aboutsummaryrefslogtreecommitdiffstats
path: root/code/renderer/tr_shade_calc.c
blob: 6f9b0be774d145aed8819dfc43ccbf947b3a0056 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
/*
===========================================================================
Copyright (C) 1999-2005 Id Software, Inc.

This file is part of Quake III Arena source code.

Quake III Arena source code is free software; you can redistribute it
and/or modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.

Quake III Arena source code is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with Quake III Arena source code; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
===========================================================================
*/
// tr_shade_calc.c

#include "tr_local.h"
#if idppc_altivec && !defined(MACOS_X)
#include <altivec.h>
#endif


#define	WAVEVALUE( table, base, amplitude, phase, freq )  ((base) + table[ myftol( ( ( (phase) + tess.shaderTime * (freq) ) * FUNCTABLE_SIZE ) ) & FUNCTABLE_MASK ] * (amplitude))

static float *TableForFunc( genFunc_t func ) 
{
	switch ( func )
	{
	case GF_SIN:
		return tr.sinTable;
	case GF_TRIANGLE:
		return tr.triangleTable;
	case GF_SQUARE:
		return tr.squareTable;
	case GF_SAWTOOTH:
		return tr.sawToothTable;
	case GF_INVERSE_SAWTOOTH:
		return tr.inverseSawToothTable;
	case GF_NONE:
	default:
		break;
	}

	ri.Error( ERR_DROP, "TableForFunc called with invalid function '%d' in shader '%s'\n", func, tess.shader->name );
	return NULL;
}

/*
** EvalWaveForm
**
** Evaluates a given waveForm_t, referencing backEnd.refdef.time directly
*/
static float EvalWaveForm( const waveForm_t *wf ) 
{
	float	*table;

	table = TableForFunc( wf->func );

	return WAVEVALUE( table, wf->base, wf->amplitude, wf->phase, wf->frequency );
}

static float EvalWaveFormClamped( const waveForm_t *wf )
{
	float glow  = EvalWaveForm( wf );

	if ( glow < 0 )
	{
		return 0;
	}

	if ( glow > 1 )
	{
		return 1;
	}

	return glow;
}

/*
** RB_CalcStretchTexCoords
*/
void RB_CalcStretchTexCoords( const waveForm_t *wf, float *st )
{
	float p;
	texModInfo_t tmi;

	p = 1.0f / EvalWaveForm( wf );

	tmi.matrix[0][0] = p;
	tmi.matrix[1][0] = 0;
	tmi.translate[0] = 0.5f - 0.5f * p;

	tmi.matrix[0][1] = 0;
	tmi.matrix[1][1] = p;
	tmi.translate[1] = 0.5f - 0.5f * p;

	RB_CalcTransformTexCoords( &tmi, st );
}

/*
====================================================================

DEFORMATIONS

====================================================================
*/

/*
========================
RB_CalcDeformVertexes

========================
*/
void RB_CalcDeformVertexes( deformStage_t *ds )
{
	int i;
	vec3_t	offset;
	float	scale;
	float	*xyz = ( float * ) tess.xyz;
	float	*normal = ( float * ) tess.normal;
	float	*table;

	if ( ds->deformationWave.frequency == 0 )
	{
		scale = EvalWaveForm( &ds->deformationWave );

		for ( i = 0; i < tess.numVertexes; i++, xyz += 4, normal += 4 )
		{
			VectorScale( normal, scale, offset );
			
			xyz[0] += offset[0];
			xyz[1] += offset[1];
			xyz[2] += offset[2];
		}
	}
	else
	{
		table = TableForFunc( ds->deformationWave.func );

		for ( i = 0; i < tess.numVertexes; i++, xyz += 4, normal += 4 )
		{
			float off = ( xyz[0] + xyz[1] + xyz[2] ) * ds->deformationSpread;

			scale = WAVEVALUE( table, ds->deformationWave.base, 
				ds->deformationWave.amplitude,
				ds->deformationWave.phase + off,
				ds->deformationWave.frequency );

			VectorScale( normal, scale, offset );
			
			xyz[0] += offset[0];
			xyz[1] += offset[1];
			xyz[2] += offset[2];
		}
	}
}

/*
=========================
RB_CalcDeformNormals

Wiggle the normals for wavy environment mapping
=========================
*/
void RB_CalcDeformNormals( deformStage_t *ds ) {
	int i;
	float	scale;
	float	*xyz = ( float * ) tess.xyz;
	float	*normal = ( float * ) tess.normal;

	for ( i = 0; i < tess.numVertexes; i++, xyz += 4, normal += 4 ) {
		scale = 0.98f;
		scale = R_NoiseGet4f( xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
			tess.shaderTime * ds->deformationWave.frequency );
		normal[ 0 ] += ds->deformationWave.amplitude * scale;

		scale = 0.98f;
		scale = R_NoiseGet4f( 100 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
			tess.shaderTime * ds->deformationWave.frequency );
		normal[ 1 ] += ds->deformationWave.amplitude * scale;

		scale = 0.98f;
		scale = R_NoiseGet4f( 200 + xyz[0] * scale, xyz[1] * scale, xyz[2] * scale,
			tess.shaderTime * ds->deformationWave.frequency );
		normal[ 2 ] += ds->deformationWave.amplitude * scale;

