aboutsummaryrefslogtreecommitdiffstats
path: root/q3radiant/Winding.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'q3radiant/Winding.cpp')
-rwxr-xr-xq3radiant/Winding.cpp817
1 files changed, 817 insertions, 0 deletions
diff --git a/q3radiant/Winding.cpp b/q3radiant/Winding.cpp
new file mode 100755
index 0000000..76e6df1
--- /dev/null
+++ b/q3radiant/Winding.cpp
@@ -0,0 +1,817 @@
+/*
+===========================================================================
+Copyright (C) 1999-2005 Id Software, Inc.
+
+This file is part of Quake III Arena source code.
+
+Quake III Arena source code is free software; you can redistribute it
+and/or modify it under the terms of the GNU General Public License as
+published by the Free Software Foundation; either version 2 of the License,
+or (at your option) any later version.
+
+Quake III Arena source code is distributed in the hope that it will be
+useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with Foobar; if not, write to the Free Software
+Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+===========================================================================
+*/
+
+
+#include "stdafx.h"
+#include <assert.h>
+#include "qe3.h"
+#include "winding.h"
+
+#define BOGUS_RANGE 18000
+
+/*
+=============
+Plane_Equal
+=============
+*/
+#define NORMAL_EPSILON 0.0001
+#define DIST_EPSILON 0.02
+
+int Plane_Equal(plane_t *a, plane_t *b, int flip)
+{
+ vec3_t normal;
+ float dist;
+
+ if (flip) {
+ normal[0] = - b->normal[0];
+ normal[1] = - b->normal[1];
+ normal[2] = - b->normal[2];
+ dist = - b->dist;
+ }
+ else {
+ normal[0] = b->normal[0];
+ normal[1] = b->normal[1];
+ normal[2] = b->normal[2];
+ dist = b->dist;
+ }
+ if (
+ fabs(a->normal[0] - normal[0]) < NORMAL_EPSILON
+ && fabs(a->normal[1] - normal[1]) < NORMAL_EPSILON
+ && fabs(a->normal[2] - normal[2]) < NORMAL_EPSILON
+ && fabs(a->dist - dist) < DIST_EPSILON )
+ return true;
+ return false;
+}
+
+/*
+============
+Plane_FromPoints
+============
+*/
+int Plane_FromPoints(vec3_t p1, vec3_t p2, vec3_t p3, plane_t *plane)
+{
+ vec3_t v1, v2;
+
+ VectorSubtract(p2, p1, v1);
+ VectorSubtract(p3, p1, v2);
+ //CrossProduct(v2, v1, plane->normal);
+ CrossProduct(v1, v2, plane->normal);
+ if (VectorNormalize(plane->normal) < 0.1) return false;
+ plane->dist = DotProduct(p1, plane->normal);
+ return true;
+}
+
+/*
+=================
+Point_Equal
+=================
+*/
+int Point_Equal(vec3_t p1, vec3_t p2, float epsilon)
+{
+ int i;
+
+ for (i = 0; i < 3; i++)
+ {
+ if (fabs(p1[i] - p2[i]) > epsilon) return false;
+ }
+ return true;
+}
+
+
+/*
+=================
+Winding_BaseForPlane
+=================
+*/
+winding_t *Winding_BaseForPlane (plane_t *p)
+{
+ int i, x;
+ vec_t max, v;
+ vec3_t org, vright, vup;
+ winding_t *w;
+
+ // find the major axis
+
+ max = -BOGUS_RANGE;
+ x = -1;
+ for (i=0 ; i<3; i++)
+ {
+ v = fabs(p->normal[i]);
+ if (v > max)
+ {
+ x = i;
+ max = v;
+ }
+ }
+ if (x==-1)
+ Error ("Winding_BaseForPlane: no axis found");
+
+ VectorCopy (vec3_origin, vup);
+ switch (x)
