diff options
Diffstat (limited to 'q3radiant/Winding.cpp')
-rwxr-xr-x | q3radiant/Winding.cpp | 817 |
1 files changed, 0 insertions, 817 deletions
diff --git a/q3radiant/Winding.cpp b/q3radiant/Winding.cpp deleted file mode 100755 index 76e6df1..0000000 --- a/q3radiant/Winding.cpp +++ /dev/null @@ -1,817 +0,0 @@ -/* -=========================================================================== -Copyright (C) 1999-2005 Id Software, Inc. - -This file is part of Quake III Arena source code. - -Quake III Arena source code is free software; you can redistribute it -and/or modify it under the terms of the GNU General Public License as -published by the Free Software Foundation; either version 2 of the License, -or (at your option) any later version. - -Quake III Arena source code is distributed in the hope that it will be -useful, but WITHOUT ANY WARRANTY; without even the implied warranty of -MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the -GNU General Public License for more details. - -You should have received a copy of the GNU General Public License -along with Foobar; if not, write to the Free Software -Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA -=========================================================================== -*/ -
-
-#include "stdafx.h"
-#include <assert.h>
-#include "qe3.h"
-#include "winding.h"
-
-#define BOGUS_RANGE 18000
-
-/*
-=============
-Plane_Equal
-=============
-*/
-#define NORMAL_EPSILON 0.0001
-#define DIST_EPSILON 0.02
-
-int Plane_Equal(plane_t *a, plane_t *b, int flip)
-{
- vec3_t normal;
- float dist;
-
- if (flip) {
- normal[0] = - b->normal[0];
- normal[1] = - b->normal[1];
- normal[2] = - b->normal[2];
- dist = - b->dist;
- }
- else {
- normal[0] = b->normal[0];
- normal[1] = b->normal[1];
- normal[2] = b->normal[2];
- dist = b->dist;
- }
- if (
- fabs(a->normal[0] - normal[0]) < NORMAL_EPSILON
- && fabs(a->normal[1] - normal[1]) < NORMAL_EPSILON
- && fabs(a->normal[2] - normal[2]) < NORMAL_EPSILON
- && fabs(a->dist - dist) < DIST_EPSILON )
- return true;
- return false;
-}
-
-/*
-============
-Plane_FromPoints
-============
-*/
-int Plane_FromPoints(vec3_t p1, vec3_t p2, vec3_t p3, plane_t *plane)
-{
- vec3_t v1, v2;
-
- VectorSubtract(p2, p1, v1);
- VectorSubtract(p3, p1, v2);
- //CrossProduct(v2, v1, plane->normal);
- CrossProduct(v1, v2, plane->normal);
- if (VectorNormalize(plane->normal) < 0.1) return false;
- plane->dist = DotProduct(p1, plane->normal);
- return true;
-}
-
-/*
-=================
-Point_Equal
-=================
-*/
-int Point_Equal(vec3_t p1, vec3_t p2, float epsilon)
-{
- int i;
-
- for (i = 0; i < 3; i++)
- {
- if (fabs(p1[i] - p2[i]) > epsilon) return false;
- }
- return true;
-}
-
-
-/*
-=================
-Winding_BaseForPlane
-=================
-*/
-winding_t *Winding_BaseForPlane (plane_t *p)
-{
- int i, x;
- vec_t max, v;
- vec3_t org, vright, vup;
- winding_t *w;
-
- // find the major axis
-
- max = -BOGUS_RANGE;
- x = -1;
- for (i=0 ; i<3; i++)
- {
- v = fabs(p->normal[i]);
- if (v > max)
- {
- x = i;
- max = v;
- }
- }
- if (x==-1)
- Error ("Winding_BaseForPlane: no axis found");
-
- VectorCopy (vec3_origin, vup);
- switch (x)
- {
- case 0:
- case 1:
- vup[2] = 1;
- break;
- case 2:
- vup[0] = 1;
- break;
- }
-
-
- v = DotProduct (vup, p->normal);
- VectorMA (vup, -v, p->normal, vup);
- VectorNormalize (vup);
-
- VectorScale (p->normal, p->dist, org);
-
- CrossProduct (vup, p->normal, vright);
-
- VectorScale (vup, BOGUS_RANGE, vup);
- VectorScale (vright, BOGUS_RANGE, vright);
-
- // project a really big axis aligned box onto the plane
- w = Winding_Alloc (4);
-
- VectorSubtract (org, vright, w->points[0]);
- VectorAdd (w->points[0], vup, w->points[0]);
-
- VectorAdd (org, vright, w->points[1]);
- VectorAdd (w->points[1], vup, w->points[1]);
-