		VectorNormalizeFast( normal );
	}
}

/*
========================
RB_CalcBulgeVertexes

========================
*/
void RB_CalcBulgeVertexes( deformStage_t *ds ) {
	int i;
	const float *st = ( const float * ) tess.texCoords[0];
	float		*xyz = ( float * ) tess.xyz;
	float		*normal = ( float * ) tess.normal;
	float		now;

	now = backEnd.refdef.time * ds->bulgeSpeed * 0.001f;

	for ( i = 0; i < tess.numVertexes; i++, xyz += 4, st += 4, normal += 4 ) {
		int		off;
		float scale;

		off = (float)( FUNCTABLE_SIZE / (M_PI*2) ) * ( st[0] * ds->bulgeWidth + now );

		scale = tr.sinTable[ off & FUNCTABLE_MASK ] * ds->bulgeHeight;
			
		xyz[0] += normal[0] * scale;
		xyz[1] += normal[1] * scale;
		xyz[2] += normal[2] * scale;
	}
}


/*
======================
RB_CalcMoveVertexes

A deformation that can move an entire surface along a wave path
======================
*/
void RB_CalcMoveVertexes( deformStage_t *ds ) {
	int			i;
	float		*xyz;
	float		*table;
	float		scale;
	vec3_t		offset;

	table = TableForFunc( ds->deformationWave.func );

	scale = WAVEVALUE( table, ds->deformationWave.base, 
		ds->deformationWave.amplitude,
		ds->deformationWave.phase,
		ds->deformationWave.frequency );

	VectorScale( ds->moveVector, scale, offset );

	xyz = ( float * ) tess.xyz;
	for ( i = 0; i < tess.numVertexes; i++, xyz += 4 ) {
		VectorAdd( xyz, offset, xyz );
	}
}


/*
=============
DeformText

Change a polygon into a bunch of text polygons
=============
*/
void DeformText( const char *text ) {
	int		i;
	vec3_t	origin, width, height;
	int		len;
	int		ch;
	byte	color[4];
	float	bottom, top;
	vec3_t	mid;

	height[0] = 0;
	height[1] = 0;
	height[2] = -1;
	CrossProduct( tess.normal[0], height, width );

	// find the midpoint of the box
	VectorClear( mid );
	bottom = 999999;
	top = -999999;
	for ( i = 0 ; i < 4 ; i++ ) {
		VectorAdd( tess.xyz[i], mid, mid );
		if ( tess.xyz[i][2] < bottom ) {
			bottom = tess.xyz[i][2];
		}
		if ( tess.xyz[i][2] > top ) {
			top = tess.xyz[i][2];
		}
	}
	VectorScale( mid, 0.25f, origin );

	// determine the individual character size
	height[0] = 0;
	height[1] = 0;
	height[2] = ( top - bottom ) * 0.5f;

	VectorScale( width, height[2] * -0.75f, width );

	// determine the starting position
	len = strlen( text );
	VectorMA( origin, (len-1), width, origin );

	// clear the shader indexes
	tess.numIndexes = 0;
	tess.numVertexes = 0;

	color[0] = color[1] = color[2] = color[3] = 255;

	// draw each character
	for ( i = 0 ; i < len ; i++ ) {
		ch = text[i];
		ch &= 255;

		if ( ch != ' ' ) {
			int		row, col;
			float	frow, fcol, size;

			row = ch>>4;
			col = ch&15;

			frow = row*0.0625f;
			fcol = col*0.0625f;
			size = 0.0625f;

			RB_AddQuadStampExt( origin, width, height, color, fcol, frow, fcol + size, frow + size );
		}
		VectorMA( origin, -2, width, origin );
	}
}

/*
==================
GlobalVectorToLocal
==================
*/
static void GlobalVectorToLocal( const vec3_t in, vec3_t out ) {
	out[0] = DotProduct( in, backEnd.or.axis[0] );
	out[1] = DotProduct( in, backEnd.or.axis[1] );
	out[2] = DotProduct( in, backEnd.or.axis[2] );
}

