aboutsummaryrefslogtreecommitdiffstats
path: root/libs/jpeg6
diff options
context:
space:
mode:
Diffstat (limited to 'libs/jpeg6')
-rwxr-xr-xlibs/jpeg6/jchuff.h68
-rwxr-xr-xlibs/jpeg6/jcomapi.cpp188
-rwxr-xr-xlibs/jpeg6/jconfig.h82
-rwxr-xr-xlibs/jpeg6/jdapimin.cpp800
-rwxr-xr-xlibs/jpeg6/jdapistd.cpp550
-rwxr-xr-xlibs/jpeg6/jdatasrc.cpp408
-rwxr-xr-xlibs/jpeg6/jdcoefct.cpp1450
-rwxr-xr-xlibs/jpeg6/jdcolor.cpp734
-rwxr-xr-xlibs/jpeg6/jdct.h352
-rwxr-xr-xlibs/jpeg6/jddctmgr.cpp540
-rwxr-xr-xlibs/jpeg6/jdhuff.cpp1148
-rwxr-xr-xlibs/jpeg6/jdhuff.h404
-rwxr-xr-xlibs/jpeg6/jdinput.cpp762
-rwxr-xr-xlibs/jpeg6/jdmainct.cpp1024
-rwxr-xr-xlibs/jpeg6/jdmarker.cpp2104
-rwxr-xr-xlibs/jpeg6/jdmaster.cpp1114
-rwxr-xr-xlibs/jpeg6/jdpostct.cpp580
-rwxr-xr-xlibs/jpeg6/jdsample.cpp956
-rwxr-xr-xlibs/jpeg6/jdtrans.cpp244
-rwxr-xr-xlibs/jpeg6/jerror.cpp462
-rwxr-xr-xlibs/jpeg6/jerror.h546
-rwxr-xr-xlibs/jpeg6/jfdctflt.cpp336
-rwxr-xr-xlibs/jpeg6/jidctflt.cpp482
-rwxr-xr-xlibs/jpeg6/jinclude.h182
-rwxr-xr-xlibs/jpeg6/jmemmgr.cpp2230
-rwxr-xr-xlibs/jpeg6/jmemnobs.cpp206
-rwxr-xr-xlibs/jpeg6/jmemsys.h364
-rwxr-xr-xlibs/jpeg6/jmorecfg.h692
-rwxr-xr-xlibs/jpeg6/jpeg6.vcproj1206
-rwxr-xr-xlibs/jpeg6/jpegint.h776
-rwxr-xr-xlibs/jpeg6/jpgload.cpp284
-rwxr-xr-xlibs/jpeg6/jutils.cpp350
-rwxr-xr-xlibs/jpeg6/jversion.h28
33 files changed, 10826 insertions, 10826 deletions
diff --git a/libs/jpeg6/jchuff.h b/libs/jpeg6/jchuff.h
index 0a81d54..f43d571 100755
--- a/libs/jpeg6/jchuff.h
+++ b/libs/jpeg6/jchuff.h
@@ -1,34 +1,34 @@
-/*
- * jchuff.h
- *
- * Copyright (C) 1991-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains declarations for Huffman entropy encoding routines
- * that are shared between the sequential encoder (jchuff.c) and the
- * progressive encoder (jcphuff.c). No other modules need to see these.
- */
-
-/* Derived data constructed for each Huffman table */
-
-typedef struct {
- unsigned int ehufco[256]; /* code for each symbol */
- char ehufsi[256]; /* length of code for each symbol */
- /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
-} c_derived_tbl;
-
-/* Short forms of external names for systems with brain-damaged linkers. */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jpeg_make_c_derived_tbl jMkCDerived
-#define jpeg_gen_optimal_table jGenOptTbl
-#endif /* NEED_SHORT_EXTERNAL_NAMES */
-
-/* Expand a Huffman table definition into the derived format */
-EXTERN void jpeg_make_c_derived_tbl JPP((j_compress_ptr cinfo,
- JHUFF_TBL * htbl, c_derived_tbl ** pdtbl));
-
-/* Generate an optimal table definition given the specified counts */
-EXTERN void jpeg_gen_optimal_table JPP((j_compress_ptr cinfo,
- JHUFF_TBL * htbl, long freq[]));
+/*
+ * jchuff.h
+ *
+ * Copyright (C) 1991-1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains declarations for Huffman entropy encoding routines
+ * that are shared between the sequential encoder (jchuff.c) and the
+ * progressive encoder (jcphuff.c). No other modules need to see these.
+ */
+
+/* Derived data constructed for each Huffman table */
+
+typedef struct {
+ unsigned int ehufco[256]; /* code for each symbol */
+ char ehufsi[256]; /* length of code for each symbol */
+ /* If no code has been allocated for a symbol S, ehufsi[S] contains 0 */
+} c_derived_tbl;
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_make_c_derived_tbl jMkCDerived
+#define jpeg_gen_optimal_table jGenOptTbl
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+/* Expand a Huffman table definition into the derived format */
+EXTERN void jpeg_make_c_derived_tbl JPP((j_compress_ptr cinfo,
+ JHUFF_TBL * htbl, c_derived_tbl ** pdtbl));
+
+/* Generate an optimal table definition given the specified counts */
+EXTERN void jpeg_gen_optimal_table JPP((j_compress_ptr cinfo,
+ JHUFF_TBL * htbl, long freq[]));
diff --git a/libs/jpeg6/jcomapi.cpp b/libs/jpeg6/jcomapi.cpp
index 8f417c0..c10903f 100755
--- a/libs/jpeg6/jcomapi.cpp
+++ b/libs/jpeg6/jcomapi.cpp
@@ -1,94 +1,94 @@
-/*
- * jcomapi.c
- *
- * Copyright (C) 1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains application interface routines that are used for both
- * compression and decompression.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * Abort processing of a JPEG compression or decompression operation,
- * but don't destroy the object itself.
- *
- * For this, we merely clean up all the nonpermanent memory pools.
- * Note that temp files (virtual arrays) are not allowed to belong to
- * the permanent pool, so we will be able to close all temp files here.
- * Closing a data source or destination, if necessary, is the application's
- * responsibility.
- */
-
-GLOBAL void
-jpeg_abort (j_common_ptr cinfo)
-{
- int pool;
-
- /* Releasing pools in reverse order might help avoid fragmentation
- * with some (brain-damaged) malloc libraries.
- */
- for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) {
- (*cinfo->mem->free_pool) (cinfo, pool);
- }
-
- /* Reset overall state for possible reuse of object */
- cinfo->global_state = (cinfo->is_decompressor ? DSTATE_START : CSTATE_START);
-}
-
-
-/*
- * Destruction of a JPEG object.
- *
- * Everything gets deallocated except the master jpeg_compress_struct itself
- * and the error manager struct. Both of these are supplied by the application
- * and must be freed, if necessary, by the application. (Often they are on
- * the stack and so don't need to be freed anyway.)
- * Closing a data source or destination, if necessary, is the application's
- * responsibility.
- */
-
-GLOBAL void
-jpeg_destroy (j_common_ptr cinfo)
-{
- /* We need only tell the memory manager to release everything. */
- /* NB: mem pointer is NULL if memory mgr failed to initialize. */
- if (cinfo->mem != NULL)
- (*cinfo->mem->self_destruct) (cinfo);
- cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */
- cinfo->global_state = 0; /* mark it destroyed */
-}
-
-
-/*
- * Convenience routines for allocating quantization and Huffman tables.
- * (Would jutils.c be a more reasonable place to put these?)
- */
-
-GLOBAL JQUANT_TBL *
-jpeg_alloc_quant_table (j_common_ptr cinfo)
-{
- JQUANT_TBL *tbl;
-
- tbl = (JQUANT_TBL *)
- (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL));
- tbl->sent_table = FALSE; /* make sure this is false in any new table */
- return tbl;
-}
-
-
-GLOBAL JHUFF_TBL *
-jpeg_alloc_huff_table (j_common_ptr cinfo)
-{
- JHUFF_TBL *tbl;
-
- tbl = (JHUFF_TBL *)
- (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL));
- tbl->sent_table = FALSE; /* make sure this is false in any new table */
- return tbl;
-}
+/*
+ * jcomapi.c
+ *
+ * Copyright (C) 1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains application interface routines that are used for both
+ * compression and decompression.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Abort processing of a JPEG compression or decompression operation,
+ * but don't destroy the object itself.
+ *
+ * For this, we merely clean up all the nonpermanent memory pools.
+ * Note that temp files (virtual arrays) are not allowed to belong to
+ * the permanent pool, so we will be able to close all temp files here.
+ * Closing a data source or destination, if necessary, is the application's
+ * responsibility.
+ */
+
+GLOBAL void
+jpeg_abort (j_common_ptr cinfo)
+{
+ int pool;
+
+ /* Releasing pools in reverse order might help avoid fragmentation
+ * with some (brain-damaged) malloc libraries.
+ */
+ for (pool = JPOOL_NUMPOOLS-1; pool > JPOOL_PERMANENT; pool--) {
+ (*cinfo->mem->free_pool) (cinfo, pool);
+ }
+
+ /* Reset overall state for possible reuse of object */
+ cinfo->global_state = (cinfo->is_decompressor ? DSTATE_START : CSTATE_START);
+}
+
+
+/*
+ * Destruction of a JPEG object.
+ *
+ * Everything gets deallocated except the master jpeg_compress_struct itself
+ * and the error manager struct. Both of these are supplied by the application
+ * and must be freed, if necessary, by the application. (Often they are on
+ * the stack and so don't need to be freed anyway.)
+ * Closing a data source or destination, if necessary, is the application's
+ * responsibility.
+ */
+
+GLOBAL void
+jpeg_destroy (j_common_ptr cinfo)
+{
+ /* We need only tell the memory manager to release everything. */
+ /* NB: mem pointer is NULL if memory mgr failed to initialize. */
+ if (cinfo->mem != NULL)
+ (*cinfo->mem->self_destruct) (cinfo);
+ cinfo->mem = NULL; /* be safe if jpeg_destroy is called twice */
+ cinfo->global_state = 0; /* mark it destroyed */
+}
+
+
+/*
+ * Convenience routines for allocating quantization and Huffman tables.
+ * (Would jutils.c be a more reasonable place to put these?)
+ */
+
+GLOBAL JQUANT_TBL *
+jpeg_alloc_quant_table (j_common_ptr cinfo)
+{
+ JQUANT_TBL *tbl;
+
+ tbl = (JQUANT_TBL *)
+ (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JQUANT_TBL));
+ tbl->sent_table = FALSE; /* make sure this is false in any new table */
+ return tbl;
+}
+
+
+GLOBAL JHUFF_TBL *
+jpeg_alloc_huff_table (j_common_ptr cinfo)
+{
+ JHUFF_TBL *tbl;
+
+ tbl = (JHUFF_TBL *)
+ (*cinfo->mem->alloc_small) (cinfo, JPOOL_PERMANENT, SIZEOF(JHUFF_TBL));
+ tbl->sent_table = FALSE; /* make sure this is false in any new table */
+ return tbl;
+}
diff --git a/libs/jpeg6/jconfig.h b/libs/jpeg6/jconfig.h
index 187ecfc..7d2f733 100755
--- a/libs/jpeg6/jconfig.h
+++ b/libs/jpeg6/jconfig.h
@@ -1,41 +1,41 @@
-/* jconfig.wat --- jconfig.h for Watcom C/C++ on MS-DOS or OS/2. */
-/* see jconfig.doc for explanations */
-
-#define HAVE_PROTOTYPES
-#define HAVE_UNSIGNED_CHAR
-#define HAVE_UNSIGNED_SHORT
-/* #define void char */
-/* #define const */
-#define CHAR_IS_UNSIGNED
-#define HAVE_STDDEF_H
-#define HAVE_STDLIB_H
-#undef NEED_BSD_STRINGS
-#undef NEED_SYS_TYPES_H
-#undef NEED_FAR_POINTERS /* Watcom uses flat 32-bit addressing */
-#undef NEED_SHORT_EXTERNAL_NAMES
-#undef INCOMPLETE_TYPES_BROKEN
-
-#define JDCT_DEFAULT JDCT_FLOAT
-#define JDCT_FASTEST JDCT_FLOAT
-
-#ifdef JPEG_INTERNALS
-
-#undef RIGHT_SHIFT_IS_UNSIGNED
-
-#endif /* JPEG_INTERNALS */
-
-#ifdef JPEG_CJPEG_DJPEG
-
-#define BMP_SUPPORTED /* BMP image file format */
-#define GIF_SUPPORTED /* GIF image file format */
-#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
-#undef RLE_SUPPORTED /* Utah RLE image file format */
-#define TARGA_SUPPORTED /* Targa image file format */
-
-#undef TWO_FILE_COMMANDLINE /* optional */
-#define USE_SETMODE /* Needed to make one-file style work in Watcom */
-#undef NEED_SIGNAL_CATCHER /* Define this if you use jmemname.c */
-#undef DONT_USE_B_MODE
-#undef PROGRESS_REPORT /* optional */
-
-#endif /* JPEG_CJPEG_DJPEG */
+/* jconfig.wat --- jconfig.h for Watcom C/C++ on MS-DOS or OS/2. */
+/* see jconfig.doc for explanations */
+
+#define HAVE_PROTOTYPES
+#define HAVE_UNSIGNED_CHAR
+#define HAVE_UNSIGNED_SHORT
+/* #define void char */
+/* #define const */
+#define CHAR_IS_UNSIGNED
+#define HAVE_STDDEF_H
+#define HAVE_STDLIB_H
+#undef NEED_BSD_STRINGS
+#undef NEED_SYS_TYPES_H
+#undef NEED_FAR_POINTERS /* Watcom uses flat 32-bit addressing */
+#undef NEED_SHORT_EXTERNAL_NAMES
+#undef INCOMPLETE_TYPES_BROKEN
+
+#define JDCT_DEFAULT JDCT_FLOAT
+#define JDCT_FASTEST JDCT_FLOAT
+
+#ifdef JPEG_INTERNALS
+
+#undef RIGHT_SHIFT_IS_UNSIGNED
+
+#endif /* JPEG_INTERNALS */
+
+#ifdef JPEG_CJPEG_DJPEG
+
+#define BMP_SUPPORTED /* BMP image file format */
+#define GIF_SUPPORTED /* GIF image file format */
+#define PPM_SUPPORTED /* PBMPLUS PPM/PGM image file format */
+#undef RLE_SUPPORTED /* Utah RLE image file format */
+#define TARGA_SUPPORTED /* Targa image file format */
+
+#undef TWO_FILE_COMMANDLINE /* optional */
+#define USE_SETMODE /* Needed to make one-file style work in Watcom */
+#undef NEED_SIGNAL_CATCHER /* Define this if you use jmemname.c */
+#undef DONT_USE_B_MODE
+#undef PROGRESS_REPORT /* optional */
+
+#endif /* JPEG_CJPEG_DJPEG */
diff --git a/libs/jpeg6/jdapimin.cpp b/libs/jpeg6/jdapimin.cpp
index 1bae6a2..1ea7ef1 100755
--- a/libs/jpeg6/jdapimin.cpp
+++ b/libs/jpeg6/jdapimin.cpp
@@ -1,400 +1,400 @@
-/*
- * jdapimin.c
- *
- * Copyright (C) 1994-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains application interface code for the decompression half
- * of the JPEG library. These are the "minimum" API routines that may be
- * needed in either the normal full-decompression case or the
- * transcoding-only case.