- VectorAdd (org, vright, w->points[2]);
- VectorSubtract (w->points[2], vup, w->points[2]);
-
- VectorSubtract (org, vright, w->points[3]);
- VectorSubtract (w->points[3], vup, w->points[3]);
-
- w->numpoints = 4;
-
- return w;
-}
-
-/*
-==================
-Winding_Alloc
-==================
-*/
-winding_t *Winding_Alloc (int points)
-{
- winding_t *w;
- int size;
-
- if (points > MAX_POINTS_ON_WINDING)
- Error ("Winding_Alloc: %i points", points);
-
- size = (int)((winding_t *)0)->points[points];
- w = (winding_t*) malloc (size);
- memset (w, 0, size);
- w->maxpoints = points;
-
- return w;
-}
-
-
-void Winding_Free (winding_t *w)
-{
- free(w);
-}
-
-
-/*
-==================
-Winding_Clone
-==================
-*/
-winding_t *Winding_Clone(winding_t *w)
-{
- int size;
- winding_t *c;
-
- size = (int)((winding_t *)0)->points[w->numpoints];
- c = (winding_t*)qmalloc (size);
- memcpy (c, w, size);
- return c;
-}
-
-/*
-==================
-ReverseWinding
-==================
-*/
-winding_t *Winding_Reverse(winding_t *w)
-{
- int i;
- winding_t *c;
-
- c = Winding_Alloc(w->numpoints);
- for (i = 0; i < w->numpoints; i++)
- {
- VectorCopy (w->points[w->numpoints-1-i], c->points[i]);
- }
- c->numpoints = w->numpoints;
- return c;
-}
-
-
-/*
-==============
-Winding_RemovePoint
-==============
-*/
-void Winding_RemovePoint(winding_t *w, int point)
-{
- if (point < 0 || point >= w->numpoints)
- Error("Winding_RemovePoint: point out of range");
-
- if (point < w->numpoints-1)
- {
- memmove(&w->points[point], &w->points[point+1], (int)((winding_t *)0)->points[w->numpoints - point - 1]);
- }
- w->numpoints--;
-}
-
-/*
-=============
-Winding_InsertPoint
-=============
-*/
-winding_t *Winding_InsertPoint(winding_t *w, vec3_t point, int spot)
-{
- int i, j;
- winding_t *neww;
-
- if (spot > w->numpoints)
- {
- Error("Winding_InsertPoint: spot > w->numpoints");
- } //end if
- if (spot < 0)
- {
- Error("Winding_InsertPoint: spot < 0");
- } //end if
- neww = Winding_Alloc(w->numpoints + 1);
- neww->numpoints = w->numpoints + 1;
- for (i = 0, j = 0; i < neww->numpoints; i++)
- {
- if (i == spot)
- {
- VectorCopy(point, neww->points[i]);
- }
- else
- {
- VectorCopy(w->points[j], neww->points[i]);
- j++;
- }
- }
- return neww;
-}
-
-/*
-==============
-Winding_IsTiny
-==============
-*/
-#define EDGE_LENGTH 0.2
-
-int Winding_IsTiny (winding_t *w)
-{
- int i, j;
- vec_t len;
- vec3_t delta;
- int edges;
-
- edges = 0;
- for (i=0 ; i<w->numpoints ; i++)
- {
- j = i == w->numpoints - 1 ? 0 : i+1;
- VectorSubtract (w->points[j], w->points[i], delta);
- len = VectorLength (delta);
- if (len > EDGE_LENGTH)
- {
- if (++edges == 3)
- return false;
- }
- }
- return true;
-}
-
-/*
-==============
-Winding_IsHuge
-==============
-*/
-int Winding_IsHuge(winding_t *w)
-{
- int i, j;
-
- for (i=0 ; i<w->numpoints ; i++)
- {
- for (j=0 ; j<3 ; j++)
- if (w->points[i][j] < -BOGUS_RANGE+1 || w->points[i][j] > BOGUS_RANGE-1)
- return true;
- }
- return false;
-}
-
-/*
-=============
-Winding_PlanesConcave
-=============
-*/
-#define WCONVEX_EPSILON 0.2
-
-int Winding_PlanesConcave(winding_t *w1, winding_t *w2,
- vec3_t normal1, vec3_t normal2,
- float dist1, float dist2)
-{
- int i;
-
- if (!w1 || !w2) return false;
-
- // check if one of the points of winding 1 is at the back of the plane of winding 2
- for (i = 0; i < w1->numpoints; i++)
- {
- if (DotProduct(normal2, w1->points[i]) - dist2 > WCONVEX_EPSILON) return true;
- }
- // check if one of the points of winding 2 is at the back of the plane of winding 1
- for (i = 0; i < w2->numpoints; i++)
- {
- if (DotProduct(normal1, w2->points[i]) - dist1 > WCONVEX_EPSILON) return true;
- }
-
- return false;
-}
-
-/*
-==================
-Winding_Clip
-
-Clips the winding to the plane, returning the new winding on the positive side
-Frees the input winding.
