begin has already been called for the surface's shader.

The modelview matrix will be set.

It is safe to actually issue drawing commands here if you don't want to
use the shader system.
*/


//============================================================================


/*
==============
RB_CheckOverflow
==============
*/
void RB_CheckOverflow( int verts, int indexes ) {
	if (tess.numVertexes + verts < SHADER_MAX_VERTEXES
		&& tess.numIndexes + indexes < SHADER_MAX_INDEXES) {
		return;
	}

	RB_EndSurface();

	if ( verts >= SHADER_MAX_VERTEXES ) {
		ri.Error(ERR_DROP, "RB_CheckOverflow: verts > MAX (%d > %d)", verts, SHADER_MAX_VERTEXES );
	}
	if ( indexes >= SHADER_MAX_INDEXES ) {
		ri.Error(ERR_DROP, "RB_CheckOverflow: indices > MAX (%d > %d)", indexes, SHADER_MAX_INDEXES );
	}

	RB_BeginSurface(tess.shader, tess.fogNum );
}


/*
==============
RB_AddQuadStampExt
==============
*/
void RB_AddQuadStampExt( vec3_t origin, vec3_t left, vec3_t up, byte *color, float s1, float t1, float s2, float t2 ) {
	vec3_t		normal;
	int			ndx;

	RB_CHECKOVERFLOW( 4, 6 );

	ndx = tess.numVertexes;

	// triangle indexes for a simple quad
	tess.indexes[ tess.numIndexes ] = ndx;
	tess.indexes[ tess.numIndexes + 1 ] = ndx + 1;
	tess.indexes[ tess.numIndexes + 2 ] = ndx + 3;

	tess.indexes[ tess.numIndexes + 3 ] = ndx + 3;
	tess.indexes[ tess.numIndexes + 4 ] = ndx + 1;
	tess.indexes[ tess.numIndexes + 5 ] = ndx + 2;

	tess.xyz[ndx][0] = origin[0] + left[0] + up[0];
	tess.xyz[ndx][1] = origin[1] + left[1] + up[1];
	tess.xyz[ndx][2] = origin[2] + left[2] + up[2];

	tess.xyz[ndx+1][0] = origin[0] - left[0] + up[0];
	tess.xyz[ndx+1][1] = origin[1] - left[1] + up[1];
	tess.xyz[ndx+1][2] = origin[2] - left[2] + up[2];

	tess.xyz[ndx+2][0] = origin[0] - left[0] - up[0];
	tess.xyz[ndx+2][1] = origin[1] - left[1] - up[1];
	tess.xyz[ndx+2][2] = origin[2] - left[2] - up[2];

	tess.xyz[ndx+3][0] = origin[0] + left[0] - up[0];
	tess.xyz[ndx+3][1] = origin[1] + left[1] - up[1];
	tess.xyz[ndx+3][2] = origin[2] + left[2] - up[2];


	// constant normal all the way around
	VectorSubtract( vec3_origin, backEnd.viewParms.or.axis[0], normal );

	tess.normal[ndx][0] = tess.normal[ndx+1][0] = tess.normal[ndx+2][0] = tess.normal[ndx+3][0] = normal[0];
	tess.normal[ndx][1] = tess.normal[ndx+1][1] = tess.normal[ndx+2][1] = tess.normal[ndx+3][1] = normal[1];
	tess.normal[ndx][2] = tess.normal[ndx+1][2] = tess.normal[ndx+2][2] = tess.normal[ndx+3][2] = normal[2];
	
	// standard square texture coordinates
	tess.texCoords[ndx][0][0] = tess.texCoords[ndx][1][0] = s1;
	tess.texCoords[ndx][0][1] = tess.texCoords[ndx][1][1] = t1;

	tess.texCoords[ndx+1][0][0] = tess.texCoords[ndx+1][1][0] = s2;
	tess.texCoords[ndx+1][0][1] = tess.texCoords[ndx+1][1][1] = t1;

	tess.texCoords[ndx+2][0][0] = tess.texCoords[ndx+2][1][0] = s2;
	tess.texCoords[ndx+2][0][1] = tess.texCoords[ndx+2][1][1] = t2;

	tess.texCoords[ndx+3][0][0] = tess.texCoords[ndx+3][1][0] = s1;
	tess.texCoords[ndx+3][0][1] = tess.texCoords[ndx+3][1][1] = t2;

	// constant color all the way around
	// should this be identity and let the shader specify from entity?
	* ( unsigned int * ) &tess.vertexColors[ndx] = 
	* ( unsigned int * ) &tess.vertexColors[ndx+1] = 
	* ( unsigned int * ) &tess.vertexColors[ndx+2] = 
	* ( unsigned int * ) &tess.vertexColors[ndx+3] = 
		* ( unsigned int * )color;


	tess.numVertexes += 4;
	tess.numIndexes += 6;
}

/*
==============
RB_AddQuadStamp
==============
*/
void RB_AddQuadStamp( vec3_t origin, vec3_t left, vec3_t up, byte *color ) {
	RB_AddQuadStampExt( origin, left, up, color, 0, 0, 1, 1 );
}

/*
==============
RB_SurfaceSprite
==============
*/
static void RB_SurfaceSprite( void ) {
	vec3_t		left, up;
	float		radius;

	// calculate the xyz locations for the four corners
	radius = backEnd.currentEntity->e.radius;
	if ( backEnd.currentEntity->e.rotation == 0 ) {
		VectorScale( backEnd.viewParms.or.axis[1], radius, left );
		VectorScale( backEnd.viewParms.or.axis[2], radius, up );
	} else {
		float	s, c;
		float	ang;
		
		ang = M_PI * backEnd.currentEntity->e.rotation / 180;
		s = sin( ang );
		c = cos( ang );