/*
=====================
AutospriteDeform

Assuming all the triangles for this shader are independant
quads, rebuild them as forward facing sprites
=====================
*/
static void AutospriteDeform( void ) {
	int		i;
	int		oldVerts;
	float	*xyz;
	vec3_t	mid, delta;
	float	radius;
	vec3_t	left, up;
	vec3_t	leftDir, upDir;

	if ( tess.numVertexes & 3 ) {
		ri.Printf( PRINT_WARNING, "Autosprite shader %s had odd vertex count", tess.shader->name );
	}
	if ( tess.numIndexes != ( tess.numVertexes >> 2 ) * 6 ) {
		ri.Printf( PRINT_WARNING, "Autosprite shader %s had odd index count", tess.shader->name );
	}

	oldVerts = tess.numVertexes;
	tess.numVertexes = 0;
	tess.numIndexes = 0;

	if ( backEnd.currentEntity != &tr.worldEntity ) {
		GlobalVectorToLocal( backEnd.viewParms.or.axis[1], leftDir );
		GlobalVectorToLocal( backEnd.viewParms.or.axis[2], upDir );
	} else {
		VectorCopy( backEnd.viewParms.or.axis[1], leftDir );
		VectorCopy( backEnd.viewParms.or.axis[2], upDir );
	}

	for ( i = 0 ; i < oldVerts ; i+=4 ) {
		// find the midpoint
		xyz = tess.xyz[i];

		mid[0] = 0.25f * (xyz[0] + xyz[4] + xyz[8] + xyz[12]);
		mid[1] = 0.25f * (xyz[1] + xyz[5] + xyz[9] + xyz[13]);
		mid[2] = 0.25f * (xyz[2] + xyz[6] + xyz[10] + xyz[14]);

		VectorSubtract( xyz, mid, delta );
		radius = VectorLength( delta ) * 0.707f;		// / sqrt(2)

		VectorScale( leftDir, radius, left );
		VectorScale( upDir, radius, up );

		if ( backEnd.viewParms.isMirror ) {
			VectorSubtract( vec3_origin, left, left );
		}

	  // compensate for scale in the axes if necessary
  	if ( backEnd.currentEntity->e.nonNormalizedAxes ) {
      float axisLength;
		  axisLength = VectorLength( backEnd.currentEntity->e.axis[0] );
  		if ( !axisLength ) {
	  		axisLength = 0;
  		} else {
	  		axisLength = 1.0f / axisLength;
  		}
      VectorScale(left, axisLength, left);
      VectorScale(up, axisLength, up);
    }

		RB_AddQuadStamp( mid, left, up, tess.vertexColors[i] );
	}
}


/*
=====================
Autosprite2Deform

Autosprite2 will pivot a rectangular quad along the center of its long axis
=====================
*/
int edgeVerts[6][2] = {
	{ 0, 1 },
	{ 0, 2 },
	{ 0, 3 },
	{ 1, 2 },
	{ 1, 3 },
	{ 2, 3 }
};

static void Autosprite2Deform( void ) {
	int		i, j, k;
	int		indexes;
	float	*xyz;
	vec3_t	forward;

	if ( tess.numVertexes & 3 ) {
		ri.Printf( PRINT_WARNING, "Autosprite2 shader %s had odd vertex count", tess.shader->name );
	}
	if ( tess.numIndexes != ( tess.numVertexes >> 2 ) * 6 ) {
		ri.Printf( PRINT_WARNING, "Autosprite2 shader %s had odd index count", tess.shader->name );
	}

	if ( backEnd.currentEntity != &tr.worldEntity ) {
		GlobalVectorToLocal( backEnd.viewParms.or.axis[0], forward );
	} else {
		VectorCopy( backEnd.viewParms.or.axis[0], forward );
	}

	// this is a lot of work for two triangles...
	// we could precalculate a lot of it is an issue, but it would mess up
	// the shader abstraction
	for ( i = 0, indexes = 0 ; i < tess.numVertexes ; i+=4, indexes+=6 ) {
		float	lengths[2];
		int		nums[2];
		vec3_t	mid[2];
		vec3_t	major, minor;
		float	*v1, *v2;

		// find the midpoint
		xyz = tess.xyz[i];

		// identify the two shortest edges
		nums[0] = nums[1] = 0;
		lengths[0] = lengths[1] = 999999;

		for ( j = 0 ; j < 6 ; j++ ) {
			float	l;
			vec3_t	temp;

			v1 = xyz + 4 * edgeVerts[j][0];
			v2 = xyz + 4 * edgeVerts[j][1];

			VectorSubtract( v1, v2, temp );
			
			l = DotProduct( temp, temp );
			if ( l < lengths[0] ) {
				nums[1] = nums[0];
				lengths[1] = lengths[0];
				nums[0] = j;
				lengths[0] = l;
			} else if ( l < lengths[1] ) {
				nums[1] = j;
				lengths[1] = l;
			}
		}

		for ( j = 0 ; j < 2 ; j++ ) {
			v1 = xyz + 4 * edgeVerts[nums[j]][0];
			v2 = xyz + 4 * edgeVerts[nums[j]][1];

			mid[j][0] = 0.5f * (v1[0] + v2[0]);
			mid[j][1] = 0.5f * (v1[1] + v2[1]);
			mid[j][2] = 0.5f * (v1[2] + v2[2]);
		}