-If keepon is true, an exactly on-plane winding will be saved, otherwise
-it will be clipped away.
-==================
-*/
-winding_t *Winding_Clip (winding_t *in, plane_t *split, qboolean keepon)
-{
- vec_t dists[MAX_POINTS_ON_WINDING];
- int sides[MAX_POINTS_ON_WINDING];
- int counts[3];
- vec_t dot;
- int i, j;
- vec_t *p1, *p2;
- vec3_t mid;
- winding_t *neww;
- int maxpts;
-
- counts[0] = counts[1] = counts[2] = 0;
-
- // determine sides for each point
- for (i=0 ; i<in->numpoints ; i++)
- {
- dot = DotProduct (in->points[i], split->normal);
- dot -= split->dist;
- dists[i] = dot;
- if (dot > ON_EPSILON)
- sides[i] = SIDE_FRONT;
- else if (dot < -ON_EPSILON)
- sides[i] = SIDE_BACK;
- else
- {
- sides[i] = SIDE_ON;
- }
- counts[sides[i]]++;
- }
- sides[i] = sides[0];
- dists[i] = dists[0];
-
- if (keepon && !counts[0] && !counts[1])
- return in;
-
- if (!counts[0])
- {
- Winding_Free (in);
- return NULL;
- }
- if (!counts[1])
- return in;
-
- maxpts = in->numpoints+4; // can't use counts[0]+2 because
- // of fp grouping errors
- neww = Winding_Alloc (maxpts);
-
- for (i=0 ; i<in->numpoints ; i++)
- {
- p1 = in->points[i];
-
- if (sides[i] == SIDE_ON)
- {
- VectorCopy (p1, neww->points[neww->numpoints]);
- neww->numpoints++;
- continue;
- }
-
- if (sides[i] == SIDE_FRONT)
- {
- VectorCopy (p1, neww->points[neww->numpoints]);
- neww->numpoints++;
- }
-
- if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
- continue;
-
- // generate a split point
- p2 = in->points[(i+1)%in->numpoints];
-
- dot = dists[i] / (dists[i]-dists[i+1]);
- for (j=0 ; j<3 ; j++)
- { // avoid round off error when possible
- if (split->normal[j] == 1)
- mid[j] = split->dist;
- else if (split->normal[j] == -1)
- mid[j] = -split->dist;
- else
- mid[j] = p1[j] + dot*(p2[j]-p1[j]);
- }
-
- VectorCopy (mid, neww->points[neww->numpoints]);
- neww->numpoints++;
- }
-
- if (neww->numpoints > maxpts)
- Error ("Winding_Clip: points exceeded estimate");
-
- // free the original winding
- Winding_Free (in);
-
- return neww;
-}
-
-/*
-=============
-Winding_SplitEpsilon
-
- split the input winding with the plane
- the input winding stays untouched
-=============
-*/
-void Winding_SplitEpsilon (winding_t *in, vec3_t normal, double dist,
- vec_t epsilon, winding_t **front, winding_t **back)
-{
- vec_t dists[MAX_POINTS_ON_WINDING+4];
- int sides[MAX_POINTS_ON_WINDING+4];
- int counts[3];
- vec_t dot;
- int i, j;
- vec_t *p1, *p2;
- vec3_t mid;
- winding_t *f, *b;
- int maxpts;
-
- counts[0] = counts[1] = counts[2] = 0;
-
- // determine sides for each point
- for (i = 0; i < in->numpoints; i++)
- {
- dot = DotProduct (in->points[i], normal);
- dot -= dist;
- dists[i] = dot;
- if (dot > epsilon)
- sides[i] = SIDE_FRONT;
- else if (dot < -epsilon)
- sides[i] = SIDE_BACK;
- else
- {
- sides[i] = SIDE_ON;
- }
- counts[sides[i]]++;
- }
- sides[i] = sides[0];
- dists[i] = dists[0];
-
- *front = *back = NULL;
-
- if (!counts[0])
- {
- *back = Winding_Clone(in);
- return;
- }
- if (!counts[1])
- {
- *front = Winding_Clone(in);
- return;
- }
-
- maxpts = in->numpoints+4; // cant use counts[0]+2 because
- // of fp grouping errors
-
- *front = f = Winding_Alloc (maxpts);
- *back = b = Winding_Alloc (maxpts);
-
- for (i = 0; i < in->numpoints; i++)
- {
- p1 = in->points[i];