- *
- * Most of the routines intended to be called directly by an application
- * are in this file or in jdapistd.c. But also see jcomapi.c for routines
- * shared by compression and decompression, and jdtrans.c for the transcoding
- * case.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * Initialization of a JPEG decompression object.
- * The error manager must already be set up (in case memory manager fails).
- */
-
-GLOBAL void
-jpeg_create_decompress (j_decompress_ptr cinfo)
-{
- int i;
-
- /* For debugging purposes, zero the whole master structure.
- * But error manager pointer is already there, so save and restore it.
- */
- {
- struct jpeg_error_mgr * err = cinfo->err;
- i = sizeof(struct jpeg_decompress_struct);
- i = SIZEOF(struct jpeg_decompress_struct);
- MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct));
- cinfo->err = err;
- }
- cinfo->is_decompressor = TRUE;
-
- /* Initialize a memory manager instance for this object */
- jinit_memory_mgr((j_common_ptr) cinfo);
-
- /* Zero out pointers to permanent structures. */
- cinfo->progress = NULL;
- cinfo->src = NULL;
-
- for (i = 0; i < NUM_QUANT_TBLS; i++)
- cinfo->quant_tbl_ptrs[i] = NULL;
-
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- cinfo->dc_huff_tbl_ptrs[i] = NULL;
- cinfo->ac_huff_tbl_ptrs[i] = NULL;
- }
-
- /* Initialize marker processor so application can override methods
- * for COM, APPn markers before calling jpeg_read_header.
- */
- jinit_marker_reader(cinfo);
-
- /* And initialize the overall input controller. */
- jinit_input_controller(cinfo);
-
- /* OK, I'm ready */
- cinfo->global_state = DSTATE_START;
-}
-
-
-/*
- * Destruction of a JPEG decompression object
- */
-
-GLOBAL void
-jpeg_destroy_decompress (j_decompress_ptr cinfo)
-{
- jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
-}
-
-
-/*
- * Abort processing of a JPEG decompression operation,
- * but don't destroy the object itself.
- */
-
-GLOBAL void
-jpeg_abort_decompress (j_decompress_ptr cinfo)
-{
- jpeg_abort((j_common_ptr) cinfo); /* use common routine */
-}
-
-
-/*
- * Install a special processing method for COM or APPn markers.
- */
-
-GLOBAL void
-jpeg_set_marker_processor (j_decompress_ptr cinfo, int marker_code,
- jpeg_marker_parser_method routine)
-{
- if (marker_code == JPEG_COM)
- cinfo->marker->process_COM = routine;
- else if (marker_code >= JPEG_APP0 && marker_code <= JPEG_APP0+15)
- cinfo->marker->process_APPn[marker_code-JPEG_APP0] = routine;
- else
- ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code);
-}
-
-
-/*
- * Set default decompression parameters.
- */
-
-LOCAL void
-default_decompress_parms (j_decompress_ptr cinfo)
-{
- /* Guess the input colorspace, and set output colorspace accordingly. */
- /* (Wish JPEG committee had provided a real way to specify this...) */
- /* Note application may override our guesses. */
- switch (cinfo->num_components) {
- case 1:
- cinfo->jpeg_color_space = JCS_GRAYSCALE;
- cinfo->out_color_space = JCS_GRAYSCALE;
- break;
-
- case 3:
- if (cinfo->saw_JFIF_marker) {
- cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */
- } else if (cinfo->saw_Adobe_marker) {
- switch (cinfo->Adobe_transform) {
- case 0:
- cinfo->jpeg_color_space = JCS_RGB;
- break;
- case 1:
- cinfo->jpeg_color_space = JCS_YCbCr;
- break;
- default:
- WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
- cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
- break;
- }
- } else {
- /* Saw no special markers, try to guess from the component IDs */
- int cid0 = cinfo->comp_info[0].component_id;
- int cid1 = cinfo->comp_info[1].component_id;
- int cid2 = cinfo->comp_info[2].component_id;
-
- if (cid0 == 1 && cid1 == 2 && cid2 == 3)
- cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */
- else if (cid0 == 82 && cid1 == 71 && cid2 == 66)
- cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
- else {
- TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
- cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
- }
- }
- /* Always guess RGB is proper output colorspace. */
- cinfo->out_color_space = JCS_RGB;
- break;
-
- case 4:
- if (cinfo->saw_Adobe_marker) {
- switch (cinfo->Adobe_transform) {
- case 0:
- cinfo->jpeg_color_space = JCS_CMYK;
- break;
- case 2:
- cinfo->jpeg_color_space = JCS_YCCK;
- break;
- default:
- WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
- cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
- break;
- }
- } else {
- /* No special markers, assume straight CMYK. */
- cinfo->jpeg_color_space = JCS_CMYK;
- }
- cinfo->out_color_space = JCS_CMYK;
- break;
-
- default:
- cinfo->jpeg_color_space = JCS_UNKNOWN;
- cinfo->out_color_space = JCS_UNKNOWN;
- break;
- }
-
- /* Set defaults for other decompression parameters. */
- cinfo->scale_num = 1; /* 1:1 scaling */
- cinfo->scale_denom = 1;
- cinfo->output_gamma = 1.0;
- cinfo->buffered_image = FALSE;
- cinfo->raw_data_out = FALSE;
- cinfo->dct_method = JDCT_DEFAULT;
- cinfo->do_fancy_upsampling = TRUE;
- cinfo->do_block_smoothing = TRUE;
- cinfo->quantize_colors = FALSE;
- /* We set these in case application only sets quantize_colors. */
- cinfo->dither_mode = JDITHER_FS;
-#ifdef QUANT_2PASS_SUPPORTED
- cinfo->two_pass_quantize = TRUE;
-#else
- cinfo->two_pass_quantize = FALSE;
-#endif
- cinfo->desired_number_of_colors = 256;
- cinfo->colormap = NULL;
- /* Initialize for no mode change in buffered-image mode. */
- cinfo->enable_1pass_quant = FALSE;
- cinfo->enable_external_quant = FALSE;
- cinfo->enable_2pass_quant = FALSE;
-}
-
-
-/*
- * Decompression startup: read start of JPEG datastream to see what's there.
- * Need only initialize JPEG object and supply a data source before calling.
- *
- * This routine will read as far as the first SOS marker (ie, actual start of
- * compressed data), and will save all tables and parameters in the JPEG
- * object. It will also initialize the decompression parameters to default
- * values, and finally return JPEG_HEADER_OK. On return, the application may
- * adjust the decompression parameters and then call jpeg_start_decompress.
- * (Or, if the application only wanted to determine the image parameters,
- * the data need not be decompressed. In that case, call jpeg_abort or
- * jpeg_destroy to release any temporary space.)
- * If an abbreviated (tables only) datastream is presented, the routine will
- * return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then
- * re-use the JPEG object to read the abbreviated image datastream(s).
- * It is unnecessary (but OK) to call jpeg_abort in this case.
- * The JPEG_SUSPENDED return code only occurs if the data source module
- * requests suspension of the decompressor. In this case the application
- * should load more source data and then re-call jpeg_read_header to resume
- * processing.
- * If a non-suspending data source is used and require_image is TRUE, then the
- * return code need not be inspected since only JPEG_HEADER_OK is possible.
- *
- * This routine is now just a front end to jpeg_consume_input, with some
- * extra error checking.
- */
-
-GLOBAL int
-jpeg_read_header (j_decompress_ptr cinfo, boolean require_image)
-{
- int retcode;
-
- if (cinfo->global_state != DSTATE_START &&
- cinfo->global_state != DSTATE_INHEADER)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- retcode = jpeg_consume_input(cinfo);
-
- switch (retcode) {
- case JPEG_REACHED_SOS:
- retcode = JPEG_HEADER_OK;
- break;
- case JPEG_REACHED_EOI:
- if (require_image) /* Complain if application wanted an image */
- ERREXIT(cinfo, JERR_NO_IMAGE);
- /* Reset to start state; it would be safer to require the application to
- * call jpeg_abort, but we can't change it now for compatibility reasons.
- * A side effect is to free any temporary memory (there shouldn't be any).
- */
- jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */
- retcode = JPEG_HEADER_TABLES_ONLY;
- break;
- case JPEG_SUSPENDED:
- /* no work */
- break;
- }
-
- return retcode;
-}
-
-
-/*
- * Consume data in advance of what the decompressor requires.
- * This can be called at any time once the decompressor object has
- * been created and a data source has been set up.
- *
- * This routine is essentially a state machine that handles a couple
- * of critical state-transition actions, namely initial setup and
- * transition from header scanning to ready-for-start_decompress.
- * All the actual input is done via the input controller's consume_input
- * method.
- */
-
-GLOBAL int
-jpeg_consume_input (j_decompress_ptr cinfo)
-{
- int retcode = JPEG_SUSPENDED;
-
- /* NB: every possible DSTATE value should be listed in this switch */
- switch (cinfo->global_state) {
- case DSTATE_START:
- /* Start-of-datastream actions: reset appropriate modules */
- (*cinfo->inputctl->reset_input_controller) (cinfo);
- /* Initialize application's data source module */
- (*cinfo->src->init_source) (cinfo);
- cinfo->global_state = DSTATE_INHEADER;
- /*FALLTHROUGH*/
- case DSTATE_INHEADER:
- retcode = (*cinfo->inputctl->consume_input) (cinfo);
- if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */
- /* Set up default parameters based on header data */
- default_decompress_parms(cinfo);
- /* Set global state: ready for start_decompress */
- cinfo->global_state = DSTATE_READY;
- }
- break;
- case DSTATE_READY:
- /* Can't advance past first SOS until start_decompress is called */
- retcode = JPEG_REACHED_SOS;
- break;
- case DSTATE_PRELOAD:
- case DSTATE_PRESCAN:
- case DSTATE_SCANNING:
- case DSTATE_RAW_OK:
- case DSTATE_BUFIMAGE:
- case DSTATE_BUFPOST:
- case DSTATE_STOPPING:
- retcode = (*cinfo->inputctl->consume_input) (cinfo);
- break;
- default:
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- }
- return retcode;
-}
-
-
-/*
- * Have we finished reading the input file?
- */
-
-GLOBAL boolean
-jpeg_input_complete (j_decompress_ptr cinfo)
-{
- /* Check for valid jpeg object */
- if (cinfo->global_state < DSTATE_START ||
- cinfo->global_state > DSTATE_STOPPING)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- return cinfo->inputctl->eoi_reached;
-}
-
-
-/*
- * Is there more than one scan?
- */
-
-GLOBAL boolean
-jpeg_has_multiple_scans (j_decompress_ptr cinfo)
-{
- /* Only valid after jpeg_read_header completes */
- if (cinfo->global_state < DSTATE_READY ||
- cinfo->global_state > DSTATE_STOPPING)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- return cinfo->inputctl->has_multiple_scans;
-}
-
-
-/*
- * Finish JPEG decompression.
- *
- * This will normally just verify the file trailer and release temp storage.
- *
- * Returns FALSE if suspended. The return value need be inspected only if
- * a suspending data source is used.
- */
-
-GLOBAL boolean
-jpeg_finish_decompress (j_decompress_ptr cinfo)
-{
- if ((cinfo->global_state == DSTATE_SCANNING ||
- cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) {
- /* Terminate final pass of non-buffered mode */
- if (cinfo->output_scanline < cinfo->output_height)
- ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
- (*cinfo->master->finish_output_pass) (cinfo);
- cinfo->global_state = DSTATE_STOPPING;
- } else if (cinfo->global_state == DSTATE_BUFIMAGE) {
- /* Finishing after a buffered-image operation */
- cinfo->global_state = DSTATE_STOPPING;
- } else if (cinfo->global_state != DSTATE_STOPPING) {
- /* STOPPING = repeat call after a suspension, anything else is error */
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- }
- /* Read until EOI */
- while (! cinfo->inputctl->eoi_reached) {
- if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
- return FALSE; /* Suspend, come back later */
- }
- /* Do final cleanup */
- (*cinfo->src->term_source) (cinfo);
- /* We can use jpeg_abort to release memory and reset global_state */
- jpeg_abort((j_common_ptr) cinfo);
- return TRUE;
-}
+/*
+ * jdapimin.c
+ *
+ * Copyright (C) 1994-1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains application interface code for the decompression half
+ * of the JPEG library. These are the "minimum" API routines that may be
+ * needed in either the normal full-decompression case or the
+ * transcoding-only case.
+ *
+ * Most of the routines intended to be called directly by an application
+ * are in this file or in jdapistd.c. But also see jcomapi.c for routines
+ * shared by compression and decompression, and jdtrans.c for the transcoding
+ * case.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * Initialization of a JPEG decompression object.
+ * The error manager must already be set up (in case memory manager fails).
+ */
+
+GLOBAL void
+jpeg_create_decompress (j_decompress_ptr cinfo)
+{
+ int i;
+
+ /* For debugging purposes, zero the whole master structure.
+ * But error manager pointer is already there, so save and restore it.
+ */
+ {
+ struct jpeg_error_mgr * err = cinfo->err;
+ i = sizeof(struct jpeg_decompress_struct);
+ i = SIZEOF(struct jpeg_decompress_struct);
+ MEMZERO(cinfo, SIZEOF(struct jpeg_decompress_struct));
+ cinfo->err = err;
+ }
+ cinfo->is_decompressor = TRUE;
+
+ /* Initialize a memory manager instance for this object */
+ jinit_memory_mgr((j_common_ptr) cinfo);
+
+ /* Zero out pointers to permanent structures. */
+ cinfo->progress = NULL;
+ cinfo->src = NULL;
+
+ for (i = 0; i < NUM_QUANT_TBLS; i++)
+ cinfo->quant_tbl_ptrs[i] = NULL;
+
+ for (i = 0; i < NUM_HUFF_TBLS; i++) {
+ cinfo->dc_huff_tbl_ptrs[i] = NULL;
+ cinfo->ac_huff_tbl_ptrs[i] = NULL;
+ }
+
+ /* Initialize marker processor so application can override methods
+ * for COM, APPn markers before calling jpeg_read_header.
+ */
+ jinit_marker_reader(cinfo);
+
+ /* And initialize the overall input controller. */
+ jinit_input_controller(cinfo);
+
+ /* OK, I'm ready */
+ cinfo->global_state = DSTATE_START;
+}
+
+
+/*
+ * Destruction of a JPEG decompression object
+ */
+
+GLOBAL void
+jpeg_destroy_decompress (j_decompress_ptr cinfo)
+{
+ jpeg_destroy((j_common_ptr) cinfo); /* use common routine */
+}
+
+
+/*
+ * Abort processing of a JPEG decompression operation,
+ * but don't destroy the object itself.
+ */
+
+GLOBAL void
+jpeg_abort_decompress (j_decompress_ptr cinfo)
+{
+ jpeg_abort((j_common_ptr) cinfo); /* use common routine */
+}
+
+
+/*
+ * Install a special processing method for COM or APPn markers.