+ {
+ case 0:
+ case 1:
+ vup[2] = 1;
+ break;
+ case 2:
+ vup[0] = 1;
+ break;
+ }
+
+
+ v = DotProduct (vup, p->normal);
+ VectorMA (vup, -v, p->normal, vup);
+ VectorNormalize (vup);
+
+ VectorScale (p->normal, p->dist, org);
+
+ CrossProduct (vup, p->normal, vright);
+
+ VectorScale (vup, BOGUS_RANGE, vup);
+ VectorScale (vright, BOGUS_RANGE, vright);
+
+ // project a really big axis aligned box onto the plane
+ w = Winding_Alloc (4);
+
+ VectorSubtract (org, vright, w->points[0]);
+ VectorAdd (w->points[0], vup, w->points[0]);
+
+ VectorAdd (org, vright, w->points[1]);
+ VectorAdd (w->points[1], vup, w->points[1]);
+
+ VectorAdd (org, vright, w->points[2]);
+ VectorSubtract (w->points[2], vup, w->points[2]);
+
+ VectorSubtract (org, vright, w->points[3]);
+ VectorSubtract (w->points[3], vup, w->points[3]);
+
+ w->numpoints = 4;
+
+ return w;
+}
+
+/*
+==================
+Winding_Alloc
+==================
+*/
+winding_t *Winding_Alloc (int points)
+{
+ winding_t *w;
+ int size;
+
+ if (points > MAX_POINTS_ON_WINDING)
+ Error ("Winding_Alloc: %i points", points);
+
+ size = (int)((winding_t *)0)->points[points];
+ w = (winding_t*) malloc (size);
+ memset (w, 0, size);
+ w->maxpoints = points;
+
+ return w;
+}
+
+
+void Winding_Free (winding_t *w)
+{
+ free(w);
+}
+
+
+/*
+==================
+Winding_Clone
+==================
+*/
+winding_t *Winding_Clone(winding_t *w)
+{
+ int size;
+ winding_t *c;
+
+ size = (int)((winding_t *)0)->points[w->numpoints];
+ c = (winding_t*)qmalloc (size);
+ memcpy (c, w, size);
+ return c;
+}
+
+/*
+==================
+ReverseWinding
+==================
+*/
+winding_t *Winding_Reverse(winding_t *w)
+{
+ int i;
+ winding_t *c;
+
+ c = Winding_Alloc(w->numpoints);
+ for (i = 0; i < w->numpoints; i++)
+ {
+ VectorCopy (w->points[w->numpoints-1-i], c->points[i]);
+ }
+ c->numpoints = w->numpoints;
+ return c;
+}
+
+
+/*
+==============
+Winding_RemovePoint
+==============
+*/
+void Winding_RemovePoint(winding_t *w, int point)
+{
+ if (point < 0 || point >= w->numpoints)
+ Error("Winding_RemovePoint: point out of range");
+
+ if (point < w->numpoints-1)
+ {
+ memmove(&w->points[point], &w->points[point+1], (int)((winding_t *)0)->points[w->numpoints - point - 1]);
+ }
+ w->numpoints--;
+}
+
+/*
+=============
+Winding_InsertPoint
+=============
+*/
+winding_t *Winding_InsertPoint(winding_t *w, vec3_t point, int spot)
+{
+ int i, j;
+ winding_t *neww;
+
+ if (spot > w->numpoints)
+ {
+ Error("Winding_InsertPoint: spot > w->numpoints");
+ } //end if
+ if (spot < 0)
+ {
+ Error("Winding_InsertPoint: spot < 0");
+ } //end if
+ neww = Winding_Alloc(w->numpoints + 1);
+ neww->numpoints = w->numpoints + 1;
+ for (i = 0, j = 0; i < neww->numpoints; i++)
+ {
+ if (i == spot)
+ {
+ VectorCopy(point, neww->points[i]);
+ }
+ else
+ {
+ VectorCopy(w->points[j], neww->points[i]);
+ j++;
+ }
+ }
+ return neww;
+}
+
+/*
+==============
+Winding_IsTiny
+==============
+*/
+#define EDGE_LENGTH 0.2
+
+int Winding_IsTiny (winding_t *w)
+{
+ int i, j;
+ vec_t len;
+ vec3_t delta;