		// find the vector of the major axis
		VectorSubtract( mid[1], mid[0], major );

		// cross this with the view direction to get minor axis
		CrossProduct( major, forward, minor );
		VectorNormalize( minor );
		
		// re-project the points
		for ( j = 0 ; j < 2 ; j++ ) {
			float	l;

			v1 = xyz + 4 * edgeVerts[nums[j]][0];
			v2 = xyz + 4 * edgeVerts[nums[j]][1];

			l = 0.5 * sqrt( lengths[j] );
			
			// we need to see which direction this edge
			// is used to determine direction of projection
			for ( k = 0 ; k < 5 ; k++ ) {
				if ( tess.indexes[ indexes + k ] == i + edgeVerts[nums[j]][0]
					&& tess.indexes[ indexes + k + 1 ] == i + edgeVerts[nums[j]][1] ) {
					break;
				}
			}

			if ( k == 5 ) {
				VectorMA( mid[j], l, minor, v1 );
				VectorMA( mid[j], -l, minor, v2 );
			} else {
				VectorMA( mid[j], -l, minor, v1 );
				VectorMA( mid[j], l, minor, v2 );
			}
		}
	}
}


/*
=====================
RB_DeformTessGeometry

=====================
*/
void RB_DeformTessGeometry( void ) {
	int		i;
	deformStage_t	*ds;

	for ( i = 0 ; i < tess.shader->numDeforms ; i++ ) {
		ds = &tess.shader->deforms[ i ];

		switch ( ds->deformation ) {
        case DEFORM_NONE:
            break;
		case DEFORM_NORMALS:
			RB_CalcDeformNormals( ds );
			break;
		case DEFORM_WAVE:
			RB_CalcDeformVertexes( ds );
			break;
		case DEFORM_BULGE:
			RB_CalcBulgeVertexes( ds );
			break;
		case DEFORM_MOVE:
			RB_CalcMoveVertexes( ds );
			break;
		case DEFORM_PROJECTION_SHADOW:
			RB_ProjectionShadowDeform();
			break;
		case DEFORM_AUTOSPRITE:
			AutospriteDeform();
			break;
		case DEFORM_AUTOSPRITE2:
			Autosprite2Deform();
			break;
		case DEFORM_TEXT0:
		case DEFORM_TEXT1:
		case DEFORM_TEXT2:
		case DEFORM_TEXT3:
		case DEFORM_TEXT4:
		case DEFORM_TEXT5:
		case DEFORM_TEXT6:
		case DEFORM_TEXT7:
			DeformText( backEnd.refdef.text[ds->deformation - DEFORM_TEXT0] );
			break;
		}
	}
}

/*
====================================================================

COLORS

====================================================================
*/


/*
** RB_CalcColorFromEntity
*/
void RB_CalcColorFromEntity( unsigned char *dstColors )
{
	int	i;
	int *pColors = ( int * ) dstColors;
	int c;

	if ( !backEnd.currentEntity )
		return;

	c = * ( int * ) backEnd.currentEntity->e.shaderRGBA;

	for ( i = 0; i < tess.numVertexes; i++, pColors++ )
	{
		*pColors = c;
	}
}

/*
** RB_CalcColorFromOneMinusEntity
*/
void RB_CalcColorFromOneMinusEntity( unsigned char *dstColors )
{
	int	i;
	int *pColors = ( int * ) dstColors;
	unsigned char invModulate[4];
	int c;

	if ( !backEnd.currentEntity )
		return;

	invModulate[0] = 255 - backEnd.currentEntity->e.shaderRGBA[0];
	invModulate[1] = 255 - backEnd.currentEntity->e.shaderRGBA[1];
	invModulate[2] = 255 - backEnd.currentEntity->e.shaderRGBA[2];
	invModulate[3] = 255 - backEnd.currentEntity->e.shaderRGBA[3];	// this trashes alpha, but the AGEN block fixes it

	c = * ( int * ) invModulate;

	for ( i = 0; i < tess.numVertexes; i++, pColors++ )
	{
		*pColors = * ( int * ) invModulate;
	}
}

/*
** RB_CalcAlphaFromEntity
*/
void RB_CalcAlphaFromEntity( unsigned char *dstColors )
{
	int	i;

	if ( !backEnd.currentEntity )
		return;

	dstColors += 3;

	for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 )
	{
		*dstColors = backEnd.currentEntity->e.shaderRGBA[3];
	}
}