+ */
+
+GLOBAL void
+jpeg_set_marker_processor (j_decompress_ptr cinfo, int marker_code,
+ jpeg_marker_parser_method routine)
+{
+ if (marker_code == JPEG_COM)
+ cinfo->marker->process_COM = routine;
+ else if (marker_code >= JPEG_APP0 && marker_code <= JPEG_APP0+15)
+ cinfo->marker->process_APPn[marker_code-JPEG_APP0] = routine;
+ else
+ ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, marker_code);
+}
+
+
+/*
+ * Set default decompression parameters.
+ */
+
+LOCAL void
+default_decompress_parms (j_decompress_ptr cinfo)
+{
+ /* Guess the input colorspace, and set output colorspace accordingly. */
+ /* (Wish JPEG committee had provided a real way to specify this...) */
+ /* Note application may override our guesses. */
+ switch (cinfo->num_components) {
+ case 1:
+ cinfo->jpeg_color_space = JCS_GRAYSCALE;
+ cinfo->out_color_space = JCS_GRAYSCALE;
+ break;
+
+ case 3:
+ if (cinfo->saw_JFIF_marker) {
+ cinfo->jpeg_color_space = JCS_YCbCr; /* JFIF implies YCbCr */
+ } else if (cinfo->saw_Adobe_marker) {
+ switch (cinfo->Adobe_transform) {
+ case 0:
+ cinfo->jpeg_color_space = JCS_RGB;
+ break;
+ case 1:
+ cinfo->jpeg_color_space = JCS_YCbCr;
+ break;
+ default:
+ WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
+ cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
+ break;
+ }
+ } else {
+ /* Saw no special markers, try to guess from the component IDs */
+ int cid0 = cinfo->comp_info[0].component_id;
+ int cid1 = cinfo->comp_info[1].component_id;
+ int cid2 = cinfo->comp_info[2].component_id;
+
+ if (cid0 == 1 && cid1 == 2 && cid2 == 3)
+ cinfo->jpeg_color_space = JCS_YCbCr; /* assume JFIF w/out marker */
+ else if (cid0 == 82 && cid1 == 71 && cid2 == 66)
+ cinfo->jpeg_color_space = JCS_RGB; /* ASCII 'R', 'G', 'B' */
+ else {
+ TRACEMS3(cinfo, 1, JTRC_UNKNOWN_IDS, cid0, cid1, cid2);
+ cinfo->jpeg_color_space = JCS_YCbCr; /* assume it's YCbCr */
+ }
+ }
+ /* Always guess RGB is proper output colorspace. */
+ cinfo->out_color_space = JCS_RGB;
+ break;
+
+ case 4:
+ if (cinfo->saw_Adobe_marker) {
+ switch (cinfo->Adobe_transform) {
+ case 0:
+ cinfo->jpeg_color_space = JCS_CMYK;
+ break;
+ case 2:
+ cinfo->jpeg_color_space = JCS_YCCK;
+ break;
+ default:
+ WARNMS1(cinfo, JWRN_ADOBE_XFORM, cinfo->Adobe_transform);
+ cinfo->jpeg_color_space = JCS_YCCK; /* assume it's YCCK */
+ break;
+ }
+ } else {
+ /* No special markers, assume straight CMYK. */
+ cinfo->jpeg_color_space = JCS_CMYK;
+ }
+ cinfo->out_color_space = JCS_CMYK;
+ break;
+
+ default:
+ cinfo->jpeg_color_space = JCS_UNKNOWN;
+ cinfo->out_color_space = JCS_UNKNOWN;
+ break;
+ }
+
+ /* Set defaults for other decompression parameters. */
+ cinfo->scale_num = 1; /* 1:1 scaling */
+ cinfo->scale_denom = 1;
+ cinfo->output_gamma = 1.0;
+ cinfo->buffered_image = FALSE;
+ cinfo->raw_data_out = FALSE;
+ cinfo->dct_method = JDCT_DEFAULT;
+ cinfo->do_fancy_upsampling = TRUE;
+ cinfo->do_block_smoothing = TRUE;
+ cinfo->quantize_colors = FALSE;
+ /* We set these in case application only sets quantize_colors. */
+ cinfo->dither_mode = JDITHER_FS;
+#ifdef QUANT_2PASS_SUPPORTED
+ cinfo->two_pass_quantize = TRUE;
+#else
+ cinfo->two_pass_quantize = FALSE;
+#endif
+ cinfo->desired_number_of_colors = 256;
+ cinfo->colormap = NULL;
+ /* Initialize for no mode change in buffered-image mode. */
+ cinfo->enable_1pass_quant = FALSE;
+ cinfo->enable_external_quant = FALSE;
+ cinfo->enable_2pass_quant = FALSE;
+}
+
+
+/*
+ * Decompression startup: read start of JPEG datastream to see what's there.
+ * Need only initialize JPEG object and supply a data source before calling.
+ *
+ * This routine will read as far as the first SOS marker (ie, actual start of
+ * compressed data), and will save all tables and parameters in the JPEG
+ * object. It will also initialize the decompression parameters to default
+ * values, and finally return JPEG_HEADER_OK. On return, the application may
+ * adjust the decompression parameters and then call jpeg_start_decompress.
+ * (Or, if the application only wanted to determine the image parameters,
+ * the data need not be decompressed. In that case, call jpeg_abort or
+ * jpeg_destroy to release any temporary space.)
+ * If an abbreviated (tables only) datastream is presented, the routine will
+ * return JPEG_HEADER_TABLES_ONLY upon reaching EOI. The application may then
+ * re-use the JPEG object to read the abbreviated image datastream(s).
+ * It is unnecessary (but OK) to call jpeg_abort in this case.
+ * The JPEG_SUSPENDED return code only occurs if the data source module
+ * requests suspension of the decompressor. In this case the application
+ * should load more source data and then re-call jpeg_read_header to resume
+ * processing.
+ * If a non-suspending data source is used and require_image is TRUE, then the
+ * return code need not be inspected since only JPEG_HEADER_OK is possible.
+ *
+ * This routine is now just a front end to jpeg_consume_input, with some
+ * extra error checking.
+ */
+
+GLOBAL int
+jpeg_read_header (j_decompress_ptr cinfo, boolean require_image)
+{
+ int retcode;
+
+ if (cinfo->global_state != DSTATE_START &&
+ cinfo->global_state != DSTATE_INHEADER)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ retcode = jpeg_consume_input(cinfo);
+
+ switch (retcode) {
+ case JPEG_REACHED_SOS:
+ retcode = JPEG_HEADER_OK;
+ break;
+ case JPEG_REACHED_EOI:
+ if (require_image) /* Complain if application wanted an image */
+ ERREXIT(cinfo, JERR_NO_IMAGE);
+ /* Reset to start state; it would be safer to require the application to
+ * call jpeg_abort, but we can't change it now for compatibility reasons.
+ * A side effect is to free any temporary memory (there shouldn't be any).
+ */
+ jpeg_abort((j_common_ptr) cinfo); /* sets state = DSTATE_START */
+ retcode = JPEG_HEADER_TABLES_ONLY;
+ break;
+ case JPEG_SUSPENDED:
+ /* no work */
+ break;
+ }
+
+ return retcode;
+}
+
+
+/*
+ * Consume data in advance of what the decompressor requires.
+ * This can be called at any time once the decompressor object has
+ * been created and a data source has been set up.
+ *
+ * This routine is essentially a state machine that handles a couple
+ * of critical state-transition actions, namely initial setup and
+ * transition from header scanning to ready-for-start_decompress.
+ * All the actual input is done via the input controller's consume_input
+ * method.
+ */
+
+GLOBAL int
+jpeg_consume_input (j_decompress_ptr cinfo)
+{
+ int retcode = JPEG_SUSPENDED;
+
+ /* NB: every possible DSTATE value should be listed in this switch */
+ switch (cinfo->global_state) {
+ case DSTATE_START:
+ /* Start-of-datastream actions: reset appropriate modules */
+ (*cinfo->inputctl->reset_input_controller) (cinfo);
+ /* Initialize application's data source module */
+ (*cinfo->src->init_source) (cinfo);
+ cinfo->global_state = DSTATE_INHEADER;
+ /*FALLTHROUGH*/
+ case DSTATE_INHEADER:
+ retcode = (*cinfo->inputctl->consume_input) (cinfo);
+ if (retcode == JPEG_REACHED_SOS) { /* Found SOS, prepare to decompress */
+ /* Set up default parameters based on header data */
+ default_decompress_parms(cinfo);
+ /* Set global state: ready for start_decompress */
+ cinfo->global_state = DSTATE_READY;
+ }
+ break;
+ case DSTATE_READY:
+ /* Can't advance past first SOS until start_decompress is called */
+ retcode = JPEG_REACHED_SOS;
+ break;
+ case DSTATE_PRELOAD:
+ case DSTATE_PRESCAN:
+ case DSTATE_SCANNING:
+ case DSTATE_RAW_OK:
+ case DSTATE_BUFIMAGE:
+ case DSTATE_BUFPOST:
+ case DSTATE_STOPPING:
+ retcode = (*cinfo->inputctl->consume_input) (cinfo);
+ break;
+ default:
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ }
+ return retcode;
+}
+
+
+/*
+ * Have we finished reading the input file?
+ */
+
+GLOBAL boolean
+jpeg_input_complete (j_decompress_ptr cinfo)
+{
+ /* Check for valid jpeg object */
+ if (cinfo->global_state < DSTATE_START ||
+ cinfo->global_state > DSTATE_STOPPING)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ return cinfo->inputctl->eoi_reached;
+}
+
+
+/*
+ * Is there more than one scan?
+ */
+
+GLOBAL boolean
+jpeg_has_multiple_scans (j_decompress_ptr cinfo)
+{
+ /* Only valid after jpeg_read_header completes */
+ if (cinfo->global_state < DSTATE_READY ||
+ cinfo->global_state > DSTATE_STOPPING)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ return cinfo->inputctl->has_multiple_scans;
+}
+
+
+/*
+ * Finish JPEG decompression.
+ *
+ * This will normally just verify the file trailer and release temp storage.
+ *
+ * Returns FALSE if suspended. The return value need be inspected only if
+ * a suspending data source is used.
+ */
+
+GLOBAL boolean
+jpeg_finish_decompress (j_decompress_ptr cinfo)
+{
+ if ((cinfo->global_state == DSTATE_SCANNING ||
+ cinfo->global_state == DSTATE_RAW_OK) && ! cinfo->buffered_image) {
+ /* Terminate final pass of non-buffered mode */
+ if (cinfo->output_scanline < cinfo->output_height)
+ ERREXIT(cinfo, JERR_TOO_LITTLE_DATA);
+ (*cinfo->master->finish_output_pass) (cinfo);
+ cinfo->global_state = DSTATE_STOPPING;
+ } else if (cinfo->global_state == DSTATE_BUFIMAGE) {
+ /* Finishing after a buffered-image operation */
+ cinfo->global_state = DSTATE_STOPPING;
+ } else if (cinfo->global_state != DSTATE_STOPPING) {
+ /* STOPPING = repeat call after a suspension, anything else is error */
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ }
+ /* Read until EOI */
+ while (! cinfo->inputctl->eoi_reached) {
+ if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
+ return FALSE; /* Suspend, come back later */
+ }
+ /* Do final cleanup */
+ (*cinfo->src->term_source) (cinfo);
+ /* We can use jpeg_abort to release memory and reset global_state */
+ jpeg_abort((j_common_ptr) cinfo);
+ return TRUE;
+}
diff --git a/libs/jpeg6/jdapistd.cpp b/libs/jpeg6/jdapistd.cpp
index 7781e16..e36f25c 100755
--- a/libs/jpeg6/jdapistd.cpp
+++ b/libs/jpeg6/jdapistd.cpp
@@ -1,275 +1,275 @@
-/*
- * jdapistd.c
- *
- * Copyright (C) 1994-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains application interface code for the decompression half
- * of the JPEG library. These are the "standard" API routines that are
- * used in the normal full-decompression case. They are not used by a
- * transcoding-only application. Note that if an application links in
- * jpeg_start_decompress, it will end up linking in the entire decompressor.
- * We thus must separate this file from jdapimin.c to avoid linking the
- * whole decompression library into a transcoder.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Forward declarations */
-LOCAL boolean output_pass_setup JPP((j_decompress_ptr cinfo));
-
-
-/*
- * Decompression initialization.
- * jpeg_read_header must be completed before calling this.
- *
- * If a multipass operating mode was selected, this will do all but the
- * last pass, and thus may take a great deal of time.
- *
- * Returns FALSE if suspended. The return value need be inspected only if
- * a suspending data source is used.
- */
-
-GLOBAL boolean
-jpeg_start_decompress (j_decompress_ptr cinfo)
-{
- if (cinfo->global_state == DSTATE_READY) {
- /* First call: initialize master control, select active modules */
- jinit_master_decompress(cinfo);
- if (cinfo->buffered_image) {
- /* No more work here; expecting jpeg_start_output next */
- cinfo->global_state = DSTATE_BUFIMAGE;
- return TRUE;
- }
- cinfo->global_state = DSTATE_PRELOAD;
- }
- if (cinfo->global_state == DSTATE_PRELOAD) {
- /* If file has multiple scans, absorb them all into the coef buffer */
- if (cinfo->inputctl->has_multiple_scans) {
-#ifdef D_MULTISCAN_FILES_SUPPORTED
- for (;;) {
- int retcode;
- /* Call progress monitor hook if present */
- if (cinfo->progress != NULL)
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- /* Absorb some more input */
- retcode = (*cinfo->inputctl->consume_input) (cinfo);
- if (retcode == JPEG_SUSPENDED)
- return FALSE;
- if (retcode == JPEG_REACHED_EOI)
- break;
- /* Advance progress counter if appropriate */
- if (cinfo->progress != NULL &&
- (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
- if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
- /* jdmaster underestimated number of scans; ratchet up one scan */
- cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
- }
- }
- }
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif /* D_MULTISCAN_FILES_SUPPORTED */
- }
- cinfo->output_scan_number = cinfo->input_scan_number;
- } else if (cinfo->global_state != DSTATE_PRESCAN)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- /* Perform any dummy output passes, and set up for the final pass */
- return output_pass_setup(cinfo);
-}
-
-
-/*
- * Set up for an output pass, and perform any dummy pass(es) needed.
- * Common subroutine for jpeg_start_decompress and jpeg_start_output.
- * Entry: global_state = DSTATE_PRESCAN only if previously suspended.
- * Exit: If done, returns TRUE and sets global_state for proper output mode.
- * If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN.