		VectorScale( backEnd.viewParms.or.axis[1], c * radius, left );
		VectorMA( left, -s * radius, backEnd.viewParms.or.axis[2], left );

		VectorScale( backEnd.viewParms.or.axis[2], c * radius, up );
		VectorMA( up, s * radius, backEnd.viewParms.or.axis[1], up );
	}
	if ( backEnd.viewParms.isMirror ) {
		VectorSubtract( vec3_origin, left, left );
	}

	RB_AddQuadStamp( backEnd.currentEntity->e.origin, left, up, backEnd.currentEntity->e.shaderRGBA );
}


/*
=============
RB_SurfacePolychain
=============
*/
void RB_SurfacePolychain( srfPoly_t *p ) {
	int		i;
	int		numv;

	RB_CHECKOVERFLOW( p->numVerts, 3*(p->numVerts - 2) );

	// fan triangles into the tess array
	numv = tess.numVertexes;
	for ( i = 0; i < p->numVerts; i++ ) {
		VectorCopy( p->verts[i].xyz, tess.xyz[numv] );
		tess.texCoords[numv][0][0] = p->verts[i].st[0];
		tess.texCoords[numv][0][1] = p->verts[i].st[1];
		*(int *)&tess.vertexColors[numv] = *(int *)p->verts[ i ].modulate;

		numv++;
	}

	// generate fan indexes into the tess array
	for ( i = 0; i < p->numVerts-2; i++ ) {
		tess.indexes[tess.numIndexes + 0] = tess.numVertexes;
		tess.indexes[tess.numIndexes + 1] = tess.numVertexes + i + 1;
		tess.indexes[tess.numIndexes + 2] = tess.numVertexes + i + 2;
		tess.numIndexes += 3;
	}

	tess.numVertexes = numv;
}


/*
=============
RB_SurfaceTriangles
=============
*/
void RB_SurfaceTriangles( srfTriangles_t *srf ) {
	int			i;
	drawVert_t	*dv;
	float		*xyz, *normal, *texCoords;
	byte		*color;
	int			dlightBits;
	qboolean	needsNormal;

	dlightBits = srf->dlightBits[backEnd.smpFrame];
	tess.dlightBits |= dlightBits;

	RB_CHECKOVERFLOW( srf->numVerts, srf->numIndexes );

	for ( i = 0 ; i < srf->numIndexes ; i += 3 ) {
		tess.indexes[ tess.numIndexes + i + 0 ] = tess.numVertexes + srf->indexes[ i + 0 ];
		tess.indexes[ tess.numIndexes + i + 1 ] = tess.numVertexes + srf->indexes[ i + 1 ];
		tess.indexes[ tess.numIndexes + i + 2 ] = tess.numVertexes + srf->indexes[ i + 2 ];
	}
	tess.numIndexes += srf->numIndexes;

	dv = srf->verts;
	xyz = tess.xyz[ tess.numVertexes ];
	normal = tess.normal[ tess.numVertexes ];
	texCoords = tess.texCoords[ tess.numVertexes ][0];
	color = tess.vertexColors[ tess.numVertexes ];
	needsNormal = tess.shader->needsNormal;

	for ( i = 0 ; i < srf->numVerts ; i++, dv++, xyz += 4, normal += 4, texCoords += 4, color += 4 ) {
		xyz[0] = dv->xyz[0];
		xyz[1] = dv->xyz[1];
		xyz[2] = dv->xyz[2];

		if ( needsNormal ) {
			normal[0] = dv->normal[0];
			normal[1] = dv->normal[1];
			normal[2] = dv->normal[2];
		}

		texCoords[0] = dv->st[0];
		texCoords[1] = dv->st[1];

		texCoords[2] = dv->lightmap[0];
		texCoords[3] = dv->lightmap[1];

		*(int *)color = *(int *)dv->color;
	}

	for ( i = 0 ; i < srf->numVerts ; i++ ) {
		tess.vertexDlightBits[ tess.numVertexes + i] = dlightBits;
	}

	tess.numVertexes += srf->numVerts;
}



/*
==============
RB_SurfaceBeam
==============
*/
void RB_SurfaceBeam( void ) 
{
#define NUM_BEAM_SEGS 6
	refEntity_t *e;
	int	i;
	vec3_t perpvec;
	vec3_t direction, normalized_direction;
	vec3_t	start_points[NUM_BEAM_SEGS], end_points[NUM_BEAM_SEGS];
	vec3_t oldorigin, origin;

	e = &backEnd.currentEntity->e;

	oldorigin[0] = e->oldorigin[0];
	oldorigin[1] = e->oldorigin[1];
	oldorigin[2] = e->oldorigin[2];

	origin[0] = e->origin[0];
	origin[1] = e->origin[1];
	origin[2] = e->origin[2];

	normalized_direction[0] = direction[0] = oldorigin[0] - origin[0];
	normalized_direction[1] = direction[1] = oldorigin[1] - origin[1];
	normalized_direction[2] = direction[2] = oldorigin[2] - origin[2];

	if ( VectorNormalize( normalized_direction ) == 0 )
		return;

	PerpendicularVector( perpvec, normalized_direction );

	VectorScale( perpvec, 4, perpvec );

	for ( i = 0; i < NUM_BEAM_SEGS ; i++ )
	{
		RotatePointAroundVector( start_points[i], normalized_direction, perpvec, (360.0/NUM_BEAM_SEGS)*i );
//		VectorAdd( start_points[i], origin, start_points[i] );
		VectorAdd( start_points[i], direction, end_points[i] );
	}