-
- if (sides[i] == SIDE_ON)
- {
- VectorCopy (p1, f->points[f->numpoints]);
- f->numpoints++;
- VectorCopy (p1, b->points[b->numpoints]);
- b->numpoints++;
- continue;
- }
-
- if (sides[i] == SIDE_FRONT)
- {
- VectorCopy (p1, f->points[f->numpoints]);
- f->numpoints++;
- }
- if (sides[i] == SIDE_BACK)
- {
- VectorCopy (p1, b->points[b->numpoints]);
- b->numpoints++;
- }
-
- if (sides[i+1] == SIDE_ON || sides[i+1] == sides[i])
- continue;
-
- // generate a split point
- p2 = in->points[(i+1)%in->numpoints];
-
- dot = dists[i] / (dists[i]-dists[i+1]);
- for (j = 0; j < 3; j++)
- {
- // avoid round off error when possible
- if (normal[j] == 1)
- mid[j] = dist;
- else if (normal[j] == -1)
- mid[j] = -dist;
- else
- mid[j] = p1[j] + dot*(p2[j]-p1[j]);
- }
-
- VectorCopy (mid, f->points[f->numpoints]);
- f->numpoints++;
- VectorCopy (mid, b->points[b->numpoints]);
- b->numpoints++;
- }
-
- if (f->numpoints > maxpts || b->numpoints > maxpts)
- Error ("Winding_Clip: points exceeded estimate");
- if (f->numpoints > MAX_POINTS_ON_WINDING || b->numpoints > MAX_POINTS_ON_WINDING)
- Error ("Winding_Clip: MAX_POINTS_ON_WINDING");
-}
-
-/*
-=============
-Winding_TryMerge
-
-If two windings share a common edge and the edges that meet at the
-common points are both inside the other polygons, merge them
-
-Returns NULL if the windings couldn't be merged, or the new winding.
-The originals will NOT be freed.
-
-if keep is true no points are ever removed
-=============
-*/
-#define CONTINUOUS_EPSILON 0.005
-
-winding_t *Winding_TryMerge(winding_t *f1, winding_t *f2, vec3_t planenormal, int keep)
-{
- vec_t *p1, *p2, *p3, *p4, *back;
- winding_t *newf;
- int i, j, k, l;
- vec3_t normal, delta;
- vec_t dot;
- qboolean keep1, keep2;
-
-
- //
- // find a common edge
- //
- p1 = p2 = NULL; // stop compiler warning
- j = 0; //
-
- for (i = 0; i < f1->numpoints; i++)
- {
- p1 = f1->points[i];
- p2 = f1->points[(i+1) % f1->numpoints];
- for (j = 0; j < f2->numpoints; j++)
- {
- p3 = f2->points[j];
- p4 = f2->points[(j+1) % f2->numpoints];
- for (k = 0; k < 3; k++)
- {
- if (fabs(p1[k] - p4[k]) > 0.1)//EQUAL_EPSILON) //ME
- break;
- if (fabs(p2[k] - p3[k]) > 0.1)//EQUAL_EPSILON) //ME
- break;
- } //end for
- if (k==3)
- break;
- } //end for
- if (j < f2->numpoints)
- break;
- } //end for
-
- if (i == f1->numpoints)
- return NULL; // no matching edges
-
- //
- // check slope of connected lines
- // if the slopes are colinear, the point can be removed
- //
- back = f1->points[(i+f1->numpoints-1)%f1->numpoints];
- VectorSubtract (p1, back, delta);
- CrossProduct (planenormal, delta, normal);
- VectorNormalize (normal);
-
- back = f2->points[(j+2)%f2->numpoints];
- VectorSubtract (back, p1, delta);
- dot = DotProduct (delta, normal);
- if (dot > CONTINUOUS_EPSILON)
- return NULL; // not a convex polygon
- keep1 = (qboolean)(dot < -CONTINUOUS_EPSILON);
-
- back = f1->points[(i+2)%f1->numpoints];
- VectorSubtract (back, p2, delta);
- CrossProduct (planenormal, delta, normal);
- VectorNormalize (normal);
-
- back = f2->points[(j+f2->numpoints-1)%f2->numpoints];
- VectorSubtract (back, p2, delta);
- dot = DotProduct (delta, normal);
- if (dot > CONTINUOUS_EPSILON)
- return NULL; // not a convex polygon
- keep2 = (qboolean)(dot < -CONTINUOUS_EPSILON);