- */
-
-LOCAL boolean
-output_pass_setup (j_decompress_ptr cinfo)
-{
- if (cinfo->global_state != DSTATE_PRESCAN) {
- /* First call: do pass setup */
- (*cinfo->master->prepare_for_output_pass) (cinfo);
- cinfo->output_scanline = 0;
- cinfo->global_state = DSTATE_PRESCAN;
- }
- /* Loop over any required dummy passes */
- while (cinfo->master->is_dummy_pass) {
-#ifdef QUANT_2PASS_SUPPORTED
- /* Crank through the dummy pass */
- while (cinfo->output_scanline < cinfo->output_height) {
- JDIMENSION last_scanline;
- /* Call progress monitor hook if present */
- if (cinfo->progress != NULL) {
- cinfo->progress->pass_counter = (long) cinfo->output_scanline;
- cinfo->progress->pass_limit = (long) cinfo->output_height;
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- }
- /* Process some data */
- last_scanline = cinfo->output_scanline;
- (*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL,
- &cinfo->output_scanline, (JDIMENSION) 0);
- if (cinfo->output_scanline == last_scanline)
- return FALSE; /* No progress made, must suspend */
- }
- /* Finish up dummy pass, and set up for another one */
- (*cinfo->master->finish_output_pass) (cinfo);
- (*cinfo->master->prepare_for_output_pass) (cinfo);
- cinfo->output_scanline = 0;
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif /* QUANT_2PASS_SUPPORTED */
- }
- /* Ready for application to drive output pass through
- * jpeg_read_scanlines or jpeg_read_raw_data.
- */
- cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING;
- return TRUE;
-}
-
-
-/*
- * Read some scanlines of data from the JPEG decompressor.
- *
- * The return value will be the number of lines actually read.
- * This may be less than the number requested in several cases,
- * including bottom of image, data source suspension, and operating
- * modes that emit multiple scanlines at a time.
- *
- * Note: we warn about excess calls to jpeg_read_scanlines() since
- * this likely signals an application programmer error. However,
- * an oversize buffer (max_lines > scanlines remaining) is not an error.
- */
-
-GLOBAL JDIMENSION
-jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
- JDIMENSION max_lines)
-{
- JDIMENSION row_ctr;
-
- if (cinfo->global_state != DSTATE_SCANNING)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- if (cinfo->output_scanline >= cinfo->output_height) {
- WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
- return 0;
- }
-
- /* Call progress monitor hook if present */
- if (cinfo->progress != NULL) {
- cinfo->progress->pass_counter = (long) cinfo->output_scanline;
- cinfo->progress->pass_limit = (long) cinfo->output_height;
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- }
-
- /* Process some data */
- row_ctr = 0;
- (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines);
- cinfo->output_scanline += row_ctr;
- return row_ctr;
-}
-
-
-/*
- * Alternate entry point to read raw data.
- * Processes exactly one iMCU row per call, unless suspended.
- */
-
-GLOBAL JDIMENSION
-jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
- JDIMENSION max_lines)
-{
- JDIMENSION lines_per_iMCU_row;
-
- if (cinfo->global_state != DSTATE_RAW_OK)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- if (cinfo->output_scanline >= cinfo->output_height) {
- WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
- return 0;
- }
-
- /* Call progress monitor hook if present */
- if (cinfo->progress != NULL) {
- cinfo->progress->pass_counter = (long) cinfo->output_scanline;
- cinfo->progress->pass_limit = (long) cinfo->output_height;
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- }
-
- /* Verify that at least one iMCU row can be returned. */
- lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size;
- if (max_lines < lines_per_iMCU_row)
- ERREXIT(cinfo, JERR_BUFFER_SIZE);
-
- /* Decompress directly into user's buffer. */
- if (! (*cinfo->coef->decompress_data) (cinfo, data))
- return 0; /* suspension forced, can do nothing more */
-
- /* OK, we processed one iMCU row. */
- cinfo->output_scanline += lines_per_iMCU_row;
- return lines_per_iMCU_row;
-}
-
-
-/* Additional entry points for buffered-image mode. */
-
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-
-/*
- * Initialize for an output pass in buffered-image mode.
- */
-
-GLOBAL boolean
-jpeg_start_output (j_decompress_ptr cinfo, int scan_number)
-{
- if (cinfo->global_state != DSTATE_BUFIMAGE &&
- cinfo->global_state != DSTATE_PRESCAN)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- /* Limit scan number to valid range */
- if (scan_number <= 0)
- scan_number = 1;
- if (cinfo->inputctl->eoi_reached &&
- scan_number > cinfo->input_scan_number)
- scan_number = cinfo->input_scan_number;
- cinfo->output_scan_number = scan_number;
- /* Perform any dummy output passes, and set up for the real pass */
- return output_pass_setup(cinfo);
-}
-
-
-/*
- * Finish up after an output pass in buffered-image mode.
- *
- * Returns FALSE if suspended. The return value need be inspected only if
- * a suspending data source is used.
- */
-
-GLOBAL boolean
-jpeg_finish_output (j_decompress_ptr cinfo)
-{
- if ((cinfo->global_state == DSTATE_SCANNING ||
- cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) {
- /* Terminate this pass. */
- /* We do not require the whole pass to have been completed. */
- (*cinfo->master->finish_output_pass) (cinfo);
- cinfo->global_state = DSTATE_BUFPOST;
- } else if (cinfo->global_state != DSTATE_BUFPOST) {
- /* BUFPOST = repeat call after a suspension, anything else is error */
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- }
- /* Read markers looking for SOS or EOI */
- while (cinfo->input_scan_number <= cinfo->output_scan_number &&
- ! cinfo->inputctl->eoi_reached) {
- if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
- return FALSE; /* Suspend, come back later */
- }
- cinfo->global_state = DSTATE_BUFIMAGE;
- return TRUE;
-}
-
-#endif /* D_MULTISCAN_FILES_SUPPORTED */
+/*
+ * jdapistd.c
+ *
+ * Copyright (C) 1994-1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains application interface code for the decompression half
+ * of the JPEG library. These are the "standard" API routines that are
+ * used in the normal full-decompression case. They are not used by a
+ * transcoding-only application. Note that if an application links in
+ * jpeg_start_decompress, it will end up linking in the entire decompressor.
+ * We thus must separate this file from jdapimin.c to avoid linking the
+ * whole decompression library into a transcoder.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Forward declarations */
+LOCAL boolean output_pass_setup JPP((j_decompress_ptr cinfo));
+
+
+/*
+ * Decompression initialization.
+ * jpeg_read_header must be completed before calling this.
+ *
+ * If a multipass operating mode was selected, this will do all but the
+ * last pass, and thus may take a great deal of time.
+ *
+ * Returns FALSE if suspended. The return value need be inspected only if
+ * a suspending data source is used.
+ */
+
+GLOBAL boolean
+jpeg_start_decompress (j_decompress_ptr cinfo)
+{
+ if (cinfo->global_state == DSTATE_READY) {
+ /* First call: initialize master control, select active modules */
+ jinit_master_decompress(cinfo);
+ if (cinfo->buffered_image) {
+ /* No more work here; expecting jpeg_start_output next */
+ cinfo->global_state = DSTATE_BUFIMAGE;
+ return TRUE;
+ }
+ cinfo->global_state = DSTATE_PRELOAD;
+ }
+ if (cinfo->global_state == DSTATE_PRELOAD) {
+ /* If file has multiple scans, absorb them all into the coef buffer */
+ if (cinfo->inputctl->has_multiple_scans) {
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+ for (;;) {
+ int retcode;
+ /* Call progress monitor hook if present */
+ if (cinfo->progress != NULL)
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ /* Absorb some more input */
+ retcode = (*cinfo->inputctl->consume_input) (cinfo);
+ if (retcode == JPEG_SUSPENDED)
+ return FALSE;
+ if (retcode == JPEG_REACHED_EOI)
+ break;
+ /* Advance progress counter if appropriate */
+ if (cinfo->progress != NULL &&
+ (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
+ if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
+ /* jdmaster underestimated number of scans; ratchet up one scan */
+ cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
+ }
+ }
+ }
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
+ }
+ cinfo->output_scan_number = cinfo->input_scan_number;
+ } else if (cinfo->global_state != DSTATE_PRESCAN)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ /* Perform any dummy output passes, and set up for the final pass */
+ return output_pass_setup(cinfo);
+}
+
+
+/*
+ * Set up for an output pass, and perform any dummy pass(es) needed.
+ * Common subroutine for jpeg_start_decompress and jpeg_start_output.
+ * Entry: global_state = DSTATE_PRESCAN only if previously suspended.
+ * Exit: If done, returns TRUE and sets global_state for proper output mode.
+ * If suspended, returns FALSE and sets global_state = DSTATE_PRESCAN.
+ */
+
+LOCAL boolean
+output_pass_setup (j_decompress_ptr cinfo)
+{
+ if (cinfo->global_state != DSTATE_PRESCAN) {
+ /* First call: do pass setup */
+ (*cinfo->master->prepare_for_output_pass) (cinfo);
+ cinfo->output_scanline = 0;
+ cinfo->global_state = DSTATE_PRESCAN;
+ }
+ /* Loop over any required dummy passes */
+ while (cinfo->master->is_dummy_pass) {
+#ifdef QUANT_2PASS_SUPPORTED
+ /* Crank through the dummy pass */
+ while (cinfo->output_scanline < cinfo->output_height) {
+ JDIMENSION last_scanline;
+ /* Call progress monitor hook if present */
+ if (cinfo->progress != NULL) {
+ cinfo->progress->pass_counter = (long) cinfo->output_scanline;
+ cinfo->progress->pass_limit = (long) cinfo->output_height;
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ }
+ /* Process some data */
+ last_scanline = cinfo->output_scanline;
+ (*cinfo->main->process_data) (cinfo, (JSAMPARRAY) NULL,
+ &cinfo->output_scanline, (JDIMENSION) 0);
+ if (cinfo->output_scanline == last_scanline)
+ return FALSE; /* No progress made, must suspend */
+ }
+ /* Finish up dummy pass, and set up for another one */
+ (*cinfo->master->finish_output_pass) (cinfo);
+ (*cinfo->master->prepare_for_output_pass) (cinfo);
+ cinfo->output_scanline = 0;
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif /* QUANT_2PASS_SUPPORTED */
+ }
+ /* Ready for application to drive output pass through
+ * jpeg_read_scanlines or jpeg_read_raw_data.
+ */
+ cinfo->global_state = cinfo->raw_data_out ? DSTATE_RAW_OK : DSTATE_SCANNING;
+ return TRUE;
+}
+
+
+/*
+ * Read some scanlines of data from the JPEG decompressor.
+ *
+ * The return value will be the number of lines actually read.
+ * This may be less than the number requested in several cases,
+ * including bottom of image, data source suspension, and operating
+ * modes that emit multiple scanlines at a time.
+ *
+ * Note: we warn about excess calls to jpeg_read_scanlines() since
+ * this likely signals an application programmer error. However,
+ * an oversize buffer (max_lines > scanlines remaining) is not an error.
+ */
+
+GLOBAL JDIMENSION
+jpeg_read_scanlines (j_decompress_ptr cinfo, JSAMPARRAY scanlines,
+ JDIMENSION max_lines)
+{
+ JDIMENSION row_ctr;
+
+ if (cinfo->global_state != DSTATE_SCANNING)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ if (cinfo->output_scanline >= cinfo->output_height) {
+ WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
+ return 0;
+ }
+
+ /* Call progress monitor hook if present */
+ if (cinfo->progress != NULL) {
+ cinfo->progress->pass_counter = (long) cinfo->output_scanline;
+ cinfo->progress->pass_limit = (long) cinfo->output_height;
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ }
+
+ /* Process some data */
+ row_ctr = 0;
+ (*cinfo->main->process_data) (cinfo, scanlines, &row_ctr, max_lines);
+ cinfo->output_scanline += row_ctr;
+ return row_ctr;
+}
+
+
+/*
+ * Alternate entry point to read raw data.
+ * Processes exactly one iMCU row per call, unless suspended.
+ */
+
+GLOBAL JDIMENSION
+jpeg_read_raw_data (j_decompress_ptr cinfo, JSAMPIMAGE data,
+ JDIMENSION max_lines)
+{
+ JDIMENSION lines_per_iMCU_row;
+
+ if (cinfo->global_state != DSTATE_RAW_OK)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ if (cinfo->output_scanline >= cinfo->output_height) {
+ WARNMS(cinfo, JWRN_TOO_MUCH_DATA);
+ return 0;
+ }
+
+ /* Call progress monitor hook if present */
+ if (cinfo->progress != NULL) {
+ cinfo->progress->pass_counter = (long) cinfo->output_scanline;
+ cinfo->progress->pass_limit = (long) cinfo->output_height;
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ }
+
+ /* Verify that at least one iMCU row can be returned. */
+ lines_per_iMCU_row = cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size;
+ if (max_lines < lines_per_iMCU_row)
+ ERREXIT(cinfo, JERR_BUFFER_SIZE);
+
+ /* Decompress directly into user's buffer. */
+ if (! (*cinfo->coef->decompress_data) (cinfo, data))
+ return 0; /* suspension forced, can do nothing more */
+
+ /* OK, we processed one iMCU row. */
+ cinfo->output_scanline += lines_per_iMCU_row;
+ return lines_per_iMCU_row;
+}
+
+
+/* Additional entry points for buffered-image mode. */
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+
+/*
+ * Initialize for an output pass in buffered-image mode.
+ */
+
+GLOBAL boolean
+jpeg_start_output (j_decompress_ptr cinfo, int scan_number)
+{
+ if (cinfo->global_state != DSTATE_BUFIMAGE &&
+ cinfo->global_state != DSTATE_PRESCAN)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ /* Limit scan number to valid range */
+ if (scan_number <= 0)
+ scan_number = 1;
+ if (cinfo->inputctl->eoi_reached &&
+ scan_number > cinfo->input_scan_number)
+ scan_number = cinfo->input_scan_number;
+ cinfo->output_scan_number = scan_number;
+ /* Perform any dummy output passes, and set up for the real pass */
+ return output_pass_setup(cinfo);
+}
+
+
+/*
+ * Finish up after an output pass in buffered-image mode.
+ *
+ * Returns FALSE if suspended. The return value need be inspected only if
+ * a suspending data source is used.
+ */
+
+GLOBAL boolean
+jpeg_finish_output (j_decompress_ptr cinfo)
+{
+ if ((cinfo->global_state == DSTATE_SCANNING ||
+ cinfo->global_state == DSTATE_RAW_OK) && cinfo->buffered_image) {
+ /* Terminate this pass. */
+ /* We do not require the whole pass to have been completed. */
+ (*cinfo->master->finish_output_pass) (cinfo);
+ cinfo->global_state = DSTATE_BUFPOST;
+ } else if (cinfo->global_state != DSTATE_BUFPOST) {
+ /* BUFPOST = repeat call after a suspension, anything else is error */
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ }
+ /* Read markers looking for SOS or EOI */
+ while (cinfo->input_scan_number <= cinfo->output_scan_number &&
+ ! cinfo->inputctl->eoi_reached) {
+ if ((*cinfo->inputctl->consume_input) (cinfo) == JPEG_SUSPENDED)
+ return FALSE; /* Suspend, come back later */
+ }
+ cinfo->global_state = DSTATE_BUFIMAGE;
+ return TRUE;
+}
+
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
diff --git a/libs/jpeg6/jdatasrc.cpp b/libs/jpeg6/jdatasrc.cpp
index 5c1696d..0bf7866 100755
--- a/libs/jpeg6/jdatasrc.cpp
+++ b/libs/jpeg6/jdatasrc.cpp
@@ -1,204 +1,204 @@
-/*
- * jdatasrc.c
- *
- * Copyright (C) 1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains decompression data source routines for the case of
- * reading JPEG data from a file (or any stdio stream). While these routines
- * are sufficient for most applications, some will want to use a different
- * source manager.