	GL_Bind( tr.whiteImage );

	GL_State( GLS_SRCBLEND_ONE | GLS_DSTBLEND_ONE );

	qglColor3f( 1, 0, 0 );

	qglBegin( GL_TRIANGLE_STRIP );
	for ( i = 0; i <= NUM_BEAM_SEGS; i++ ) {
		qglVertex3fv( start_points[ i % NUM_BEAM_SEGS] );
		qglVertex3fv( end_points[ i % NUM_BEAM_SEGS] );
	}
	qglEnd();
}

//================================================================================

static void DoRailCore( const vec3_t start, const vec3_t end, const vec3_t up, float len, float spanWidth )
{
	float		spanWidth2;
	int			vbase;
	float		t = len / 256.0f;

	vbase = tess.numVertexes;

	spanWidth2 = -spanWidth;

	// FIXME: use quad stamp?
	VectorMA( start, spanWidth, up, tess.xyz[tess.numVertexes] );
	tess.texCoords[tess.numVertexes][0][0] = 0;
	tess.texCoords[tess.numVertexes][0][1] = 0;
	tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0] * 0.25;
	tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1] * 0.25;
	tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2] * 0.25;
	tess.numVertexes++;

	VectorMA( start, spanWidth2, up, tess.xyz[tess.numVertexes] );
	tess.texCoords[tess.numVertexes][0][0] = 0;
	tess.texCoords[tess.numVertexes][0][1] = 1;
	tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];
	tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];
	tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];
	tess.numVertexes++;

	VectorMA( end, spanWidth, up, tess.xyz[tess.numVertexes] );

	tess.texCoords[tess.numVertexes][0][0] = t;
	tess.texCoords[tess.numVertexes][0][1] = 0;
	tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];
	tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];
	tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];
	tess.numVertexes++;

	VectorMA( end, spanWidth2, up, tess.xyz[tess.numVertexes] );
	tess.texCoords[tess.numVertexes][0][0] = t;
	tess.texCoords[tess.numVertexes][0][1] = 1;
	tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];
	tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];
	tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];
	tess.numVertexes++;

	tess.indexes[tess.numIndexes++] = vbase;
	tess.indexes[tess.numIndexes++] = vbase + 1;
	tess.indexes[tess.numIndexes++] = vbase + 2;

	tess.indexes[tess.numIndexes++] = vbase + 2;
	tess.indexes[tess.numIndexes++] = vbase + 1;
	tess.indexes[tess.numIndexes++] = vbase + 3;
}

static void DoRailDiscs( int numSegs, const vec3_t start, const vec3_t dir, const vec3_t right, const vec3_t up )
{
	int i;
	vec3_t	pos[4];
	vec3_t	v;
	int		spanWidth = r_railWidth->integer;
	float c, s;
	float		scale;

	if ( numSegs > 1 )
		numSegs--;
	if ( !numSegs )
		return;

	scale = 0.25;

	for ( i = 0; i < 4; i++ )
	{
		c = cos( DEG2RAD( 45 + i * 90 ) );
		s = sin( DEG2RAD( 45 + i * 90 ) );
		v[0] = ( right[0] * c + up[0] * s ) * scale * spanWidth;
		v[1] = ( right[1] * c + up[1] * s ) * scale * spanWidth;
		v[2] = ( right[2] * c + up[2] * s ) * scale * spanWidth;
		VectorAdd( start, v, pos[i] );

		if ( numSegs > 1 )
		{
			// offset by 1 segment if we're doing a long distance shot
			VectorAdd( pos[i], dir, pos[i] );
		}
	}

	for ( i = 0; i < numSegs; i++ )
	{
		int j;

		RB_CHECKOVERFLOW( 4, 6 );

		for ( j = 0; j < 4; j++ )
		{
			VectorCopy( pos[j], tess.xyz[tess.numVertexes] );
			tess.texCoords[tess.numVertexes][0][0] = ( j < 2 );
			tess.texCoords[tess.numVertexes][0][1] = ( j && j != 3 );
			tess.vertexColors[tess.numVertexes][0] = backEnd.currentEntity->e.shaderRGBA[0];
			tess.vertexColors[tess.numVertexes][1] = backEnd.currentEntity->e.shaderRGBA[1];
			tess.vertexColors[tess.numVertexes][2] = backEnd.currentEntity->e.shaderRGBA[2];
			tess.numVertexes++;

			VectorAdd( pos[j], dir, pos[j] );
		}

		tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 0;
		tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 1;
		tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 3;
		tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 3;
		tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 1;
		tess.indexes[tess.numIndexes++] = tess.numVertexes - 4 + 2;
	}
}

/*
** RB_SurfaceRailRinges
*/
void RB_SurfaceRailRings( void ) {
	refEntity_t *e;
	int			numSegs;
	int			len;
	vec3_t		vec;
	vec3_t		right, up;
	vec3_t		start, end;

	e = &backEnd.currentEntity->e;

	VectorCopy( e->oldorigin, start );
	VectorCopy( e->origin, end );

	// compute variables
	VectorSubtract( end, start, vec );
	len = VectorNormalize( vec );
	MakeNormalVectors( vec, right, up );
	numSegs = ( len ) / r_railSegmentLength->value;
	if ( numSegs <= 0 ) {
		numSegs = 1;
	}

	VectorScale( vec, r_railSegmentLength->value, vec );

	DoRailDiscs( numSegs, start, vec, right, up );
}

/*
** RB_SurfaceRailCore
*/
void RB_SurfaceRailCore( void ) {
	refEntity_t *e;
	int			len;
	vec3_t		right;
	vec3_t		vec;
	vec3_t		start, end;
	vec3_t		v1, v2;

	e = &backEnd.currentEntity->e;