+ int edges;
+
+ edges = 0;
+ for (i=0 ; i<w->numpoints ; i++)
+ {
+ j = i == w->numpoints - 1 ? 0 : i+1;
+ VectorSubtract (w->points[j], w->points[i], delta);
+ len = VectorLength (delta);
+ if (len > EDGE_LENGTH)
+ {
+ if (++edges == 3)
+ return false;
+ }
+ }
+ return true;
+}
+
+/*
+==============
+Winding_IsHuge
+==============
+*/
+int Winding_IsHuge(winding_t *w)
+{
+ int i, j;
+
+ for (i=0 ; i<w->numpoints ; i++)
+ {
+ for (j=0 ; j<3 ; j++)
+ if (w->points[i][j] < -BOGUS_RANGE+1 || w->points[i][j] > BOGUS_RANGE-1)
+ return true;
+ }
+ return false;
+}
+
+/*
+=============
+Winding_PlanesConcave
+=============
+*/
+#define WCONVEX_EPSILON 0.2
+
+int Winding_PlanesConcave(winding_t *w1, winding_t *w2,
+ vec3_t normal1, vec3_t normal2,
+ float dist1, float dist2)
+{
+ int i;
+
+ if (!w1 || !w2) return false;
+
+ // check if one of the points of winding 1 is at the back of the plane of winding 2
+ for (i = 0; i < w1->numpoints; i++)
+ {
+ if (DotProduct(normal2, w1->points[i]) - dist2 > WCONVEX_EPSILON) return true;
+ }
+ // check if one of the points of winding 2 is at the back of the plane of winding 1
+ for (i = 0; i < w2->numpoints; i++)
+ {
+ if (DotProduct(normal1, w2->points[i]) - dist1 > WCONVEX_EPSILON) return true;
+ }
+
+ return false;
+}
+
+/*
+==================
+Winding_Clip
+
+Clips the winding to the plane, returning the new winding on the positive side
+Frees the input winding.
+If keepon is true, an exactly on-plane winding will be saved, otherwise
+it will be clipped away.
+==================
+*/
+winding_t *Winding_Clip (winding_t *in, plane_t *split, qboolean keepon)
+{
+ vec_t dists[MAX_POINTS_ON_WINDING];
+ int sides[MAX_POINTS_ON_WINDING];
+ int counts[3];
+ vec_t dot;
+ int i, j;
+ vec_t *p1, *p2;
+ vec3_t mid;
+ winding_t *neww;
+ int maxpts;
+
+ counts[0] = counts[1] = counts[2] = 0;
+
+ // determine sides for each point
+ for (i=0 ; i<in->numpoints ; i++)
+ {
+ dot = DotProduct (in->points[i], split->normal);
+ dot -= split->dist;
+ dists[i] = dot;
+ if (dot > ON_EPSILON)
+ sides[i] = SIDE_FRONT;
+ else if (dot < -ON_EPSILON)
+ sides[i] = SIDE_BACK;
+ else
+ {
+ sides[i] = SIDE_ON;
+ }
+ counts[sides[i]]++;
+ }
+ sides[i] = sides[0];
+ dists[i] = dists[0];
+
+ if (keepon && !counts[0] && !counts[1])
+ return in;
+
+ if (!counts[0])
+ {
+ Winding_Free (in);
+ return NULL;
+ }
+ if (!counts[1])
+ return in;
+
+ maxpts = in->numpoints+4; // can't use counts[0]+2 because
+ // of fp grouping errors
+ neww = Winding_Alloc (maxpts);
+
+ for (i=0 ; i<in->numpoints ; i++)
+ {
+ p1 = in->points[i];
+
+ if (sides[i] == SIDE_ON)
+ {
+ VectorCopy (p1, neww->points[neww->numpoints]);
+ neww->numpoints++;
+ continue;
+ }
+
+ if (sides[i] == SIDE_FRONT)
+ {
+ VectorCopy (p1, neww->points[neww->numpoints]);
+ neww->numpoints++;
+ }
+
+ if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
+ continue;
+
+ // generate a split point
+ p2 = in->points[(i+1)%in->numpoints];
+
+ dot = dists[i] / (dists[i]-dists[i+1]);
+ for (j=0 ; j<3 ; j++)
+ { // avoid round off error when possible