- * IMPORTANT: we assume that fread() will correctly transcribe an array of
- * JOCTETs from 8-bit-wide elements on external storage. If char is wider
- * than 8 bits on your machine, you may need to do some tweaking.
- */
-
-
-/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jerror.h"
-
-
-/* Expanded data source object for stdio input */
-
-typedef struct {
- struct jpeg_source_mgr pub; /* public fields */
-
- unsigned char *infile; /* source stream */
- JOCTET * buffer; /* start of buffer */
- boolean start_of_file; /* have we gotten any data yet? */
-} my_source_mgr;
-
-typedef my_source_mgr * my_src_ptr;
-
-#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */
-
-
-/*
- * Initialize source --- called by jpeg_read_header
- * before any data is actually read.
- */
-
-METHODDEF void
-init_source (j_decompress_ptr cinfo)
-{
- my_src_ptr src = (my_src_ptr) cinfo->src;
-
- /* We reset the empty-input-file flag for each image,
- * but we don't clear the input buffer.
- * This is correct behavior for reading a series of images from one source.
- */
- src->start_of_file = TRUE;
-}
-
-
-/*
- * Fill the input buffer --- called whenever buffer is emptied.
- *
- * In typical applications, this should read fresh data into the buffer
- * (ignoring the current state of next_input_byte & bytes_in_buffer),
- * reset the pointer & count to the start of the buffer, and return TRUE
- * indicating that the buffer has been reloaded. It is not necessary to
- * fill the buffer entirely, only to obtain at least one more byte.
- *
- * There is no such thing as an EOF return. If the end of the file has been
- * reached, the routine has a choice of ERREXIT() or inserting fake data into
- * the buffer. In most cases, generating a warning message and inserting a
- * fake EOI marker is the best course of action --- this will allow the
- * decompressor to output however much of the image is there. However,
- * the resulting error message is misleading if the real problem is an empty
- * input file, so we handle that case specially.
- *
- * In applications that need to be able to suspend compression due to input
- * not being available yet, a FALSE return indicates that no more data can be
- * obtained right now, but more may be forthcoming later. In this situation,
- * the decompressor will return to its caller (with an indication of the
- * number of scanlines it has read, if any). The application should resume
- * decompression after it has loaded more data into the input buffer. Note
- * that there are substantial restrictions on the use of suspension --- see
- * the documentation.
- *
- * When suspending, the decompressor will back up to a convenient restart point
- * (typically the start of the current MCU). next_input_byte & bytes_in_buffer
- * indicate where the restart point will be if the current call returns FALSE.
- * Data beyond this point must be rescanned after resumption, so move it to
- * the front of the buffer rather than discarding it.
- */
-
-METHODDEF boolean
-fill_input_buffer (j_decompress_ptr cinfo)
-{
- my_src_ptr src = (my_src_ptr) cinfo->src;
-
- memcpy( src->buffer, src->infile, INPUT_BUF_SIZE );
-
- src->infile += INPUT_BUF_SIZE;
-
- src->pub.next_input_byte = src->buffer;
- src->pub.bytes_in_buffer = INPUT_BUF_SIZE;
- src->start_of_file = FALSE;
-
- return TRUE;
-}
-
-
-/*
- * Skip data --- used to skip over a potentially large amount of
- * uninteresting data (such as an APPn marker).
- *
- * Writers of suspendable-input applications must note that skip_input_data
- * is not granted the right to give a suspension return. If the skip extends
- * beyond the data currently in the buffer, the buffer can be marked empty so
- * that the next read will cause a fill_input_buffer call that can suspend.
- * Arranging for additional bytes to be discarded before reloading the input
- * buffer is the application writer's problem.
- */
-
-METHODDEF void
-skip_input_data (j_decompress_ptr cinfo, long num_bytes)
-{
- my_src_ptr src = (my_src_ptr) cinfo->src;
-
- /* Just a dumb implementation for now. Could use fseek() except
- * it doesn't work on pipes. Not clear that being smart is worth
- * any trouble anyway --- large skips are infrequent.
- */
- if (num_bytes > 0) {
- while (num_bytes > (long) src->pub.bytes_in_buffer) {
- num_bytes -= (long) src->pub.bytes_in_buffer;
- (void) fill_input_buffer(cinfo);
- /* note we assume that fill_input_buffer will never return FALSE,
- * so suspension need not be handled.
- */
- }
- src->pub.next_input_byte += (size_t) num_bytes;
- src->pub.bytes_in_buffer -= (size_t) num_bytes;
- }
-}
-
-
-/*
- * An additional method that can be provided by data source modules is the
- * resync_to_restart method for error recovery in the presence of RST markers.
- * For the moment, this source module just uses the default resync method
- * provided by the JPEG library. That method assumes that no backtracking
- * is possible.
- */
-
-
-/*
- * Terminate source --- called by jpeg_finish_decompress
- * after all data has been read. Often a no-op.
- *
- * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
- * application must deal with any cleanup that should happen even
- * for error exit.
- */
-
-METHODDEF void
-term_source (j_decompress_ptr cinfo)
-{
- /* no work necessary here */
-}
-
-
-/*
- * Prepare for input from a stdio stream.
- * The caller must have already opened the stream, and is responsible
- * for closing it after finishing decompression.
- */
-
-GLOBAL void
-jpeg_stdio_src (j_decompress_ptr cinfo, unsigned char *infile)
-{
- my_src_ptr src;
-
- /* The source object and input buffer are made permanent so that a series
- * of JPEG images can be read from the same file by calling jpeg_stdio_src
- * only before the first one. (If we discarded the buffer at the end of
- * one image, we'd likely lose the start of the next one.)
- * This makes it unsafe to use this manager and a different source
- * manager serially with the same JPEG object. Caveat programmer.
- */
- if (cinfo->src == NULL) { /* first time for this JPEG object? */
- cinfo->src = (struct jpeg_source_mgr *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
- SIZEOF(my_source_mgr));
- src = (my_src_ptr) cinfo->src;
- src->buffer = (JOCTET *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
- INPUT_BUF_SIZE * SIZEOF(JOCTET));
- }
-
- src = (my_src_ptr) cinfo->src;
- src->pub.init_source = init_source;
- src->pub.fill_input_buffer = fill_input_buffer;
- src->pub.skip_input_data = skip_input_data;
- src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */
- src->pub.term_source = term_source;
- src->infile = infile;
- src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */
- src->pub.next_input_byte = NULL; /* until buffer loaded */
-}
+/*
+ * jdatasrc.c
+ *
+ * Copyright (C) 1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains decompression data source routines for the case of
+ * reading JPEG data from a file (or any stdio stream). While these routines
+ * are sufficient for most applications, some will want to use a different
+ * source manager.
+ * IMPORTANT: we assume that fread() will correctly transcribe an array of
+ * JOCTETs from 8-bit-wide elements on external storage. If char is wider
+ * than 8 bits on your machine, you may need to do some tweaking.
+ */
+
+
+/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jerror.h"
+
+
+/* Expanded data source object for stdio input */
+
+typedef struct {
+ struct jpeg_source_mgr pub; /* public fields */
+
+ unsigned char *infile; /* source stream */
+ JOCTET * buffer; /* start of buffer */
+ boolean start_of_file; /* have we gotten any data yet? */
+} my_source_mgr;
+
+typedef my_source_mgr * my_src_ptr;
+
+#define INPUT_BUF_SIZE 4096 /* choose an efficiently fread'able size */
+
+
+/*
+ * Initialize source --- called by jpeg_read_header
+ * before any data is actually read.
+ */
+
+METHODDEF void
+init_source (j_decompress_ptr cinfo)
+{
+ my_src_ptr src = (my_src_ptr) cinfo->src;
+
+ /* We reset the empty-input-file flag for each image,
+ * but we don't clear the input buffer.
+ * This is correct behavior for reading a series of images from one source.
+ */
+ src->start_of_file = TRUE;
+}
+
+
+/*
+ * Fill the input buffer --- called whenever buffer is emptied.
+ *
+ * In typical applications, this should read fresh data into the buffer
+ * (ignoring the current state of next_input_byte & bytes_in_buffer),
+ * reset the pointer & count to the start of the buffer, and return TRUE
+ * indicating that the buffer has been reloaded. It is not necessary to
+ * fill the buffer entirely, only to obtain at least one more byte.
+ *
+ * There is no such thing as an EOF return. If the end of the file has been
+ * reached, the routine has a choice of ERREXIT() or inserting fake data into
+ * the buffer. In most cases, generating a warning message and inserting a
+ * fake EOI marker is the best course of action --- this will allow the
+ * decompressor to output however much of the image is there. However,
+ * the resulting error message is misleading if the real problem is an empty
+ * input file, so we handle that case specially.
+ *
+ * In applications that need to be able to suspend compression due to input
+ * not being available yet, a FALSE return indicates that no more data can be
+ * obtained right now, but more may be forthcoming later. In this situation,
+ * the decompressor will return to its caller (with an indication of the
+ * number of scanlines it has read, if any). The application should resume
+ * decompression after it has loaded more data into the input buffer. Note
+ * that there are substantial restrictions on the use of suspension --- see
+ * the documentation.
+ *
+ * When suspending, the decompressor will back up to a convenient restart point
+ * (typically the start of the current MCU). next_input_byte & bytes_in_buffer
+ * indicate where the restart point will be if the current call returns FALSE.
+ * Data beyond this point must be rescanned after resumption, so move it to
+ * the front of the buffer rather than discarding it.
+ */
+
+METHODDEF boolean
+fill_input_buffer (j_decompress_ptr cinfo)
+{
+ my_src_ptr src = (my_src_ptr) cinfo->src;
+
+ memcpy( src->buffer, src->infile, INPUT_BUF_SIZE );
+
+ src->infile += INPUT_BUF_SIZE;
+
+ src->pub.next_input_byte = src->buffer;
+ src->pub.bytes_in_buffer = INPUT_BUF_SIZE;
+ src->start_of_file = FALSE;
+
+ return TRUE;
+}
+
+
+/*
+ * Skip data --- used to skip over a potentially large amount of
+ * uninteresting data (such as an APPn marker).
+ *
+ * Writers of suspendable-input applications must note that skip_input_data
+ * is not granted the right to give a suspension return. If the skip extends
+ * beyond the data currently in the buffer, the buffer can be marked empty so
+ * that the next read will cause a fill_input_buffer call that can suspend.
+ * Arranging for additional bytes to be discarded before reloading the input
+ * buffer is the application writer's problem.
+ */
+
+METHODDEF void
+skip_input_data (j_decompress_ptr cinfo, long num_bytes)
+{
+ my_src_ptr src = (my_src_ptr) cinfo->src;
+
+ /* Just a dumb implementation for now. Could use fseek() except
+ * it doesn't work on pipes. Not clear that being smart is worth
+ * any trouble anyway --- large skips are infrequent.
+ */
+ if (num_bytes > 0) {
+ while (num_bytes > (long) src->pub.bytes_in_buffer) {
+ num_bytes -= (long) src->pub.bytes_in_buffer;
+ (void) fill_input_buffer(cinfo);
+ /* note we assume that fill_input_buffer will never return FALSE,
+ * so suspension need not be handled.
+ */
+ }
+ src->pub.next_input_byte += (size_t) num_bytes;
+ src->pub.bytes_in_buffer -= (size_t) num_bytes;
+ }
+}
+
+
+/*
+ * An additional method that can be provided by data source modules is the
+ * resync_to_restart method for error recovery in the presence of RST markers.
+ * For the moment, this source module just uses the default resync method
+ * provided by the JPEG library. That method assumes that no backtracking
+ * is possible.
+ */
+
+
+/*
+ * Terminate source --- called by jpeg_finish_decompress
+ * after all data has been read. Often a no-op.
+ *
+ * NB: *not* called by jpeg_abort or jpeg_destroy; surrounding
+ * application must deal with any cleanup that should happen even
+ * for error exit.
+ */
+
+METHODDEF void
+term_source (j_decompress_ptr cinfo)
+{
+ /* no work necessary here */
+}
+
+
+/*
+ * Prepare for input from a stdio stream.
+ * The caller must have already opened the stream, and is responsible
+ * for closing it after finishing decompression.
+ */
+
+GLOBAL void
+jpeg_stdio_src (j_decompress_ptr cinfo, unsigned char *infile)
+{
+ my_src_ptr src;
+
+ /* The source object and input buffer are made permanent so that a series
+ * of JPEG images can be read from the same file by calling jpeg_stdio_src
+ * only before the first one. (If we discarded the buffer at the end of
+ * one image, we'd likely lose the start of the next one.)
+ * This makes it unsafe to use this manager and a different source
+ * manager serially with the same JPEG object. Caveat programmer.
+ */
+ if (cinfo->src == NULL) { /* first time for this JPEG object? */
+ cinfo->src = (struct jpeg_source_mgr *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ SIZEOF(my_source_mgr));
+ src = (my_src_ptr) cinfo->src;
+ src->buffer = (JOCTET *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ INPUT_BUF_SIZE * SIZEOF(JOCTET));
+ }
+
+ src = (my_src_ptr) cinfo->src;
+ src->pub.init_source = init_source;
+ src->pub.fill_input_buffer = fill_input_buffer;
+ src->pub.skip_input_data = skip_input_data;
+ src->pub.resync_to_restart = jpeg_resync_to_restart; /* use default method */
+ src->pub.term_source = term_source;
+ src->infile = infile;
+ src->pub.bytes_in_buffer = 0; /* forces fill_input_buffer on first read */
+ src->pub.next_input_byte = NULL; /* until buffer loaded */
+}
diff --git a/libs/jpeg6/jdcoefct.cpp b/libs/jpeg6/jdcoefct.cpp
index 2b20c07..ba153f5 100755
--- a/libs/jpeg6/jdcoefct.cpp
+++ b/libs/jpeg6/jdcoefct.cpp
@@ -1,725 +1,725 @@
-/*
- * jdcoefct.c
- *
- * Copyright (C) 1994-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the coefficient buffer controller for decompression.
- * This controller is the top level of the JPEG decompressor proper.
- * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
- *
- * In buffered-image mode, this controller is the interface between
- * input-oriented processing and output-oriented processing.
- * Also, the input side (only) is used when reading a file for transcoding.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-/* Block smoothing is only applicable for progressive JPEG, so: */
-#ifndef D_PROGRESSIVE_SUPPORTED
-#undef BLOCK_SMOOTHING_SUPPORTED
-#endif
-
-/* Private buffer controller object */
-
-typedef struct {
- struct jpeg_d_coef_controller pub; /* public fields */
-
- /* These variables keep track of the current location of the input side. */
- /* cinfo->input_iMCU_row is also used for this. */
- JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
- int MCU_vert_offset; /* counts MCU rows within iMCU row */
- int MCU_rows_per_iMCU_row; /* number of such rows needed */
-
- /* The output side's location is represented by cinfo->output_iMCU_row. */
-
- /* In single-pass modes, it's sufficient to buffer just one MCU.
- * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
- * and let the entropy decoder write into that workspace each time.