	VectorCopy( e->oldorigin, start );
	VectorCopy( e->origin, end );

	VectorSubtract( end, start, vec );
	len = VectorNormalize( vec );

	// compute side vector
	VectorSubtract( start, backEnd.viewParms.or.origin, v1 );
	VectorNormalize( v1 );
	VectorSubtract( end, backEnd.viewParms.or.origin, v2 );
	VectorNormalize( v2 );
	CrossProduct( v1, v2, right );
	VectorNormalize( right );

	DoRailCore( start, end, right, len, r_railCoreWidth->integer );
}

/*
** RB_SurfaceLightningBolt
*/
void RB_SurfaceLightningBolt( void ) {
	refEntity_t *e;
	int			len;
	vec3_t		right;
	vec3_t		vec;
	vec3_t		start, end;
	vec3_t		v1, v2;
	int			i;

	e = &backEnd.currentEntity->e;

	VectorCopy( e->oldorigin, end );
	VectorCopy( e->origin, start );

	// compute variables
	VectorSubtract( end, start, vec );
	len = VectorNormalize( vec );

	// compute side vector
	VectorSubtract( start, backEnd.viewParms.or.origin, v1 );
	VectorNormalize( v1 );
	VectorSubtract( end, backEnd.viewParms.or.origin, v2 );
	VectorNormalize( v2 );
	CrossProduct( v1, v2, right );
	VectorNormalize( right );

	for ( i = 0 ; i < 4 ; i++ ) {
		vec3_t	temp;

		DoRailCore( start, end, right, len, 8 );
		RotatePointAroundVector( temp, vec, right, 45 );
		VectorCopy( temp, right );
	}
}

/*
** VectorArrayNormalize
*
* The inputs to this routing seem to always be close to length = 1.0 (about 0.6 to 2.0)
* This means that we don't have to worry about zero length or enormously long vectors.
*/
static void VectorArrayNormalize(vec4_t *normals, unsigned int count)
{
//    assert(count);
        
#if idppc
    {
        register float half = 0.5;
        register float one  = 1.0;
        float *components = (float *)normals;
        
        // Vanilla PPC code, but since PPC has a reciprocal square root estimate instruction,
        // runs *much* faster than calling sqrt().  We'll use a single Newton-Raphson
        // refinement step to get a little more precision.  This seems to yeild results
        // that are correct to 3 decimal places and usually correct to at least 4 (sometimes 5).
        // (That is, for the given input range of about 0.6 to 2.0).
        do {
            float x, y, z;
            float B, y0, y1;
            
            x = components[0];
            y = components[1];
            z = components[2];
            components += 4;
            B = x*x + y*y + z*z;

#ifdef __GNUC__            
            asm("frsqrte %0,%1" : "=f" (y0) : "f" (B));
#else
			y0 = __frsqrte(B);
#endif
            y1 = y0 + half*y0*(one - B*y0*y0);

            x = x * y1;
            y = y * y1;
            components[-4] = x;
            z = z * y1;
            components[-3] = y;
            components[-2] = z;
        } while(count--);
    }
#else // No assembly version for this architecture, or C_ONLY defined
	// given the input, it's safe to call VectorNormalizeFast
    while (count--) {
        VectorNormalizeFast(normals[0]);
        normals++;
    }
#endif

}



/*
** LerpMeshVertexes
*/
#if idppc_altivec
static void LerpMeshVertexes_altivec(md3Surface_t *surf, float backlerp)
{
	short	*oldXyz, *newXyz, *oldNormals, *newNormals;
	float	*outXyz, *outNormal;
	float	oldXyzScale ALIGN16;
	float   newXyzScale ALIGN16;
	float	oldNormalScale ALIGN16;
	float newNormalScale ALIGN16;
	int		vertNum;
	unsigned lat, lng;
	int		numVerts;

	outXyz = tess.xyz[tess.numVertexes];
	outNormal = tess.normal[tess.numVertexes];

	newXyz = (short *)((byte *)surf + surf->ofsXyzNormals)
		+ (backEnd.currentEntity->e.frame * surf->numVerts * 4);
	newNormals = newXyz + 3;

	newXyzScale = MD3_XYZ_SCALE * (1.0 - backlerp);
	newNormalScale = 1.0 - backlerp;

	numVerts = surf->numVerts;

	if ( backlerp == 0 ) {
		vector signed short newNormalsVec0;
		vector signed short newNormalsVec1;
		vector signed int newNormalsIntVec;
		vector float newNormalsFloatVec;
		vector float newXyzScaleVec;
		vector unsigned char newNormalsLoadPermute;
		vector unsigned char newNormalsStorePermute;
		vector float zero;
		