+ if (split->normal[j] == 1)
+ mid[j] = split->dist;
+ else if (split->normal[j] == -1)
+ mid[j] = -split->dist;
+ else
+ mid[j] = p1[j] + dot*(p2[j]-p1[j]);
+ }
+
+ VectorCopy (mid, neww->points[neww->numpoints]);
+ neww->numpoints++;
+ }
+
+ if (neww->numpoints > maxpts)
+ Error ("Winding_Clip: points exceeded estimate");
+
+ // free the original winding
+ Winding_Free (in);
+
+ return neww;
+}
+
+/*
+=============
+Winding_SplitEpsilon
+
+ split the input winding with the plane
+ the input winding stays untouched
+=============
+*/
+void Winding_SplitEpsilon (winding_t *in, vec3_t normal, double dist,
+ vec_t epsilon, winding_t **front, winding_t **back)
+{
+ vec_t dists[MAX_POINTS_ON_WINDING+4];
+ int sides[MAX_POINTS_ON_WINDING+4];
+ int counts[3];
+ vec_t dot;
+ int i, j;
+ vec_t *p1, *p2;
+ vec3_t mid;
+ winding_t *f, *b;
+ int maxpts;
+
+ counts[0] = counts[1] = counts[2] = 0;
+
+ // determine sides for each point
+ for (i = 0; i < in->numpoints; i++)
+ {
+ dot = DotProduct (in->points[i], normal);
+ dot -= dist;
+ dists[i] = dot;
+ if (dot > epsilon)
+ sides[i] = SIDE_FRONT;
+ else if (dot < -epsilon)
+ sides[i] = SIDE_BACK;
+ else
+ {
+ sides[i] = SIDE_ON;
+ }
+ counts[sides[i]]++;
+ }
+ sides[i] = sides[0];
+ dists[i] = dists[0];
+
+ *front = *back = NULL;
+
+ if (!counts[0])
+ {
+ *back = Winding_Clone(in);
+ return;
+ }
+ if (!counts[1])
+ {
+ *front = Winding_Clone(in);
+ return;
+ }
+
+ maxpts = in->numpoints+4; // cant use counts[0]+2 because
+ // of fp grouping errors
+
+ *front = f = Winding_Alloc (maxpts);
+ *back = b = Winding_Alloc (maxpts);
+
+ for (i = 0; i < in->numpoints; i++)
+ {
+ p1 = in->points[i];
+
+ if (sides[i] == SIDE_ON)
+ {
+ VectorCopy (p1, f->points[f->numpoints]);
+ f->numpoints++;
+ VectorCopy (p1, b->points[b->numpoints]);
+ b->numpoints++;
+ continue;
+ }
+
+ if (sides[i] == SIDE_FRONT)
+ {
+ VectorCopy (p1, f->points[f->numpoints]);
+ f->numpoints++;
+ }
+ if (sides[i] == SIDE_BACK)
+ {
+ VectorCopy (p1, b->points[b->numpoints]);
+ b->numpoints++;
+ }
+
+ if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
+ continue;
+
+ // generate a split point
+ p2 = in->points[(i+1)%in->numpoints];
+
+ dot = dists[i] / (dists[i]-dists[i+1]);
+ for (j = 0; j < 3; j++)
+ {
+ // avoid round off error when possible
+ if (normal[j] == 1)
+ mid[j] = dist;
+ else if (normal[j] == -1)
+ mid[j] = -dist;
+ else
+ mid[j] = p1[j] + dot*(p2[j]-p1[j]);
+ }
+
+ VectorCopy (mid, f->points[f->numpoints]);
+ f->numpoints++;
+ VectorCopy (mid, b->points[b->numpoints]);
+ b->numpoints++;
+ }
+
+ if (f->numpoints > maxpts || b->numpoints > maxpts)
+ Error ("Winding_Clip: points exceeded estimate");
+ if (f->numpoints > MAX_POINTS_ON_WINDING || b->numpoints > MAX_POINTS_ON_WINDING)
+ Error ("Winding_Clip: MAX_POINTS_ON_WINDING");
+}
+
+/*
+=============
+Winding_TryMerge
+
+If two windings share a common edge and the edges that meet at the
+common points are both inside the other polygons, merge them
+
+Returns NULL if the windings couldn't be merged, or the new winding.