- * (On 80x86, the workspace is FAR even though it's not really very big;
- * this is to keep the module interfaces unchanged when a large coefficient
- * buffer is necessary.)
- * In multi-pass modes, this array points to the current MCU's blocks
- * within the virtual arrays; it is used only by the input side.
- */
- JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
-
-#ifdef D_MULTISCAN_FILES_SUPPORTED
- /* In multi-pass modes, we need a virtual block array for each component. */
- jvirt_barray_ptr whole_image[MAX_COMPONENTS];
-#endif
-
-#ifdef BLOCK_SMOOTHING_SUPPORTED
- /* When doing block smoothing, we latch coefficient Al values here */
- int * coef_bits_latch;
-#define SAVED_COEFS 6 /* we save coef_bits[0..5] */
-#endif
-} my_coef_controller;
-
-typedef my_coef_controller * my_coef_ptr;
-
-/* Forward declarations */
-METHODDEF int decompress_onepass
- JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-METHODDEF int decompress_data
- JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
-#endif
-#ifdef BLOCK_SMOOTHING_SUPPORTED
-LOCAL boolean smoothing_ok JPP((j_decompress_ptr cinfo));
-METHODDEF int decompress_smooth_data
- JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
-#endif
-
-
-LOCAL void
-start_iMCU_row (j_decompress_ptr cinfo)
-/* Reset within-iMCU-row counters for a new row (input side) */
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
-
- /* In an interleaved scan, an MCU row is the same as an iMCU row.
- * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
- * But at the bottom of the image, process only what's left.
- */
- if (cinfo->comps_in_scan > 1) {
- coef->MCU_rows_per_iMCU_row = 1;
- } else {
- if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
- coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
- else
- coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
- }
-
- coef->MCU_ctr = 0;
- coef->MCU_vert_offset = 0;
-}
-
-
-/*
- * Initialize for an input processing pass.
- */
-
-METHODDEF void
-start_input_pass (j_decompress_ptr cinfo)
-{
- cinfo->input_iMCU_row = 0;
- start_iMCU_row(cinfo);
-}
-
-
-/*
- * Initialize for an output processing pass.
- */
-
-METHODDEF void
-start_output_pass (j_decompress_ptr cinfo)
-{
-#ifdef BLOCK_SMOOTHING_SUPPORTED
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
-
- /* If multipass, check to see whether to use block smoothing on this pass */
- if (coef->pub.coef_arrays != NULL) {
- if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
- coef->pub.decompress_data = decompress_smooth_data;
- else
- coef->pub.decompress_data = decompress_data;
- }
-#endif
- cinfo->output_iMCU_row = 0;
-}
-
-
-/*
- * Decompress and return some data in the single-pass case.
- * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
- * Input and output must run in lockstep since we have only a one-MCU buffer.
- * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
- *
- * NB: output_buf contains a plane for each component in image.
- * For single pass, this is the same as the components in the scan.
- */
-
-METHODDEF int
-decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION MCU_col_num; /* index of current MCU within row */
- JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
- JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
- int blkn, ci, xindex, yindex, yoffset, useful_width;
- JSAMPARRAY output_ptr;
- JDIMENSION start_col, output_col;
- jpeg_component_info *compptr;
- inverse_DCT_method_ptr inverse_DCT;
-
- /* Loop to process as much as one whole iMCU row */
- for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
- yoffset++) {
- for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
- MCU_col_num++) {
- /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
- jzero_far((void FAR *) coef->MCU_buffer[0],
- (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
- if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
- /* Suspension forced; update state counters and exit */
- coef->MCU_vert_offset = yoffset;
- coef->MCU_ctr = MCU_col_num;
- return JPEG_SUSPENDED;
- }
- /* Determine where data should go in output_buf and do the IDCT thing.
- * We skip dummy blocks at the right and bottom edges (but blkn gets
- * incremented past them!). Note the inner loop relies on having
- * allocated the MCU_buffer[] blocks sequentially.
- */
- blkn = 0; /* index of current DCT block within MCU */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* Don't bother to IDCT an uninteresting component. */
- if (! compptr->component_needed) {
- blkn += compptr->MCU_blocks;
- continue;
- }
- inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
- useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
- : compptr->last_col_width;
- output_ptr = output_buf[ci] + yoffset * compptr->DCT_scaled_size;
- start_col = MCU_col_num * compptr->MCU_sample_width;
- for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
- if (cinfo->input_iMCU_row < last_iMCU_row ||
- yoffset+yindex < compptr->last_row_height) {
- output_col = start_col;
- for (xindex = 0; xindex < useful_width; xindex++) {
- (*inverse_DCT) (cinfo, compptr,
- (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
- output_ptr, output_col);
- output_col += compptr->DCT_scaled_size;
- }
- }
- blkn += compptr->MCU_width;
- output_ptr += compptr->DCT_scaled_size;
- }
- }
- }
- /* Completed an MCU row, but perhaps not an iMCU row */
- coef->MCU_ctr = 0;
- }
- /* Completed the iMCU row, advance counters for next one */
- cinfo->output_iMCU_row++;
- if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
- start_iMCU_row(cinfo);
- return JPEG_ROW_COMPLETED;
- }
- /* Completed the scan */
- (*cinfo->inputctl->finish_input_pass) (cinfo);
- return JPEG_SCAN_COMPLETED;
-}
-
-
-/*
- * Dummy consume-input routine for single-pass operation.
- */
-
-METHODDEF int
-dummy_consume_data (j_decompress_ptr cinfo)
-{
- return JPEG_SUSPENDED; /* Always indicate nothing was done */
-}
-
-
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-
-/*
- * Consume input data and store it in the full-image coefficient buffer.
- * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
- * ie, v_samp_factor block rows for each component in the scan.
- * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
- */
-
-METHODDEF int
-consume_data (j_decompress_ptr cinfo)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION MCU_col_num; /* index of current MCU within row */
- int blkn, ci, xindex, yindex, yoffset;
- JDIMENSION start_col;
- JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
- JBLOCKROW buffer_ptr;
- jpeg_component_info *compptr;
-
- /* Align the virtual buffers for the components used in this scan. */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- buffer[ci] = (*cinfo->mem->access_virt_barray)
- ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
- cinfo->input_iMCU_row * compptr->v_samp_factor,
- (JDIMENSION) compptr->v_samp_factor, TRUE);
- /* Note: entropy decoder expects buffer to be zeroed,
- * but this is handled automatically by the memory manager
- * because we requested a pre-zeroed array.
- */
- }
-
- /* Loop to process one whole iMCU row */
- for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
- yoffset++) {
- for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
- MCU_col_num++) {
- /* Construct list of pointers to DCT blocks belonging to this MCU */
- blkn = 0; /* index of current DCT block within MCU */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- start_col = MCU_col_num * compptr->MCU_width;
- for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
- buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
- for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
- coef->MCU_buffer[blkn++] = buffer_ptr++;
- }
- }
- }
- /* Try to fetch the MCU. */
- if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
- /* Suspension forced; update state counters and exit */
- coef->MCU_vert_offset = yoffset;
- coef->MCU_ctr = MCU_col_num;
- return JPEG_SUSPENDED;
- }
- }
- /* Completed an MCU row, but perhaps not an iMCU row */
- coef->MCU_ctr = 0;
- }
- /* Completed the iMCU row, advance counters for next one */
- if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
- start_iMCU_row(cinfo);
- return JPEG_ROW_COMPLETED;
- }
- /* Completed the scan */
- (*cinfo->inputctl->finish_input_pass) (cinfo);
- return JPEG_SCAN_COMPLETED;
-}
-
-
-/*
- * Decompress and return some data in the multi-pass case.
- * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
- * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
- *
- * NB: output_buf contains a plane for each component in image.
- */
-
-METHODDEF int
-decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
- JDIMENSION block_num;
- int ci, block_row, block_rows;
- JBLOCKARRAY buffer;
- JBLOCKROW buffer_ptr;
- JSAMPARRAY output_ptr;
- JDIMENSION output_col;
- jpeg_component_info *compptr;
- inverse_DCT_method_ptr inverse_DCT;
-
- /* Force some input to be done if we are getting ahead of the input. */
- while (cinfo->input_scan_number < cinfo->output_scan_number ||
- (cinfo->input_scan_number == cinfo->output_scan_number &&
- cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
- if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
- return JPEG_SUSPENDED;
- }
-
- /* OK, output from the virtual arrays. */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Don't bother to IDCT an uninteresting component. */
- if (! compptr->component_needed)
- continue;
- /* Align the virtual buffer for this component. */
- buffer = (*cinfo->mem->access_virt_barray)
- ((j_common_ptr) cinfo, coef->whole_image[ci],
- cinfo->output_iMCU_row * compptr->v_samp_factor,
- (JDIMENSION) compptr->v_samp_factor, FALSE);
- /* Count non-dummy DCT block rows in this iMCU row. */
- if (cinfo->output_iMCU_row < last_iMCU_row)
- block_rows = compptr->v_samp_factor;
- else {
- /* NB: can't use last_row_height here; it is input-side-dependent! */
- block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
- if (block_rows == 0) block_rows = compptr->v_samp_factor;
- }
- inverse_DCT = cinfo->idct->inverse_DCT[ci];
- output_ptr = output_buf[ci];
- /* Loop over all DCT blocks to be processed. */
- for (block_row = 0; block_row < block_rows; block_row++) {
- buffer_ptr = buffer[block_row];
- output_col = 0;
- for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
- (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
- output_ptr, output_col);
- buffer_ptr++;
- output_col += compptr->DCT_scaled_size;
- }
- output_ptr += compptr->DCT_scaled_size;
- }
- }
-
- if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
- return JPEG_ROW_COMPLETED;
- return JPEG_SCAN_COMPLETED;
-}
-
-#endif /* D_MULTISCAN_FILES_SUPPORTED */
-
-
-#ifdef BLOCK_SMOOTHING_SUPPORTED
-
-/*
- * This code applies interblock smoothing as described by section K.8
- * of the JPEG standard: the first 5 AC coefficients are estimated from
- * the DC values of a DCT block and its 8 neighboring blocks.
- * We apply smoothing only for progressive JPEG decoding, and only if
- * the coefficients it can estimate are not yet known to full precision.
- */
-
-/*
- * Determine whether block smoothing is applicable and safe.
- * We also latch the current states of the coef_bits[] entries for the
- * AC coefficients; otherwise, if the input side of the decompressor
- * advances into a new scan, we might think the coefficients are known
- * more accurately than they really are.
- */
-
-LOCAL boolean
-smoothing_ok (j_decompress_ptr cinfo)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- boolean smoothing_useful = FALSE;
- int ci, coefi;
- jpeg_component_info *compptr;
- JQUANT_TBL * qtable;
- int * coef_bits;
- int * coef_bits_latch;
-
- if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
- return FALSE;
-
- /* Allocate latch area if not already done */
- if (coef->coef_bits_latch == NULL)
- coef->coef_bits_latch = (int *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- cinfo->num_components *
- (SAVED_COEFS * SIZEOF(int)));
- coef_bits_latch = coef->coef_bits_latch;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* All components' quantization values must already be latched. */
- if ((qtable = compptr->quant_table) == NULL)
- return FALSE;
- /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
- for (coefi = 0; coefi <= 5; coefi++) {
- if (qtable->quantval[coefi] == 0)
- return FALSE;
- }
- /* DC values must be at least partly known for all components. */
- coef_bits = cinfo->coef_bits[ci];
- if (coef_bits[0] < 0)
- return FALSE;
- /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
- for (coefi = 1; coefi <= 5; coefi++) {
- coef_bits_latch[coefi] = coef_bits[coefi];
- if (coef_bits[coefi] != 0)
- smoothing_useful = TRUE;
- }
- coef_bits_latch += SAVED_COEFS;
- }
-
- return smoothing_useful;
-}
-
-
-/*
- * Variant of decompress_data for use when doing block smoothing.
- */
-
-METHODDEF int
-decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
-{
- my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
- JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
- JDIMENSION block_num, last_block_column;
- int ci, block_row, block_rows, access_rows;
- JBLOCKARRAY buffer;
- JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
- JSAMPARRAY output_ptr;
- JDIMENSION output_col;
- jpeg_component_info *compptr;
- inverse_DCT_method_ptr inverse_DCT;
- boolean first_row, last_row;
- JBLOCK workspace;
- int *coef_bits;
- JQUANT_TBL *quanttbl;
- INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
- int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
- int Al, pred;
-
- /* Force some input to be done if we are getting ahead of the input. */
- while (cinfo->input_scan_number <= cinfo->output_scan_number &&
- ! cinfo->inputctl->eoi_reached) {
- if (cinfo->input_scan_number == cinfo->output_scan_number) {
- /* If input is working on current scan, we ordinarily want it to
- * have completed the current row. But if input scan is DC,
- * we want it to keep one row ahead so that next block row's DC
- * values are up to date.
- */
- JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
- if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
- break;
- }
- if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
- return JPEG_SUSPENDED;
- }
-
- /* OK, output from the virtual arrays. */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Don't bother to IDCT an uninteresting component. */
- if (! compptr->component_needed)
- continue;
- /* Count non-dummy DCT block rows in this iMCU row. */
- if (cinfo->output_iMCU_row < last_iMCU_row) {
- block_rows = compptr->v_samp_factor;
- access_rows = block_rows * 2; /* this and next iMCU row */
- last_row = FALSE;
- } else {
- /* NB: can't use last_row_height here; it is input-side-dependent! */
- block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
- if (block_rows == 0) block_rows = compptr->v_samp_factor;
- access_rows = block_rows; /* this iMCU row only */
- last_row = TRUE;
- }
- /* Align the virtual buffer for this component. */
- if (cinfo->output_iMCU_row > 0) {
- access_rows += compptr->v_samp_factor; /* prior iMCU row too */
- buffer = (*cinfo->mem->access_virt_barray)
- ((j_common_ptr) cinfo, coef->whole_image[ci],
- (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
- (JDIMENSION) access_rows, FALSE);
- buffer += compptr->v_samp_factor; /* point to current iMCU row */
- first_row = FALSE;
- } else {
- buffer = (*cinfo->mem->access_virt_barray)
- ((j_common_ptr) cinfo, coef->whole_image[ci],
- (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
- first_row = TRUE;
- }
- /* Fetch component-dependent info */
- coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
- quanttbl = compptr->quant_table;
- Q00 = quanttbl->quantval[0];
- Q01 = quanttbl->quantval[1];
- Q10 = quanttbl->quantval[2];
- Q20 = quanttbl->quantval[3];
- Q11 = quanttbl->quantval[4];
- Q02 = quanttbl->quantval[5];
- inverse_DCT = cinfo->idct->inverse_DCT[ci];
- output_ptr = output_buf[ci];
- /* Loop over all DCT blocks to be processed. */
- for (block_row = 0; block_row < block_rows; block_row++) {
- buffer_ptr = buffer[block_row];
- if (first_row && block_row == 0)
- prev_block_row = buffer_ptr;
- else
- prev_block_row = buffer[block_row-1];
- if (last_row && block_row == block_rows-1)
- next_block_row = buffer_ptr;
- else
- next_block_row = buffer[block_row+1];
- /* We fetch the surrounding DC values using a sliding-register approach.
- * Initialize all nine here so as to do the right thing on narrow pics.