		newNormalsStorePermute = vec_lvsl(0,(float *)&newXyzScaleVec);
		newXyzScaleVec = *(vector float *)&newXyzScale;
		newXyzScaleVec = vec_perm(newXyzScaleVec,newXyzScaleVec,newNormalsStorePermute);
		newXyzScaleVec = vec_splat(newXyzScaleVec,0);		
		newNormalsLoadPermute = vec_lvsl(0,newXyz);
		newNormalsStorePermute = vec_lvsr(0,outXyz);
		zero = (vector float)vec_splat_s8(0);
		//
		// just copy the vertexes
		//
		for (vertNum=0 ; vertNum < numVerts ; vertNum++,
			newXyz += 4, newNormals += 4,
			outXyz += 4, outNormal += 4) 
		{
			newNormalsLoadPermute = vec_lvsl(0,newXyz);
			newNormalsStorePermute = vec_lvsr(0,outXyz);
			newNormalsVec0 = vec_ld(0,newXyz);
			newNormalsVec1 = vec_ld(16,newXyz);
			newNormalsVec0 = vec_perm(newNormalsVec0,newNormalsVec1,newNormalsLoadPermute);
			newNormalsIntVec = vec_unpackh(newNormalsVec0);
			newNormalsFloatVec = vec_ctf(newNormalsIntVec,0);
			newNormalsFloatVec = vec_madd(newNormalsFloatVec,newXyzScaleVec,zero);
			newNormalsFloatVec = vec_perm(newNormalsFloatVec,newNormalsFloatVec,newNormalsStorePermute);
			//outXyz[0] = newXyz[0] * newXyzScale;
			//outXyz[1] = newXyz[1] * newXyzScale;
			//outXyz[2] = newXyz[2] * newXyzScale;

			lat = ( newNormals[0] >> 8 ) & 0xff;
			lng = ( newNormals[0] & 0xff );
			lat *= (FUNCTABLE_SIZE/256);
			lng *= (FUNCTABLE_SIZE/256);

			// decode X as cos( lat ) * sin( long )
			// decode Y as sin( lat ) * sin( long )
			// decode Z as cos( long )

			outNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
			outNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
			outNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];

			vec_ste(newNormalsFloatVec,0,outXyz);
			vec_ste(newNormalsFloatVec,4,outXyz);
			vec_ste(newNormalsFloatVec,8,outXyz);
		}
	} else {
		//
		// interpolate and copy the vertex and normal
		//
		oldXyz = (short *)((byte *)surf + surf->ofsXyzNormals)
			+ (backEnd.currentEntity->e.oldframe * surf->numVerts * 4);
		oldNormals = oldXyz + 3;

		oldXyzScale = MD3_XYZ_SCALE * backlerp;
		oldNormalScale = backlerp;

		for (vertNum=0 ; vertNum < numVerts ; vertNum++,
			oldXyz += 4, newXyz += 4, oldNormals += 4, newNormals += 4,
			outXyz += 4, outNormal += 4) 
		{
			vec3_t uncompressedOldNormal, uncompressedNewNormal;

			// interpolate the xyz
			outXyz[0] = oldXyz[0] * oldXyzScale + newXyz[0] * newXyzScale;
			outXyz[1] = oldXyz[1] * oldXyzScale + newXyz[1] * newXyzScale;
			outXyz[2] = oldXyz[2] * oldXyzScale + newXyz[2] * newXyzScale;

			// FIXME: interpolate lat/long instead?
			lat = ( newNormals[0] >> 8 ) & 0xff;
			lng = ( newNormals[0] & 0xff );
			lat *= 4;
			lng *= 4;
			uncompressedNewNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
			uncompressedNewNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
			uncompressedNewNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];

			lat = ( oldNormals[0] >> 8 ) & 0xff;
			lng = ( oldNormals[0] & 0xff );
			lat *= 4;
			lng *= 4;

			uncompressedOldNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
			uncompressedOldNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
			uncompressedOldNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];

			outNormal[0] = uncompressedOldNormal[0] * oldNormalScale + uncompressedNewNormal[0] * newNormalScale;
			outNormal[1] = uncompressedOldNormal[1] * oldNormalScale + uncompressedNewNormal[1] * newNormalScale;
			outNormal[2] = uncompressedOldNormal[2] * oldNormalScale + uncompressedNewNormal[2] * newNormalScale;

//			VectorNormalize (outNormal);
		}
    	VectorArrayNormalize((vec4_t *)tess.normal[tess.numVertexes], numVerts);
   	}
}
#endif

static void LerpMeshVertexes_scalar(md3Surface_t *surf, float backlerp)
{
	short	*oldXyz, *newXyz, *oldNormals, *newNormals;
	float	*outXyz, *outNormal;
	float	oldXyzScale, newXyzScale;
	float	oldNormalScale, newNormalScale;
	int		vertNum;
	unsigned lat, lng;
	int		numVerts;

	outXyz = tess.xyz[tess.numVertexes];
	outNormal = tess.normal[tess.numVertexes];

	newXyz = (short *)((byte *)surf + surf->ofsXyzNormals)
		+ (backEnd.currentEntity->e.frame * surf->numVerts * 4);
	newNormals = newXyz + 3;

	newXyzScale = MD3_XYZ_SCALE * (1.0 - backlerp);
	newNormalScale = 1.0 - backlerp;

	numVerts = surf->numVerts;

	if ( backlerp == 0 ) {
		//
		// just copy the vertexes
		//
		for (vertNum=0 ; vertNum < numVerts ; vertNum++,
			newXyz += 4, newNormals += 4,
			outXyz += 4, outNormal += 4) 
		{

			outXyz[0] = newXyz[0] * newXyzScale;
			outXyz[1] = newXyz[1] * newXyzScale;
			outXyz[2] = newXyz[2] * newXyzScale;

			lat = ( newNormals[0] >> 8 ) & 0xff;
			lng = ( newNormals[0] & 0xff );
			lat *= (FUNCTABLE_SIZE/256);
			lng *= (FUNCTABLE_SIZE/256);