/*
** RB_CalcAlphaFromOneMinusEntity
*/
void RB_CalcAlphaFromOneMinusEntity( unsigned char *dstColors )
{
	int	i;

	if ( !backEnd.currentEntity )
		return;

	dstColors += 3;

	for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 )
	{
		*dstColors = 0xff - backEnd.currentEntity->e.shaderRGBA[3];
	}
}

/*
** RB_CalcWaveColor
*/
void RB_CalcWaveColor( const waveForm_t *wf, unsigned char *dstColors )
{
	int i;
	int v;
	float glow;
	int *colors = ( int * ) dstColors;
	byte	color[4];


  if ( wf->func == GF_NOISE ) {
		glow = wf->base + R_NoiseGet4f( 0, 0, 0, ( tess.shaderTime + wf->phase ) * wf->frequency ) * wf->amplitude;
	} else {
		glow = EvalWaveForm( wf ) * tr.identityLight;
	}
	
	if ( glow < 0 ) {
		glow = 0;
	}
	else if ( glow > 1 ) {
		glow = 1;
	}

	v = myftol( 255 * glow );
	color[0] = color[1] = color[2] = v;
	color[3] = 255;
	v = *(int *)color;
	
	for ( i = 0; i < tess.numVertexes; i++, colors++ ) {
		*colors = v;
	}
}

/*
** RB_CalcWaveAlpha
*/
void RB_CalcWaveAlpha( const waveForm_t *wf, unsigned char *dstColors )
{
	int i;
	int v;
	float glow;

	glow = EvalWaveFormClamped( wf );

	v = 255 * glow;

	for ( i = 0; i < tess.numVertexes; i++, dstColors += 4 )
	{
		dstColors[3] = v;
	}
}

/*
** RB_CalcModulateColorsByFog
*/
void RB_CalcModulateColorsByFog( unsigned char *colors ) {
	int		i;
	float	texCoords[SHADER_MAX_VERTEXES][2];

	// calculate texcoords so we can derive density
	// this is not wasted, because it would only have
	// been previously called if the surface was opaque
	RB_CalcFogTexCoords( texCoords[0] );

	for ( i = 0; i < tess.numVertexes; i++, colors += 4 ) {
		float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] );
		colors[0] *= f;
		colors[1] *= f;
		colors[2] *= f;
	}
}

/*
** RB_CalcModulateAlphasByFog
*/
void RB_CalcModulateAlphasByFog( unsigned char *colors ) {
	int		i;
	float	texCoords[SHADER_MAX_VERTEXES][2];

	// calculate texcoords so we can derive density
	// this is not wasted, because it would only have
	// been previously called if the surface was opaque
	RB_CalcFogTexCoords( texCoords[0] );

	for ( i = 0; i < tess.numVertexes; i++, colors += 4 ) {
		float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] );
		colors[3] *= f;
	}
}

/*
** RB_CalcModulateRGBAsByFog
*/
void RB_CalcModulateRGBAsByFog( unsigned char *colors ) {
	int		i;
	float	texCoords[SHADER_MAX_VERTEXES][2];

	// calculate texcoords so we can derive density
	// this is not wasted, because it would only have
	// been previously called if the surface was opaque
	RB_CalcFogTexCoords( texCoords[0] );

	for ( i = 0; i < tess.numVertexes; i++, colors += 4 ) {
		float f = 1.0 - R_FogFactor( texCoords[i][0], texCoords[i][1] );
		colors[0] *= f;
		colors[1] *= f;
		colors[2] *= f;
		colors[3] *= f;
	}
}


/*
====================================================================

TEX COORDS

====================================================================
*/

/*
========================
RB_CalcFogTexCoords

To do the clipped fog plane really correctly, we should use
projected textures, but I don't trust the drivers and it
doesn't fit our shader data.
========================
*/
void RB_CalcFogTexCoords( float *st ) {
	int			i;
	float		*v;
	float		s, t;
	float		eyeT;
	qboolean	eyeOutside;
	fog_t		*fog;
	vec3_t		local;
	vec4_t		fogDistanceVector, fogDepthVector = {0, 0, 0, 0};

	fog = tr.world->fogs + tess.fogNum;

	// all fogging distance is based on world Z units
	VectorSubtract( backEnd.or.origin, backEnd.viewParms.or.origin, local );
	fogDistanceVector[0] = -backEnd.or.modelMatrix[2];
	fogDistanceVector[1] = -backEnd.or.modelMatrix[6];
	fogDistanceVector[2] = -backEnd.or.modelMatrix[10];
	fogDistanceVector[3] = DotProduct( local, backEnd.viewParms.or.axis[0] );