- */
- DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
- DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
- DC7 = DC8 = DC9 = (int) next_block_row[0][0];
- output_col = 0;
- last_block_column = compptr->width_in_blocks - 1;
- for (block_num = 0; block_num <= last_block_column; block_num++) {
- /* Fetch current DCT block into workspace so we can modify it. */
- jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
- /* Update DC values */
- if (block_num < last_block_column) {
- DC3 = (int) prev_block_row[1][0];
- DC6 = (int) buffer_ptr[1][0];
- DC9 = (int) next_block_row[1][0];
- }
- /* Compute coefficient estimates per K.8.
- * An estimate is applied only if coefficient is still zero,
- * and is not known to be fully accurate.
- */
- /* AC01 */
- if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
- num = 36 * Q00 * (DC4 - DC6);
- if (num >= 0) {
- pred = (int) (((Q01<<7) + num) / (Q01<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- } else {
- pred = (int) (((Q01<<7) - num) / (Q01<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- pred = -pred;
- }
- workspace[1] = (JCOEF) pred;
- }
- /* AC10 */
- if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
- num = 36 * Q00 * (DC2 - DC8);
- if (num >= 0) {
- pred = (int) (((Q10<<7) + num) / (Q10<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- } else {
- pred = (int) (((Q10<<7) - num) / (Q10<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- pred = -pred;
- }
- workspace[8] = (JCOEF) pred;
- }
- /* AC20 */
- if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
- num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
- if (num >= 0) {
- pred = (int) (((Q20<<7) + num) / (Q20<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- } else {
- pred = (int) (((Q20<<7) - num) / (Q20<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- pred = -pred;
- }
- workspace[16] = (JCOEF) pred;
- }
- /* AC11 */
- if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
- num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
- if (num >= 0) {
- pred = (int) (((Q11<<7) + num) / (Q11<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- } else {
- pred = (int) (((Q11<<7) - num) / (Q11<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- pred = -pred;
- }
- workspace[9] = (JCOEF) pred;
- }
- /* AC02 */
- if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
- num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
- if (num >= 0) {
- pred = (int) (((Q02<<7) + num) / (Q02<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- } else {
- pred = (int) (((Q02<<7) - num) / (Q02<<8));
- if (Al > 0 && pred >= (1<<Al))
- pred = (1<<Al)-1;
- pred = -pred;
- }
- workspace[2] = (JCOEF) pred;
- }
- /* OK, do the IDCT */
- (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
- output_ptr, output_col);
- /* Advance for next column */
- DC1 = DC2; DC2 = DC3;
- DC4 = DC5; DC5 = DC6;
- DC7 = DC8; DC8 = DC9;
- buffer_ptr++, prev_block_row++, next_block_row++;
- output_col += compptr->DCT_scaled_size;
- }
- output_ptr += compptr->DCT_scaled_size;
- }
- }
-
- if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
- return JPEG_ROW_COMPLETED;
- return JPEG_SCAN_COMPLETED;
-}
-
-#endif /* BLOCK_SMOOTHING_SUPPORTED */
-
-
-/*
- * Initialize coefficient buffer controller.
- */
-
-GLOBAL void
-jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
-{
- my_coef_ptr coef;
-
- coef = (my_coef_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_coef_controller));
- cinfo->coef = (struct jpeg_d_coef_controller *) coef;
- coef->pub.start_input_pass = start_input_pass;
- coef->pub.start_output_pass = start_output_pass;
-#ifdef BLOCK_SMOOTHING_SUPPORTED
- coef->coef_bits_latch = NULL;
-#endif
-
- /* Create the coefficient buffer. */
- if (need_full_buffer) {
-#ifdef D_MULTISCAN_FILES_SUPPORTED
- /* Allocate a full-image virtual array for each component, */
- /* padded to a multiple of samp_factor DCT blocks in each direction. */
- /* Note we ask for a pre-zeroed array. */
- int ci, access_rows;
- jpeg_component_info *compptr;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- access_rows = compptr->v_samp_factor;
-#ifdef BLOCK_SMOOTHING_SUPPORTED
- /* If block smoothing could be used, need a bigger window */
- if (cinfo->progressive_mode)
- access_rows *= 3;
-#endif
- coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
- (JDIMENSION) jround_up((long) compptr->width_in_blocks,
- (long) compptr->h_samp_factor),
- (JDIMENSION) jround_up((long) compptr->height_in_blocks,
- (long) compptr->v_samp_factor),
- (JDIMENSION) access_rows);
- }
- coef->pub.consume_data = consume_data;
- coef->pub.decompress_data = decompress_data;
- coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- } else {
- /* We only need a single-MCU buffer. */
- JBLOCKROW buffer;
- int i;
-
- buffer = (JBLOCKROW)
- (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
- for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
- coef->MCU_buffer[i] = buffer + i;
- }
- coef->pub.consume_data = dummy_consume_data;
- coef->pub.decompress_data = decompress_onepass;
- coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
- }
-}
+/*
+ * jdcoefct.c
+ *
+ * Copyright (C) 1994-1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the coefficient buffer controller for decompression.
+ * This controller is the top level of the JPEG decompressor proper.
+ * The coefficient buffer lies between entropy decoding and inverse-DCT steps.
+ *
+ * In buffered-image mode, this controller is the interface between
+ * input-oriented processing and output-oriented processing.
+ * Also, the input side (only) is used when reading a file for transcoding.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+/* Block smoothing is only applicable for progressive JPEG, so: */
+#ifndef D_PROGRESSIVE_SUPPORTED
+#undef BLOCK_SMOOTHING_SUPPORTED
+#endif
+
+/* Private buffer controller object */
+
+typedef struct {
+ struct jpeg_d_coef_controller pub; /* public fields */
+
+ /* These variables keep track of the current location of the input side. */
+ /* cinfo->input_iMCU_row is also used for this. */
+ JDIMENSION MCU_ctr; /* counts MCUs processed in current row */
+ int MCU_vert_offset; /* counts MCU rows within iMCU row */
+ int MCU_rows_per_iMCU_row; /* number of such rows needed */
+
+ /* The output side's location is represented by cinfo->output_iMCU_row. */
+
+ /* In single-pass modes, it's sufficient to buffer just one MCU.
+ * We allocate a workspace of D_MAX_BLOCKS_IN_MCU coefficient blocks,
+ * and let the entropy decoder write into that workspace each time.
+ * (On 80x86, the workspace is FAR even though it's not really very big;
+ * this is to keep the module interfaces unchanged when a large coefficient
+ * buffer is necessary.)
+ * In multi-pass modes, this array points to the current MCU's blocks
+ * within the virtual arrays; it is used only by the input side.
+ */
+ JBLOCKROW MCU_buffer[D_MAX_BLOCKS_IN_MCU];
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+ /* In multi-pass modes, we need a virtual block array for each component. */
+ jvirt_barray_ptr whole_image[MAX_COMPONENTS];
+#endif
+
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+ /* When doing block smoothing, we latch coefficient Al values here */
+ int * coef_bits_latch;
+#define SAVED_COEFS 6 /* we save coef_bits[0..5] */
+#endif
+} my_coef_controller;
+
+typedef my_coef_controller * my_coef_ptr;
+
+/* Forward declarations */
+METHODDEF int decompress_onepass
+ JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+METHODDEF int decompress_data
+ JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
+#endif
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+LOCAL boolean smoothing_ok JPP((j_decompress_ptr cinfo));
+METHODDEF int decompress_smooth_data
+ JPP((j_decompress_ptr cinfo, JSAMPIMAGE output_buf));
+#endif
+
+
+LOCAL void
+start_iMCU_row (j_decompress_ptr cinfo)
+/* Reset within-iMCU-row counters for a new row (input side) */
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+ /* In an interleaved scan, an MCU row is the same as an iMCU row.
+ * In a noninterleaved scan, an iMCU row has v_samp_factor MCU rows.
+ * But at the bottom of the image, process only what's left.
+ */
+ if (cinfo->comps_in_scan > 1) {
+ coef->MCU_rows_per_iMCU_row = 1;
+ } else {
+ if (cinfo->input_iMCU_row < (cinfo->total_iMCU_rows-1))
+ coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->v_samp_factor;
+ else
+ coef->MCU_rows_per_iMCU_row = cinfo->cur_comp_info[0]->last_row_height;
+ }
+
+ coef->MCU_ctr = 0;
+ coef->MCU_vert_offset = 0;
+}
+
+
+/*
+ * Initialize for an input processing pass.
+ */
+
+METHODDEF void
+start_input_pass (j_decompress_ptr cinfo)
+{
+ cinfo->input_iMCU_row = 0;
+ start_iMCU_row(cinfo);
+}
+
+
+/*
+ * Initialize for an output processing pass.
+ */
+
+METHODDEF void
+start_output_pass (j_decompress_ptr cinfo)
+{
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+
+ /* If multipass, check to see whether to use block smoothing on this pass */
+ if (coef->pub.coef_arrays != NULL) {
+ if (cinfo->do_block_smoothing && smoothing_ok(cinfo))
+ coef->pub.decompress_data = decompress_smooth_data;
+ else
+ coef->pub.decompress_data = decompress_data;
+ }
+#endif
+ cinfo->output_iMCU_row = 0;
+}
+
+
+/*
+ * Decompress and return some data in the single-pass case.
+ * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
+ * Input and output must run in lockstep since we have only a one-MCU buffer.
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+ *
+ * NB: output_buf contains a plane for each component in image.
+ * For single pass, this is the same as the components in the scan.
+ */
+
+METHODDEF int
+decompress_onepass (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION MCU_col_num; /* index of current MCU within row */
+ JDIMENSION last_MCU_col = cinfo->MCUs_per_row - 1;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ int blkn, ci, xindex, yindex, yoffset, useful_width;
+ JSAMPARRAY output_ptr;
+ JDIMENSION start_col, output_col;
+ jpeg_component_info *compptr;
+ inverse_DCT_method_ptr inverse_DCT;
+
+ /* Loop to process as much as one whole iMCU row */
+ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+ yoffset++) {
+ for (MCU_col_num = coef->MCU_ctr; MCU_col_num <= last_MCU_col;
+ MCU_col_num++) {
+ /* Try to fetch an MCU. Entropy decoder expects buffer to be zeroed. */
+ jzero_far((void FAR *) coef->MCU_buffer[0],
+ (size_t) (cinfo->blocks_in_MCU * SIZEOF(JBLOCK)));
+ if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
+ /* Suspension forced; update state counters and exit */
+ coef->MCU_vert_offset = yoffset;
+ coef->MCU_ctr = MCU_col_num;
+ return JPEG_SUSPENDED;
+ }
+ /* Determine where data should go in output_buf and do the IDCT thing.
+ * We skip dummy blocks at the right and bottom edges (but blkn gets
+ * incremented past them!). Note the inner loop relies on having
+ * allocated the MCU_buffer[] blocks sequentially.
+ */
+ blkn = 0; /* index of current DCT block within MCU */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* Don't bother to IDCT an uninteresting component. */
+ if (! compptr->component_needed) {
+ blkn += compptr->MCU_blocks;
+ continue;
+ }
+ inverse_DCT = cinfo->idct->inverse_DCT[compptr->component_index];
+ useful_width = (MCU_col_num < last_MCU_col) ? compptr->MCU_width
+ : compptr->last_col_width;
+ output_ptr = output_buf[ci] + yoffset * compptr->DCT_scaled_size;
+ start_col = MCU_col_num * compptr->MCU_sample_width;
+ for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+ if (cinfo->input_iMCU_row < last_iMCU_row ||
+ yoffset+yindex < compptr->last_row_height) {
+ output_col = start_col;
+ for (xindex = 0; xindex < useful_width; xindex++) {
+ (*inverse_DCT) (cinfo, compptr,
+ (JCOEFPTR) coef->MCU_buffer[blkn+xindex],
+ output_ptr, output_col);
+ output_col += compptr->DCT_scaled_size;
+ }
+ }
+ blkn += compptr->MCU_width;
+ output_ptr += compptr->DCT_scaled_size;
+ }
+ }
+ }
+ /* Completed an MCU row, but perhaps not an iMCU row */
+ coef->MCU_ctr = 0;
+ }
+ /* Completed the iMCU row, advance counters for next one */
+ cinfo->output_iMCU_row++;
+ if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
+ start_iMCU_row(cinfo);
+ return JPEG_ROW_COMPLETED;
+ }
+ /* Completed the scan */
+ (*cinfo->inputctl->finish_input_pass) (cinfo);
+ return JPEG_SCAN_COMPLETED;
+}
+
+
+/*
+ * Dummy consume-input routine for single-pass operation.
+ */
+
+METHODDEF int
+dummy_consume_data (j_decompress_ptr cinfo)
+{
+ return JPEG_SUSPENDED; /* Always indicate nothing was done */
+}
+
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+
+/*
+ * Consume input data and store it in the full-image coefficient buffer.
+ * We read as much as one fully interleaved MCU row ("iMCU" row) per call,
+ * ie, v_samp_factor block rows for each component in the scan.
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+ */
+
+METHODDEF int
+consume_data (j_decompress_ptr cinfo)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION MCU_col_num; /* index of current MCU within row */
+ int blkn, ci, xindex, yindex, yoffset;
+ JDIMENSION start_col;
+ JBLOCKARRAY buffer[MAX_COMPS_IN_SCAN];
+ JBLOCKROW buffer_ptr;
+ jpeg_component_info *compptr;
+
+ /* Align the virtual buffers for the components used in this scan. */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ buffer[ci] = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr) cinfo, coef->whole_image[compptr->component_index],
+ cinfo->input_iMCU_row * compptr->v_samp_factor,
+ (JDIMENSION) compptr->v_samp_factor, TRUE);
+ /* Note: entropy decoder expects buffer to be zeroed,
+ * but this is handled automatically by the memory manager
+ * because we requested a pre-zeroed array.
+ */
+ }
+
+ /* Loop to process one whole iMCU row */
+ for (yoffset = coef->MCU_vert_offset; yoffset < coef->MCU_rows_per_iMCU_row;
+ yoffset++) {
+ for (MCU_col_num = coef->MCU_ctr; MCU_col_num < cinfo->MCUs_per_row;
+ MCU_col_num++) {
+ /* Construct list of pointers to DCT blocks belonging to this MCU */
+ blkn = 0; /* index of current DCT block within MCU */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ start_col = MCU_col_num * compptr->MCU_width;
+ for (yindex = 0; yindex < compptr->MCU_height; yindex++) {
+ buffer_ptr = buffer[ci][yindex+yoffset] + start_col;
+ for (xindex = 0; xindex < compptr->MCU_width; xindex++) {
+ coef->MCU_buffer[blkn++] = buffer_ptr++;
+ }
+ }
+ }
+ /* Try to fetch the MCU. */
+ if (! (*cinfo->entropy->decode_mcu) (cinfo, coef->MCU_buffer)) {
+ /* Suspension forced; update state counters and exit */
+ coef->MCU_vert_offset = yoffset;
+ coef->MCU_ctr = MCU_col_num;
+ return JPEG_SUSPENDED;
+ }
+ }
+ /* Completed an MCU row, but perhaps not an iMCU row */
+ coef->MCU_ctr = 0;
+ }
+ /* Completed the iMCU row, advance counters for next one */
+ if (++(cinfo->input_iMCU_row) < cinfo->total_iMCU_rows) {
+ start_iMCU_row(cinfo);
+ return JPEG_ROW_COMPLETED;
+ }
+ /* Completed the scan */
+ (*cinfo->inputctl->finish_input_pass) (cinfo);
+ return JPEG_SCAN_COMPLETED;
+}
+
+
+/*
+ * Decompress and return some data in the multi-pass case.