+The originals will NOT be freed.
+
+if keep is true no points are ever removed
+=============
+*/
+#define CONTINUOUS_EPSILON 0.005
+
+winding_t *Winding_TryMerge(winding_t *f1, winding_t *f2, vec3_t planenormal, int keep)
+{
+ vec_t *p1, *p2, *p3, *p4, *back;
+ winding_t *newf;
+ int i, j, k, l;
+ vec3_t normal, delta;
+ vec_t dot;
+ qboolean keep1, keep2;
+
+
+ //
+ // find a common edge
+ //
+ p1 = p2 = NULL; // stop compiler warning
+ j = 0; //
+
+ for (i = 0; i < f1->numpoints; i++)
+ {
+ p1 = f1->points[i];
+ p2 = f1->points[(i+1) % f1->numpoints];
+ for (j = 0; j < f2->numpoints; j++)
+ {
+ p3 = f2->points[j];
+ p4 = f2->points[(j+1) % f2->numpoints];
+ for (k = 0; k < 3; k++)
+ {
+ if (fabs(p1[k] - p4[k]) > 0.1)//EQUAL_EPSILON) //ME
+ break;
+ if (fabs(p2[k] - p3[k]) > 0.1)//EQUAL_EPSILON) //ME
+ break;
+ } //end for
+ if (k==3)
+ break;
+ } //end for
+ if (j < f2->numpoints)
+ break;
+ } //end for
+
+ if (i == f1->numpoints)
+ return NULL; // no matching edges
+
+ //
+ // check slope of connected lines
+ // if the slopes are colinear, the point can be removed
+ //
+ back = f1->points[(i+f1->numpoints-1)%f1->numpoints];
+ VectorSubtract (p1, back, delta);
+ CrossProduct (planenormal, delta, normal);
+ VectorNormalize (normal);
+
+ back = f2->points[(j+2)%f2->numpoints];
+ VectorSubtract (back, p1, delta);
+ dot = DotProduct (delta, normal);
+ if (dot > CONTINUOUS_EPSILON)
+ return NULL; // not a convex polygon
+ keep1 = (qboolean)(dot < -CONTINUOUS_EPSILON);
+
+ back = f1->points[(i+2)%f1->numpoints];
+ VectorSubtract (back, p2, delta);
+ CrossProduct (planenormal, delta, normal);
+ VectorNormalize (normal);
+
+ back = f2->points[(j+f2->numpoints-1)%f2->numpoints];
+ VectorSubtract (back, p2, delta);
+ dot = DotProduct (delta, normal);
+ if (dot > CONTINUOUS_EPSILON)
+ return NULL; // not a convex polygon
+ keep2 = (qboolean)(dot < -CONTINUOUS_EPSILON);
+
+ //
+ // build the new polygon
+ //
+ newf = Winding_Alloc (f1->numpoints + f2->numpoints);
+
+ // copy first polygon
+ for (k=(i+1)%f1->numpoints ; k != i ; k=(k+1)%f1->numpoints)
+ {
+ if (!keep && k==(i+1)%f1->numpoints && !keep2)
+ continue;
+
+ VectorCopy (f1->points[k], newf->points[newf->numpoints]);
+ newf->numpoints++;
+ }
+
+ // copy second polygon
+ for (l= (j+1)%f2->numpoints ; l != j ; l=(l+1)%f2->numpoints)
+ {
+ if (!keep && l==(j+1)%f2->numpoints && !keep1)
+ continue;
+ VectorCopy (f2->points[l], newf->points[newf->numpoints]);
+ newf->numpoints++;
+ }
+
+ return newf;
+}
+
+/*
+============
+Winding_Plane
+============
+*/