	// scale the fog vectors based on the fog's thickness
	fogDistanceVector[0] *= fog->tcScale;
	fogDistanceVector[1] *= fog->tcScale;
	fogDistanceVector[2] *= fog->tcScale;
	fogDistanceVector[3] *= fog->tcScale;

	// rotate the gradient vector for this orientation
	if ( fog->hasSurface ) {
		fogDepthVector[0] = fog->surface[0] * backEnd.or.axis[0][0] + 
			fog->surface[1] * backEnd.or.axis[0][1] + fog->surface[2] * backEnd.or.axis[0][2];
		fogDepthVector[1] = fog->surface[0] * backEnd.or.axis[1][0] + 
			fog->surface[1] * backEnd.or.axis[1][1] + fog->surface[2] * backEnd.or.axis[1][2];
		fogDepthVector[2] = fog->surface[0] * backEnd.or.axis[2][0] + 
			fog->surface[1] * backEnd.or.axis[2][1] + fog->surface[2] * backEnd.or.axis[2][2];
		fogDepthVector[3] = -fog->surface[3] + DotProduct( backEnd.or.origin, fog->surface );

		eyeT = DotProduct( backEnd.or.viewOrigin, fogDepthVector ) + fogDepthVector[3];
	} else {
		eyeT = 1;	// non-surface fog always has eye inside
	}

	// see if the viewpoint is outside
	// this is needed for clipping distance even for constant fog

	if ( eyeT < 0 ) {
		eyeOutside = qtrue;
	} else {
		eyeOutside = qfalse;
	}

	fogDistanceVector[3] += 1.0/512;

	// calculate density for each point
	for (i = 0, v = tess.xyz[0] ; i < tess.numVertexes ; i++, v += 4) {
		// calculate the length in fog
		s = DotProduct( v, fogDistanceVector ) + fogDistanceVector[3];
		t = DotProduct( v, fogDepthVector ) + fogDepthVector[3];

		// partially clipped fogs use the T axis		
		if ( eyeOutside ) {
			if ( t < 1.0 ) {
				t = 1.0/32;	// point is outside, so no fogging
			} else {
				t = 1.0/32 + 30.0/32 * t / ( t - eyeT );	// cut the distance at the fog plane
			}
		} else {
			if ( t < 0 ) {
				t = 1.0/32;	// point is outside, so no fogging
			} else {
				t = 31.0/32;
			}
		}

		st[0] = s;
		st[1] = t;
		st += 2;
	}
}



/*
** RB_CalcEnvironmentTexCoords
*/
void RB_CalcEnvironmentTexCoords( float *st ) 
{
	int			i;
	float		*v, *normal;
	vec3_t		viewer, reflected;
	float		d;

	v = tess.xyz[0];
	normal = tess.normal[0];

	for (i = 0 ; i < tess.numVertexes ; i++, v += 4, normal += 4, st += 2 ) 
	{
		VectorSubtract (backEnd.or.viewOrigin, v, viewer);
		VectorNormalizeFast (viewer);

		d = DotProduct (normal, viewer);

		reflected[0] = normal[0]*2*d - viewer[0];
		reflected[1] = normal[1]*2*d - viewer[1];
		reflected[2] = normal[2]*2*d - viewer[2];

		st[0] = 0.5 + reflected[1] * 0.5;
		st[1] = 0.5 - reflected[2] * 0.5;
	}
}

/*
** RB_CalcTurbulentTexCoords
*/
void RB_CalcTurbulentTexCoords( const waveForm_t *wf, float *st )
{
	int i;
	float now;

	now = ( wf->phase + tess.shaderTime * wf->frequency );

	for ( i = 0; i < tess.numVertexes; i++, st += 2 )
	{
		float s = st[0];
		float t = st[1];

		st[0] = s + tr.sinTable[ ( ( int ) ( ( ( tess.xyz[i][0] + tess.xyz[i][2] )* 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude;
		st[1] = t + tr.sinTable[ ( ( int ) ( ( tess.xyz[i][1] * 1.0/128 * 0.125 + now ) * FUNCTABLE_SIZE ) ) & ( FUNCTABLE_MASK ) ] * wf->amplitude;
	}
}

/*
** RB_CalcScaleTexCoords
*/
void RB_CalcScaleTexCoords( const float scale[2], float *st )
{
	int i;

	for ( i = 0; i < tess.numVertexes; i++, st += 2 )
	{
		st[0] *= scale[0];
		st[1] *= scale[1];
	}
}

/*
** RB_CalcScrollTexCoords
*/
void RB_CalcScrollTexCoords( const float scrollSpeed[2], float *st )
{
	int i;
	float timeScale = tess.shaderTime;
	float adjustedScrollS, adjustedScrollT;

	adjustedScrollS = scrollSpeed[0] * timeScale;
	adjustedScrollT = scrollSpeed[1] * timeScale;