-
- //
- // build the new polygon
- //
- newf = Winding_Alloc (f1->numpoints + f2->numpoints);
-
- // copy first polygon
- for (k=(i+1)%f1->numpoints ; k != i ; k=(k+1)%f1->numpoints)
- {
- if (!keep && k==(i+1)%f1->numpoints && !keep2)
- continue;
-
- VectorCopy (f1->points[k], newf->points[newf->numpoints]);
- newf->numpoints++;
- }
-
- // copy second polygon
- for (l= (j+1)%f2->numpoints ; l != j ; l=(l+1)%f2->numpoints)
- {
- if (!keep && l==(j+1)%f2->numpoints && !keep1)
- continue;
- VectorCopy (f2->points[l], newf->points[newf->numpoints]);
- newf->numpoints++;
- }
-
- return newf;
-}
-
-/*
-============
-Winding_Plane
-============
-*/
-void Winding_Plane (winding_t *w, vec3_t normal, double *dist)
-{
- vec3_t v1, v2;
- int i;
-
- //find two vectors each longer than 0.5 units
- for (i = 0; i < w->numpoints; i++)
- {
- VectorSubtract(w->points[(i+1) % w->numpoints], w->points[i], v1);
- VectorSubtract(w->points[(i+2) % w->numpoints], w->points[i], v2);
- if (VectorLength(v1) > 0.5 && VectorLength(v2) > 0.5) break;
- }
- CrossProduct(v2, v1, normal);
- VectorNormalize(normal);
- *dist = DotProduct(w->points[0], normal);
-}
-
-/*
-=============
-Winding_Area
-=============
-*/
-float Winding_Area (winding_t *w)
-{
- int i;
- vec3_t d1, d2, cross;
- float total;
-
- total = 0;
- for (i=2 ; i<w->numpoints ; i++)
- {
- VectorSubtract (w->points[i-1], w->points[0], d1);
- VectorSubtract (w->points[i], w->points[0], d2);
- CrossProduct (d1, d2, cross);
- total += 0.5 * VectorLength ( cross );
- }
- return total;
-}
-
-/*
-=============
-Winding_Bounds
-=============
-*/
-void Winding_Bounds (winding_t *w, vec3_t mins, vec3_t maxs)
-{
- vec_t v;
- int i,j;
-
- mins[0] = mins[1] = mins[2] = 99999;
- maxs[0] = maxs[1] = maxs[2] = -99999;
-
- for (i=0 ; i<w->numpoints ; i++)
- {
- for (j=0 ; j<3 ; j++)
- {
- v = w->points[i][j];
- if (v < mins[j])
- mins[j] = v;
- if (v > maxs[j])
- maxs[j] = v;
- }
- }
-}
-
-
-/*
-=================
-Winding_PointInside
-=================
-*/
-int Winding_PointInside(winding_t *w, plane_t *plane, vec3_t point, float epsilon)
-{
- int i;
- vec3_t dir, normal, pointvec;
-
- for (i = 0; i < w->numpoints; i++)
- {
- VectorSubtract(w->points[(i+1) % w->numpoints], w->points[i], dir);
- VectorSubtract(point, w->points[i], pointvec);
- //
- CrossProduct(dir, plane->normal, normal);
- //
- if (DotProduct(pointvec, normal) < -epsilon) return false;
- }
- return true;
-}
-
-/*
-=================
-Winding_VectorIntersect
-=================
-*/
-int Winding_VectorIntersect(winding_t *w, plane_t *plane, vec3_t p1, vec3_t p2, float epsilon)
-{
- float front, back, frac;
- vec3_t mid;
-
- front = DotProduct(p1, plane->normal) - plane->dist;
- back = DotProduct(p2, plane->normal) - plane->dist;
- //if both points at the same side of the plane
- if (front < -epsilon && back < -epsilon) return false;
- if (front > epsilon && back > epsilon) return false;
- //get point of intersection with winding plane
- if (fabs(front-back) < 0.001)
- {
- VectorCopy(p2, mid);
- }
- else
- {
- frac = front/(front-back);
- mid[0] = p1[0] + (p2[0] - p1[0]) * frac;
- mid[1] = p1[1] + (p2[1] - p1[1]) * frac;
- mid[2] = p1[2] + (p2[2] - p1[2]) * frac;
- }
- return Winding_PointInside(w, plane, mid, epsilon);
-}
-
|