+void Winding_Plane (winding_t *w, vec3_t normal, double *dist)
+{
+ vec3_t v1, v2;
+ int i;
+
+ //find two vectors each longer than 0.5 units
+ for (i = 0; i < w->numpoints; i++)
+ {
+ VectorSubtract(w->points[(i+1) % w->numpoints], w->points[i], v1);
+ VectorSubtract(w->points[(i+2) % w->numpoints], w->points[i], v2);
+ if (VectorLength(v1) > 0.5 && VectorLength(v2) > 0.5) break;
+ }
+ CrossProduct(v2, v1, normal);
+ VectorNormalize(normal);
+ *dist = DotProduct(w->points[0], normal);
+}
+
+/*
+=============
+Winding_Area
+=============
+*/
+float Winding_Area (winding_t *w)
+{
+ int i;
+ vec3_t d1, d2, cross;
+ float total;
+
+ total = 0;
+ for (i=2 ; i<w->numpoints ; i++)
+ {
+ VectorSubtract (w->points[i-1], w->points[0], d1);
+ VectorSubtract (w->points[i], w->points[0], d2);
+ CrossProduct (d1, d2, cross);
+ total += 0.5 * VectorLength ( cross );
+ }
+ return total;
+}
+
+/*
+=============
+Winding_Bounds
+=============
+*/
+void Winding_Bounds (winding_t *w, vec3_t mins, vec3_t maxs)
+{
+ vec_t v;
+ int i,j;
+
+ mins[0] = mins[1] = mins[2] = 99999;
+ maxs[0] = maxs[1] = maxs[2] = -99999;
+
+ for (i=0 ; i<w->numpoints ; i++)
+ {
+ for (j=0 ; j<3 ; j++)
+ {
+ v = w->points[i][j];
+ if (v < mins[j])
+ mins[j] = v;
+ if (v > maxs[j])
+ maxs[j] = v;
+ }
+ }
+}
+
+
+/*
+=================
+Winding_PointInside
+=================
+*/
+int Winding_PointInside(winding_t *w, plane_t *plane, vec3_t point, float epsilon)
+{
+ int i;
+ vec3_t dir, normal, pointvec;
+
+ for (i = 0; i < w->numpoints; i++)
+ {
+ VectorSubtract(w->points[(i+1) % w->numpoints], w->points[i], dir);
+ VectorSubtract(point, w->points[i], pointvec);
+ //
+ CrossProduct(dir, plane->normal, normal);
+ //
+ if (DotProduct(pointvec, normal) < -epsilon) return false;
+ }
+ return true;
+}
+
+/*
+=================
+Winding_VectorIntersect
+=================
+*/
+int Winding_VectorIntersect(winding_t *w, plane_t *plane, vec3_t p1, vec3_t p2, float epsilon)
+{
+ float front, back, frac;
+ vec3_t mid;
+
+ front = DotProduct(p1, plane->normal) - plane->dist;
+ back = DotProduct(p2, plane->normal) - plane->dist;
+ //if both points at the same side of the plane
+ if (front < -epsilon && back < -epsilon) return false;
+ if (front > epsilon && back > epsilon) return false;
+ //get point of intersection with winding plane
+ if (fabs(front-back) < 0.001)
+ {
+ VectorCopy(p2, mid);
+ }
+ else
+ {
+ frac = front/(front-back);
+ mid[0] = p1[0] + (p2[0] - p1[0]) * frac;
+ mid[1] = p1[1] + (p2[1] - p1[1]) * frac;
+ mid[2] = p1[2] + (p2[2] - p1[2]) * frac;
+ }
+ return Winding_PointInside(w, plane, mid, epsilon);
+}
+