	// clamp so coordinates don't continuously get larger, causing problems
	// with hardware limits
	adjustedScrollS = adjustedScrollS - floor( adjustedScrollS );
	adjustedScrollT = adjustedScrollT - floor( adjustedScrollT );

	for ( i = 0; i < tess.numVertexes; i++, st += 2 )
	{
		st[0] += adjustedScrollS;
		st[1] += adjustedScrollT;
	}
}

/*
** RB_CalcTransformTexCoords
*/
void RB_CalcTransformTexCoords( const texModInfo_t *tmi, float *st  )
{
	int i;

	for ( i = 0; i < tess.numVertexes; i++, st += 2 )
	{
		float s = st[0];
		float t = st[1];

		st[0] = s * tmi->matrix[0][0] + t * tmi->matrix[1][0] + tmi->translate[0];
		st[1] = s * tmi->matrix[0][1] + t * tmi->matrix[1][1] + tmi->translate[1];
	}
}

/*
** RB_CalcRotateTexCoords
*/
void RB_CalcRotateTexCoords( float degsPerSecond, float *st )
{
	float timeScale = tess.shaderTime;
	float degs;
	int index;
	float sinValue, cosValue;
	texModInfo_t tmi;

	degs = -degsPerSecond * timeScale;
	index = degs * ( FUNCTABLE_SIZE / 360.0f );

	sinValue = tr.sinTable[ index & FUNCTABLE_MASK ];
	cosValue = tr.sinTable[ ( index + FUNCTABLE_SIZE / 4 ) & FUNCTABLE_MASK ];

	tmi.matrix[0][0] = cosValue;
	tmi.matrix[1][0] = -sinValue;
	tmi.translate[0] = 0.5 - 0.5 * cosValue + 0.5 * sinValue;

	tmi.matrix[0][1] = sinValue;
	tmi.matrix[1][1] = cosValue;
	tmi.translate[1] = 0.5 - 0.5 * sinValue - 0.5 * cosValue;

	RB_CalcTransformTexCoords( &tmi, st );
}






#if id386 && !defined(__GNUC__)

long myftol( float f ) {
	static int tmp;
	__asm fld f
	__asm fistp tmp
	__asm mov eax, tmp
}

#endif

/*
** RB_CalcSpecularAlpha
**
** Calculates specular coefficient and places it in the alpha channel
*/
vec3_t lightOrigin = { -960, 1980, 96 };		// FIXME: track dynamically

void RB_CalcSpecularAlpha( unsigned char *alphas ) {
	int			i;
	float		*v, *normal;
	vec3_t		viewer,  reflected;
	float		l, d;
	int			b;
	vec3_t		lightDir;
	int			numVertexes;

	v = tess.xyz[0];
	normal = tess.normal[0];

	alphas += 3;

	numVertexes = tess.numVertexes;
	for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4, alphas += 4) {
		float ilength;

		VectorSubtract( lightOrigin, v, lightDir );
//		ilength = Q_rsqrt( DotProduct( lightDir, lightDir ) );
		VectorNormalizeFast( lightDir );

		// calculate the specular color
		d = DotProduct (normal, lightDir);
//		d *= ilength;

		// we don't optimize for the d < 0 case since this tends to
		// cause visual artifacts such as faceted "snapping"
		reflected[0] = normal[0]*2*d - lightDir[0];
		reflected[1] = normal[1]*2*d - lightDir[1];
		reflected[2] = normal[2]*2*d - lightDir[2];

		VectorSubtract (backEnd.or.viewOrigin, v, viewer);
		ilength = Q_rsqrt( DotProduct( viewer, viewer ) );
		l = DotProduct (reflected, viewer);
		l *= ilength;

		if (l < 0) {
			b = 0;
		} else {
			l = l*l;
			l = l*l;
			b = l * 255;
			if (b > 255) {
				b = 255;
			}
		}

		*alphas = b;
	}
}

/*
** RB_CalcDiffuseColor
**
** The basic vertex lighting calc
*/
#if idppc_altivec
static void RB_CalcDiffuseColor_altivec( unsigned char *colors )
{
	int				i;
	float			*v, *normal;
	trRefEntity_t	*ent;
	int				ambientLightInt;
	vec3_t			lightDir;
	int				numVertexes;
	vector unsigned char vSel = VECCONST_UINT8(0x00, 0x00, 0x00, 0xff,
                                               0x00, 0x00, 0x00, 0xff,
                                               0x00, 0x00, 0x00, 0xff,
                                               0x00, 0x00, 0x00, 0xff);
	vector float ambientLightVec;
	vector float directedLightVec;
	vector float lightDirVec;
	vector float normalVec0, normalVec1;
	vector float incomingVec0, incomingVec1, incomingVec2;
	vector float zero, jVec;
	vector signed int jVecInt;
	vector signed short jVecShort;
	vector unsigned char jVecChar, normalPerm;
	ent = backEnd.currentEntity;
	ambientLightInt = ent->ambientLightInt;
	// A lot of this could be simplified if we made sure
	// entities light info was 16-byte aligned.
	jVecChar = vec_lvsl(0, ent->ambientLight);
	ambientLightVec = vec_ld(0, (vector float *)ent->ambientLight);
	jVec = vec_ld(11, (vector float *)ent->ambientLight);
	ambientLightVec = vec_perm(ambientLightVec,jVec,jVecChar);