			// decode X as cos( lat ) * sin( long )
			// decode Y as sin( lat ) * sin( long )
			// decode Z as cos( long )

			outNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
			outNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
			outNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];
		}
	} else {
		//
		// interpolate and copy the vertex and normal
		//
		oldXyz = (short *)((byte *)surf + surf->ofsXyzNormals)
			+ (backEnd.currentEntity->e.oldframe * surf->numVerts * 4);
		oldNormals = oldXyz + 3;

		oldXyzScale = MD3_XYZ_SCALE * backlerp;
		oldNormalScale = backlerp;

		for (vertNum=0 ; vertNum < numVerts ; vertNum++,
			oldXyz += 4, newXyz += 4, oldNormals += 4, newNormals += 4,
			outXyz += 4, outNormal += 4) 
		{
			vec3_t uncompressedOldNormal, uncompressedNewNormal;

			// interpolate the xyz
			outXyz[0] = oldXyz[0] * oldXyzScale + newXyz[0] * newXyzScale;
			outXyz[1] = oldXyz[1] * oldXyzScale + newXyz[1] * newXyzScale;
			outXyz[2] = oldXyz[2] * oldXyzScale + newXyz[2] * newXyzScale;

			// FIXME: interpolate lat/long instead?
			lat = ( newNormals[0] >> 8 ) & 0xff;
			lng = ( newNormals[0] & 0xff );
			lat *= 4;
			lng *= 4;
			uncompressedNewNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
			uncompressedNewNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
			uncompressedNewNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];

			lat = ( oldNormals[0] >> 8 ) & 0xff;
			lng = ( oldNormals[0] & 0xff );
			lat *= 4;
			lng *= 4;

			uncompressedOldNormal[0] = tr.sinTable[(lat+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK] * tr.sinTable[lng];
			uncompressedOldNormal[1] = tr.sinTable[lat] * tr.sinTable[lng];
			uncompressedOldNormal[2] = tr.sinTable[(lng+(FUNCTABLE_SIZE/4))&FUNCTABLE_MASK];

			outNormal[0] = uncompressedOldNormal[0] * oldNormalScale + uncompressedNewNormal[0] * newNormalScale;
			outNormal[1] = uncompressedOldNormal[1] * oldNormalScale + uncompressedNewNormal[1] * newNormalScale;
			outNormal[2] = uncompressedOldNormal[2] * oldNormalScale + uncompressedNewNormal[2] * newNormalScale;

//			VectorNormalize (outNormal);
		}
    	VectorArrayNormalize((vec4_t *)tess.normal[tess.numVertexes], numVerts);
   	}
}

static void LerpMeshVertexes(md3Surface_t *surf, float backlerp)
{
#if idppc_altivec
	if (com_altivec->integer) {
		// must be in a seperate function or G3 systems will crash.
		LerpMeshVertexes_altivec( surf, backlerp );
		return;
	}
#endif // idppc_altivec
	LerpMeshVertexes_scalar( surf, backlerp );
}


/*
=============
RB_SurfaceMesh
=============
*/
void RB_SurfaceMesh(md3Surface_t *surface) {
	int				j;
	float			backlerp;
	int				*triangles;
	float			*texCoords;
	int				indexes;
	int				Bob, Doug;
	int				numVerts;

	if (  backEnd.currentEntity->e.oldframe == backEnd.currentEntity->e.frame ) {
		backlerp = 0;
	} else  {
		backlerp = backEnd.currentEntity->e.backlerp;
	}

	RB_CHECKOVERFLOW( surface->numVerts, surface->numTriangles*3 );

	LerpMeshVertexes (surface, backlerp);

	triangles = (int *) ((byte *)surface + surface->ofsTriangles);
	indexes = surface->numTriangles * 3;
	Bob = tess.numIndexes;
	Doug = tess.numVertexes;
	for (j = 0 ; j < indexes ; j++) {
		tess.indexes[Bob + j] = Doug + triangles[j];
	}
	tess.numIndexes += indexes;

	texCoords = (float *) ((byte *)surface + surface->ofsSt);

	numVerts = surface->numVerts;
	for ( j = 0; j < numVerts; j++ ) {
		tess.texCoords[Doug + j][0][0] = texCoords[j*2+0];
		tess.texCoords[Doug + j][0][1] = texCoords[j*2+1];
		// FIXME: fill in lightmapST for completeness?
	}

	tess.numVertexes += surface->numVerts;

}


/*
==============
RB_SurfaceFace
==============
*/
void RB_SurfaceFace( srfSurfaceFace_t *surf ) {
	int			i;
	unsigned	*indices, *tessIndexes;
	float		*v;
	float		*normal;
	int			ndx;
	int			Bob;
	int			numPoints;
	int			dlightBits;

	RB_CHECKOVERFLOW( surf->numPoints, surf->numIndices );

	dlightBits = surf->dlightBits[backEnd.smpFrame];
	tess.dlightBits |= dlightBits;

	indices = ( unsigned * ) ( ( ( char  * ) surf ) + surf->ofsIndices );

	Bob = tess.numVertexes;
	tessIndexes = tess.indexes + tess.numIndexes;
	for ( i = surf->numIndices-1 ; i >= 0  ; i-- ) {
		tessIndexes[i] = indices[i] + Bob;
	}

	tess.numIndexes += surf->numIndices;

	v = surf->points[0];

	ndx = tess.numVertexes;

	numPoints = surf->numPoints;

	if ( tess.shader->needsNormal ) {
		normal = surf->plane.normal;
		for ( i = 0, ndx = tess.numVertexes; i < numPoints; i++, ndx++ ) {
			VectorCopy( normal, tess.normal[ndx] );
		}
	}

	for ( i = 0, v = surf->points[0], ndx = tess.numVertexes; i < numPoints; i++, v += VERTEXSIZE, ndx++ ) {
		VectorCopy( v, tess.xyz[ndx]);
		tess.texCoords[ndx][0][0] = v[3];
		tess.texCoords[ndx][0][1] = v[4];
		tess.texCoords[ndx][1][0] = v[5];
		tess.texCoords[ndx][1][1] = v[6];
		* ( unsigned int * ) &tess.vertexColors[ndx] = * ( unsigned int * ) &v[7];
		tess.vertexDlightBits[ndx] = dlightBits;
	}


	tess.numVertexes += surf->numPoints;
}


static float	LodErrorForVolume( vec3_t local, float radius ) {
	vec3_t		world;
	float		d;