	jVecChar = vec_lvsl(0, ent->directedLight);
	directedLightVec = vec_ld(0,(vector float *)ent->directedLight);
	jVec = vec_ld(11,(vector float *)ent->directedLight);
	directedLightVec = vec_perm(directedLightVec,jVec,jVecChar);	 

	jVecChar = vec_lvsl(0, ent->lightDir);
	lightDirVec = vec_ld(0,(vector float *)ent->lightDir);
	jVec = vec_ld(11,(vector float *)ent->lightDir);
	lightDirVec = vec_perm(lightDirVec,jVec,jVecChar);	 

	zero = (vector float)vec_splat_s8(0);
	VectorCopy( ent->lightDir, lightDir );

	v = tess.xyz[0];
	normal = tess.normal[0];

	normalPerm = vec_lvsl(0,normal);
	numVertexes = tess.numVertexes;
	for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) {
		normalVec0 = vec_ld(0,(vector float *)normal);
		normalVec1 = vec_ld(11,(vector float *)normal);
		normalVec0 = vec_perm(normalVec0,normalVec1,normalPerm);
		incomingVec0 = vec_madd(normalVec0, lightDirVec, zero);
		incomingVec1 = vec_sld(incomingVec0,incomingVec0,4);
		incomingVec2 = vec_add(incomingVec0,incomingVec1);
		incomingVec1 = vec_sld(incomingVec1,incomingVec1,4);
		incomingVec2 = vec_add(incomingVec2,incomingVec1);
		incomingVec0 = vec_splat(incomingVec2,0);
		incomingVec0 = vec_max(incomingVec0,zero);
		normalPerm = vec_lvsl(12,normal);
		jVec = vec_madd(incomingVec0, directedLightVec, ambientLightVec);
		jVecInt = vec_cts(jVec,0);	// RGBx
		jVecShort = vec_pack(jVecInt,jVecInt);		// RGBxRGBx
		jVecChar = vec_packsu(jVecShort,jVecShort);	// RGBxRGBxRGBxRGBx
		jVecChar = vec_sel(jVecChar,vSel,vSel);		// RGBARGBARGBARGBA replace alpha with 255
		vec_ste((vector unsigned int)jVecChar,0,(unsigned int *)&colors[i*4]);	// store color
	}
}
#endif

static void RB_CalcDiffuseColor_scalar( unsigned char *colors )
{
	int				i, j;
	float			*v, *normal;
	float			incoming;
	trRefEntity_t	*ent;
	int				ambientLightInt;
	vec3_t			ambientLight;
	vec3_t			lightDir;
	vec3_t			directedLight;
	int				numVertexes;
	ent = backEnd.currentEntity;
	ambientLightInt = ent->ambientLightInt;
	VectorCopy( ent->ambientLight, ambientLight );
	VectorCopy( ent->directedLight, directedLight );
	VectorCopy( ent->lightDir, lightDir );

	v = tess.xyz[0];
	normal = tess.normal[0];

	numVertexes = tess.numVertexes;
	for (i = 0 ; i < numVertexes ; i++, v += 4, normal += 4) {
		incoming = DotProduct (normal, lightDir);
		if ( incoming <= 0 ) {
			*(int *)&colors[i*4] = ambientLightInt;
			continue;
		} 
		j = myftol( ambientLight[0] + incoming * directedLight[0] );
		if ( j > 255 ) {
			j = 255;
		}
		colors[i*4+0] = j;

		j = myftol( ambientLight[1] + incoming * directedLight[1] );
		if ( j > 255 ) {
			j = 255;
		}
		colors[i*4+1] = j;

		j = myftol( ambientLight[2] + incoming * directedLight[2] );
		if ( j > 255 ) {
			j = 255;
		}
		colors[i*4+2] = j;

		colors[i*4+3] = 255;
	}
}

void RB_CalcDiffuseColor( unsigned char *colors )
{
#if idppc_altivec
	if (com_altivec->integer) {
		// must be in a seperate function or G3 systems will crash.
		RB_CalcDiffuseColor_altivec( colors );
		return;
	}
#endif
	RB_CalcDiffuseColor_scalar( colors );
}