	// never let it go negative
	if ( r_lodCurveError->value < 0 ) {
		return 0;
	}

	world[0] = local[0] * backEnd.or.axis[0][0] + local[1] * backEnd.or.axis[1][0] + 
		local[2] * backEnd.or.axis[2][0] + backEnd.or.origin[0];
	world[1] = local[0] * backEnd.or.axis[0][1] + local[1] * backEnd.or.axis[1][1] + 
		local[2] * backEnd.or.axis[2][1] + backEnd.or.origin[1];
	world[2] = local[0] * backEnd.or.axis[0][2] + local[1] * backEnd.or.axis[1][2] + 
		local[2] * backEnd.or.axis[2][2] + backEnd.or.origin[2];

	VectorSubtract( world, backEnd.viewParms.or.origin, world );
	d = DotProduct( world, backEnd.viewParms.or.axis[0] );

	if ( d < 0 ) {
		d = -d;
	}
	d -= radius;
	if ( d < 1 ) {
		d = 1;
	}

	return r_lodCurveError->value / d;
}

/*
=============
RB_SurfaceGrid

Just copy the grid of points and triangulate
=============
*/
void RB_SurfaceGrid( srfGridMesh_t *cv ) {
	int		i, j;
	float	*xyz;
	float	*texCoords;
	float	*normal;
	unsigned char *color;
	drawVert_t	*dv;
	int		rows, irows, vrows;
	int		used;
	int		widthTable[MAX_GRID_SIZE];
	int		heightTable[MAX_GRID_SIZE];
	float	lodError;
	int		lodWidth, lodHeight;
	int		numVertexes;
	int		dlightBits;
	int		*vDlightBits;
	qboolean	needsNormal;

	dlightBits = cv->dlightBits[backEnd.smpFrame];
	tess.dlightBits |= dlightBits;

	// determine the allowable discrepance
	lodError = LodErrorForVolume( cv->lodOrigin, cv->lodRadius );

	// determine which rows and columns of the subdivision
	// we are actually going to use
	widthTable[0] = 0;
	lodWidth = 1;
	for ( i = 1 ; i < cv->width-1 ; i++ ) {
		if ( cv->widthLodError[i] <= lodError ) {
			widthTable[lodWidth] = i;
			lodWidth++;
		}
	}
	widthTable[lodWidth] = cv->width-1;
	lodWidth++;

	heightTable[0] = 0;
	lodHeight = 1;
	for ( i = 1 ; i < cv->height-1 ; i++ ) {
		if ( cv->heightLodError[i] <= lodError ) {
			heightTable[lodHeight] = i;
			lodHeight++;
		}
	}
	heightTable[lodHeight] = cv->height-1;
	lodHeight++;


	// very large grids may have more points or indexes than can be fit
	// in the tess structure, so we may have to issue it in multiple passes

	used = 0;
	rows = 0;
	while ( used < lodHeight - 1 ) {
		// see how many rows of both verts and indexes we can add without overflowing
		do {
			vrows = ( SHADER_MAX_VERTEXES - tess.numVertexes ) / lodWidth;
			irows = ( SHADER_MAX_INDEXES - tess.numIndexes ) / ( lodWidth * 6 );

			// if we don't have enough space for at least one strip, flush the buffer
			if ( vrows < 2 || irows < 1 ) {
				RB_EndSurface();
				RB_BeginSurface(tess.shader, tess.fogNum );
			} else {
				break;
			}
		} while ( 1 );
		
		rows = irows;
		if ( vrows < irows + 1 ) {
			rows = vrows - 1;
		}
		if ( used + rows > lodHeight ) {
			rows = lodHeight - used;
		}

		numVertexes = tess.numVertexes;

		xyz = tess.xyz[numVertexes];
		normal = tess.normal[numVertexes];
		texCoords = tess.texCoords[numVertexes][0];
		color = ( unsigned char * ) &tess.vertexColors[numVertexes];
		vDlightBits = &tess.vertexDlightBits[numVertexes];
		needsNormal = tess.shader->needsNormal;

		for ( i = 0 ; i < rows ; i++ ) {
			for ( j = 0 ; j < lodWidth ; j++ ) {
				dv = cv->verts + heightTable[ used + i ] * cv->width
					+ widthTable[ j ];

				xyz[0] = dv->xyz[0];
				xyz[1] = dv->xyz[1];
				xyz[2] = dv->xyz[2];
				texCoords[0] = dv->st[0];
				texCoords[1] = dv->st[1];
				texCoords[2] = dv->lightmap[0];
				texCoords[3] = dv->lightmap[1];
				if ( needsNormal ) {
					normal[0] = dv->normal[0];
					normal[1] = dv->normal[1];
					normal[2] = dv->normal[2];
				}
				* ( unsigned int * ) color = * ( unsigned int * ) dv->color;
				*vDlightBits++ = dlightBits;
				xyz += 4;
				normal += 4;
				texCoords += 4;
				color += 4;
			}
		}


		// add the indexes
		{
			int		numIndexes;
			int		w, h;

			h = rows - 1;
			w = lodWidth - 1;
			numIndexes = tess.numIndexes;
			for (i = 0 ; i < h ; i++) {
				for (j = 0 ; j < w ; j++) {
					int		v1, v2, v3, v4;
			
					// vertex order to be reckognized as tristrips
					v1 = numVertexes + i*lodWidth + j + 1;
					v2 = v1 - 1;
					v3 = v2 + lodWidth;
					v4 = v3 + 1;

					tess.indexes[numIndexes] = v2;
					tess.indexes[numIndexes+1] = v3;
					tess.indexes[numIndexes+2] = v1;
					
					tess.indexes[numIndexes+3] = v1;
					tess.indexes[numIndexes+4] = v3;
					tess.indexes[numIndexes+5] = v4;
					numIndexes += 6;
				}
			}

			tess.numIndexes = numIndexes;
		}

		tess.numVertexes += rows * lodWidth;

		used += rows - 1;
	}
}


/*
===========================================================================

NULL MODEL

===========================================================================
*/

/*
===================
RB_SurfaceAxis

Draws x/y/z lines from the origin for orientation debugging
===================
*/
void RB_SurfaceAxis( void ) {
	GL_Bind( tr.whiteImage );
	qglLineWidth( 3 );
	qglBegin( GL_LINES );
	qglColor3f( 1,0,0 );
	qglVertex3f( 0,0,0 );
	qglVertex3f( 16,0,0 );
	qglColor3f( 0,1,0 );
	qglVertex3f( 0,0,0 );
	qglVertex3f( 0,16,0 );
	qglColor3f( 0,0,1 );
	qglVertex3f( 0,0,0 );
	qglVertex3f( 0,0,16 );
	qglEnd();
	qglLineWidth( 1 );
}

//===========================================================================

/*
====================
RB_SurfaceEntity

Entities that have a single procedurally generated surface
====================
*/
void RB_SurfaceEntity( surfaceType_t *surfType ) {
	switch( backEnd.currentEntity->e.reType ) {
	case RT_SPRITE:
		RB_SurfaceSprite();
		break;
	case RT_BEAM:
		RB_SurfaceBeam();
		break;
	case RT_RAIL_CORE:
		RB_SurfaceRailCore();
		break;
	case RT_RAIL_RINGS:
		RB_SurfaceRailRings();
		break;
	case RT_LIGHTNING:
		RB_SurfaceLightningBolt();
		break;
	default:
		RB_SurfaceAxis();
		break;
	}
	return;
}

void RB_SurfaceBad( surfaceType_t *surfType ) {
	ri.Printf( PRINT_ALL, "Bad surface tesselated.\n" );
}

#if 0

void RB_SurfaceFlare( srfFlare_t *surf ) {
	vec3_t		left, up;
	float		radius;
	byte		color[4];
	vec3_t		dir;
	vec3_t		origin;
	float		d;

	// calculate the xyz locations for the four corners
	radius = 30;
	VectorScale( backEnd.viewParms.or.axis[1], radius, left );
	VectorScale( backEnd.viewParms.or.axis[2], radius, up );
	if ( backEnd.viewParms.isMirror ) {
		VectorSubtract( vec3_origin, left, left );
	}

	color[0] = color[1] = color[2] = color[3] = 255;

	VectorMA( surf->origin, 3, surf->normal, origin );
	VectorSubtract( origin, backEnd.viewParms.or.origin, dir );
	VectorNormalize( dir );
	VectorMA( origin, r_ignore->value, dir, origin );

	d = -DotProduct( dir, surf->normal );
	if ( d < 0 ) {
		return;
	}
#if 0
	color[0] *= d;
	color[1] *= d;
	color[2] *= d;
#endif

	RB_AddQuadStamp( origin, left, up, color );
}

#else

void RB_SurfaceFlare( srfFlare_t *surf ) {
#if 0
	vec3_t		left, up;
	byte		color[4];

	color[0] = surf->color[0] * 255;
	color[1] = surf->color[1] * 255;
	color[2] = surf->color[2] * 255;
	color[3] = 255;

	VectorClear( left );
	VectorClear( up );

	left[0] = r_ignore->value;

	up[1] = r_ignore->value;
	
	RB_AddQuadStampExt( surf->origin, left, up, color, 0, 0, 1, 1 );
#endif
}

#endif



void RB_SurfaceDisplayList( srfDisplayList_t *surf ) {
	// all apropriate state must be set in RB_BeginSurface
	// this isn't implemented yet...
	qglCallList( surf->listNum );
}

void RB_SurfaceSkip( void *surf ) {
}


void (*rb_surfaceTable[SF_NUM_SURFACE_TYPES])( void *) = {
	(void(*)(void*))RB_SurfaceBad,			// SF_BAD, 
	(void(*)(void*))RB_SurfaceSkip,			// SF_SKIP, 
	(void(*)(void*))RB_SurfaceFace,			// SF_FACE,
	(void(*)(void*))RB_SurfaceGrid,			// SF_GRID,
	(void(*)(void*))RB_SurfaceTriangles,		// SF_TRIANGLES,
	(void(*)(void*))RB_SurfacePolychain,		// SF_POLY,
	(void(*)(void*))RB_SurfaceMesh,			// SF_MD3,
	(void(*)(void*))RB_SurfaceAnim,			// SF_MD4,
#ifdef RAVENMD4
	(void(*)(void*))RB_MDRSurfaceAnim,		// SF_MDR,
#endif
	(void(*)(void*))RB_SurfaceFlare,		// SF_FLARE,
	(void(*)(void*))RB_SurfaceEntity,		// SF_ENTITY
	(void(*)(void*))RB_SurfaceDisplayList		// SF_DISPLAY_LIST
};