+ * Always attempts to emit one fully interleaved MCU row ("iMCU" row).
+ * Return value is JPEG_ROW_COMPLETED, JPEG_SCAN_COMPLETED, or JPEG_SUSPENDED.
+ *
+ * NB: output_buf contains a plane for each component in image.
+ */
+
+METHODDEF int
+decompress_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ JDIMENSION block_num;
+ int ci, block_row, block_rows;
+ JBLOCKARRAY buffer;
+ JBLOCKROW buffer_ptr;
+ JSAMPARRAY output_ptr;
+ JDIMENSION output_col;
+ jpeg_component_info *compptr;
+ inverse_DCT_method_ptr inverse_DCT;
+
+ /* Force some input to be done if we are getting ahead of the input. */
+ while (cinfo->input_scan_number < cinfo->output_scan_number ||
+ (cinfo->input_scan_number == cinfo->output_scan_number &&
+ cinfo->input_iMCU_row <= cinfo->output_iMCU_row)) {
+ if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
+ return JPEG_SUSPENDED;
+ }
+
+ /* OK, output from the virtual arrays. */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Don't bother to IDCT an uninteresting component. */
+ if (! compptr->component_needed)
+ continue;
+ /* Align the virtual buffer for this component. */
+ buffer = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr) cinfo, coef->whole_image[ci],
+ cinfo->output_iMCU_row * compptr->v_samp_factor,
+ (JDIMENSION) compptr->v_samp_factor, FALSE);
+ /* Count non-dummy DCT block rows in this iMCU row. */
+ if (cinfo->output_iMCU_row < last_iMCU_row)
+ block_rows = compptr->v_samp_factor;
+ else {
+ /* NB: can't use last_row_height here; it is input-side-dependent! */
+ block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+ if (block_rows == 0) block_rows = compptr->v_samp_factor;
+ }
+ inverse_DCT = cinfo->idct->inverse_DCT[ci];
+ output_ptr = output_buf[ci];
+ /* Loop over all DCT blocks to be processed. */
+ for (block_row = 0; block_row < block_rows; block_row++) {
+ buffer_ptr = buffer[block_row];
+ output_col = 0;
+ for (block_num = 0; block_num < compptr->width_in_blocks; block_num++) {
+ (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) buffer_ptr,
+ output_ptr, output_col);
+ buffer_ptr++;
+ output_col += compptr->DCT_scaled_size;
+ }
+ output_ptr += compptr->DCT_scaled_size;
+ }
+ }
+
+ if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
+ return JPEG_ROW_COMPLETED;
+ return JPEG_SCAN_COMPLETED;
+}
+
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
+
+
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+
+/*
+ * This code applies interblock smoothing as described by section K.8
+ * of the JPEG standard: the first 5 AC coefficients are estimated from
+ * the DC values of a DCT block and its 8 neighboring blocks.
+ * We apply smoothing only for progressive JPEG decoding, and only if
+ * the coefficients it can estimate are not yet known to full precision.
+ */
+
+/*
+ * Determine whether block smoothing is applicable and safe.
+ * We also latch the current states of the coef_bits[] entries for the
+ * AC coefficients; otherwise, if the input side of the decompressor
+ * advances into a new scan, we might think the coefficients are known
+ * more accurately than they really are.
+ */
+
+LOCAL boolean
+smoothing_ok (j_decompress_ptr cinfo)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ boolean smoothing_useful = FALSE;
+ int ci, coefi;
+ jpeg_component_info *compptr;
+ JQUANT_TBL * qtable;
+ int * coef_bits;
+ int * coef_bits_latch;
+
+ if (! cinfo->progressive_mode || cinfo->coef_bits == NULL)
+ return FALSE;
+
+ /* Allocate latch area if not already done */
+ if (coef->coef_bits_latch == NULL)
+ coef->coef_bits_latch = (int *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ cinfo->num_components *
+ (SAVED_COEFS * SIZEOF(int)));
+ coef_bits_latch = coef->coef_bits_latch;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* All components' quantization values must already be latched. */
+ if ((qtable = compptr->quant_table) == NULL)
+ return FALSE;
+ /* Verify DC & first 5 AC quantizers are nonzero to avoid zero-divide. */
+ for (coefi = 0; coefi <= 5; coefi++) {
+ if (qtable->quantval[coefi] == 0)
+ return FALSE;
+ }
+ /* DC values must be at least partly known for all components. */
+ coef_bits = cinfo->coef_bits[ci];
+ if (coef_bits[0] < 0)
+ return FALSE;
+ /* Block smoothing is helpful if some AC coefficients remain inaccurate. */
+ for (coefi = 1; coefi <= 5; coefi++) {
+ coef_bits_latch[coefi] = coef_bits[coefi];
+ if (coef_bits[coefi] != 0)
+ smoothing_useful = TRUE;
+ }
+ coef_bits_latch += SAVED_COEFS;
+ }
+
+ return smoothing_useful;
+}
+
+
+/*
+ * Variant of decompress_data for use when doing block smoothing.
+ */
+
+METHODDEF int
+decompress_smooth_data (j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
+{
+ my_coef_ptr coef = (my_coef_ptr) cinfo->coef;
+ JDIMENSION last_iMCU_row = cinfo->total_iMCU_rows - 1;
+ JDIMENSION block_num, last_block_column;
+ int ci, block_row, block_rows, access_rows;
+ JBLOCKARRAY buffer;
+ JBLOCKROW buffer_ptr, prev_block_row, next_block_row;
+ JSAMPARRAY output_ptr;
+ JDIMENSION output_col;
+ jpeg_component_info *compptr;
+ inverse_DCT_method_ptr inverse_DCT;
+ boolean first_row, last_row;
+ JBLOCK workspace;
+ int *coef_bits;
+ JQUANT_TBL *quanttbl;
+ INT32 Q00,Q01,Q02,Q10,Q11,Q20, num;
+ int DC1,DC2,DC3,DC4,DC5,DC6,DC7,DC8,DC9;
+ int Al, pred;
+
+ /* Force some input to be done if we are getting ahead of the input. */
+ while (cinfo->input_scan_number <= cinfo->output_scan_number &&
+ ! cinfo->inputctl->eoi_reached) {
+ if (cinfo->input_scan_number == cinfo->output_scan_number) {
+ /* If input is working on current scan, we ordinarily want it to
+ * have completed the current row. But if input scan is DC,
+ * we want it to keep one row ahead so that next block row's DC
+ * values are up to date.
+ */
+ JDIMENSION delta = (cinfo->Ss == 0) ? 1 : 0;
+ if (cinfo->input_iMCU_row > cinfo->output_iMCU_row+delta)
+ break;
+ }
+ if ((*cinfo->inputctl->consume_input)(cinfo) == JPEG_SUSPENDED)
+ return JPEG_SUSPENDED;
+ }
+
+ /* OK, output from the virtual arrays. */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Don't bother to IDCT an uninteresting component. */
+ if (! compptr->component_needed)
+ continue;
+ /* Count non-dummy DCT block rows in this iMCU row. */
+ if (cinfo->output_iMCU_row < last_iMCU_row) {
+ block_rows = compptr->v_samp_factor;
+ access_rows = block_rows * 2; /* this and next iMCU row */
+ last_row = FALSE;
+ } else {
+ /* NB: can't use last_row_height here; it is input-side-dependent! */
+ block_rows = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+ if (block_rows == 0) block_rows = compptr->v_samp_factor;
+ access_rows = block_rows; /* this iMCU row only */
+ last_row = TRUE;
+ }
+ /* Align the virtual buffer for this component. */
+ if (cinfo->output_iMCU_row > 0) {
+ access_rows += compptr->v_samp_factor; /* prior iMCU row too */
+ buffer = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr) cinfo, coef->whole_image[ci],
+ (cinfo->output_iMCU_row - 1) * compptr->v_samp_factor,
+ (JDIMENSION) access_rows, FALSE);
+ buffer += compptr->v_samp_factor; /* point to current iMCU row */
+ first_row = FALSE;
+ } else {
+ buffer = (*cinfo->mem->access_virt_barray)
+ ((j_common_ptr) cinfo, coef->whole_image[ci],
+ (JDIMENSION) 0, (JDIMENSION) access_rows, FALSE);
+ first_row = TRUE;
+ }
+ /* Fetch component-dependent info */
+ coef_bits = coef->coef_bits_latch + (ci * SAVED_COEFS);
+ quanttbl = compptr->quant_table;
+ Q00 = quanttbl->quantval[0];
+ Q01 = quanttbl->quantval[1];
+ Q10 = quanttbl->quantval[2];
+ Q20 = quanttbl->quantval[3];
+ Q11 = quanttbl->quantval[4];
+ Q02 = quanttbl->quantval[5];
+ inverse_DCT = cinfo->idct->inverse_DCT[ci];
+ output_ptr = output_buf[ci];
+ /* Loop over all DCT blocks to be processed. */
+ for (block_row = 0; block_row < block_rows; block_row++) {
+ buffer_ptr = buffer[block_row];
+ if (first_row && block_row == 0)
+ prev_block_row = buffer_ptr;
+ else
+ prev_block_row = buffer[block_row-1];
+ if (last_row && block_row == block_rows-1)
+ next_block_row = buffer_ptr;
+ else
+ next_block_row = buffer[block_row+1];
+ /* We fetch the surrounding DC values using a sliding-register approach.
+ * Initialize all nine here so as to do the right thing on narrow pics.
+ */
+ DC1 = DC2 = DC3 = (int) prev_block_row[0][0];
+ DC4 = DC5 = DC6 = (int) buffer_ptr[0][0];
+ DC7 = DC8 = DC9 = (int) next_block_row[0][0];
+ output_col = 0;
+ last_block_column = compptr->width_in_blocks - 1;
+ for (block_num = 0; block_num <= last_block_column; block_num++) {
+ /* Fetch current DCT block into workspace so we can modify it. */
+ jcopy_block_row(buffer_ptr, (JBLOCKROW) workspace, (JDIMENSION) 1);
+ /* Update DC values */
+ if (block_num < last_block_column) {
+ DC3 = (int) prev_block_row[1][0];
+ DC6 = (int) buffer_ptr[1][0];
+ DC9 = (int) next_block_row[1][0];
+ }
+ /* Compute coefficient estimates per K.8.
+ * An estimate is applied only if coefficient is still zero,
+ * and is not known to be fully accurate.
+ */
+ /* AC01 */
+ if ((Al=coef_bits[1]) != 0 && workspace[1] == 0) {
+ num = 36 * Q00 * (DC4 - DC6);
+ if (num >= 0) {
+ pred = (int) (((Q01<<7) + num) / (Q01<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ } else {
+ pred = (int) (((Q01<<7) - num) / (Q01<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ pred = -pred;
+ }
+ workspace[1] = (JCOEF) pred;
+ }
+ /* AC10 */
+ if ((Al=coef_bits[2]) != 0 && workspace[8] == 0) {
+ num = 36 * Q00 * (DC2 - DC8);
+ if (num >= 0) {
+ pred = (int) (((Q10<<7) + num) / (Q10<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ } else {
+ pred = (int) (((Q10<<7) - num) / (Q10<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ pred = -pred;
+ }
+ workspace[8] = (JCOEF) pred;
+ }
+ /* AC20 */
+ if ((Al=coef_bits[3]) != 0 && workspace[16] == 0) {
+ num = 9 * Q00 * (DC2 + DC8 - 2*DC5);
+ if (num >= 0) {
+ pred = (int) (((Q20<<7) + num) / (Q20<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ } else {
+ pred = (int) (((Q20<<7) - num) / (Q20<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ pred = -pred;
+ }
+ workspace[16] = (JCOEF) pred;
+ }
+ /* AC11 */
+ if ((Al=coef_bits[4]) != 0 && workspace[9] == 0) {
+ num = 5 * Q00 * (DC1 - DC3 - DC7 + DC9);
+ if (num >= 0) {
+ pred = (int) (((Q11<<7) + num) / (Q11<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ } else {
+ pred = (int) (((Q11<<7) - num) / (Q11<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ pred = -pred;
+ }
+ workspace[9] = (JCOEF) pred;
+ }
+ /* AC02 */
+ if ((Al=coef_bits[5]) != 0 && workspace[2] == 0) {
+ num = 9 * Q00 * (DC4 + DC6 - 2*DC5);
+ if (num >= 0) {
+ pred = (int) (((Q02<<7) + num) / (Q02<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ } else {
+ pred = (int) (((Q02<<7) - num) / (Q02<<8));
+ if (Al > 0 && pred >= (1<<Al))
+ pred = (1<<Al)-1;
+ pred = -pred;
+ }
+ workspace[2] = (JCOEF) pred;
+ }
+ /* OK, do the IDCT */
+ (*inverse_DCT) (cinfo, compptr, (JCOEFPTR) workspace,
+ output_ptr, output_col);
+ /* Advance for next column */
+ DC1 = DC2; DC2 = DC3;
+ DC4 = DC5; DC5 = DC6;
+ DC7 = DC8; DC8 = DC9;
+ buffer_ptr++, prev_block_row++, next_block_row++;
+ output_col += compptr->DCT_scaled_size;
+ }
+ output_ptr += compptr->DCT_scaled_size;
+ }
+ }
+
+ if (++(cinfo->output_iMCU_row) < cinfo->total_iMCU_rows)
+ return JPEG_ROW_COMPLETED;
+ return JPEG_SCAN_COMPLETED;
+}
+
+#endif /* BLOCK_SMOOTHING_SUPPORTED */
+
+
+/*
+ * Initialize coefficient buffer controller.
+ */
+
+GLOBAL void
+jinit_d_coef_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
+{
+ my_coef_ptr coef;
+
+ coef = (my_coef_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_coef_controller));
+ cinfo->coef = (struct jpeg_d_coef_controller *) coef;
+ coef->pub.start_input_pass = start_input_pass;
+ coef->pub.start_output_pass = start_output_pass;
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+ coef->coef_bits_latch = NULL;
+#endif
+
+ /* Create the coefficient buffer. */
+ if (need_full_buffer) {
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+ /* Allocate a full-image virtual array for each component, */
+ /* padded to a multiple of samp_factor DCT blocks in each direction. */
+ /* Note we ask for a pre-zeroed array. */
+ int ci, access_rows;
+ jpeg_component_info *compptr;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ access_rows = compptr->v_samp_factor;
+#ifdef BLOCK_SMOOTHING_SUPPORTED
+ /* If block smoothing could be used, need a bigger window */
+ if (cinfo->progressive_mode)
+ access_rows *= 3;
+#endif
+ coef->whole_image[ci] = (*cinfo->mem->request_virt_barray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, TRUE,
+ (JDIMENSION) jround_up((long) compptr->width_in_blocks,
+ (long) compptr->h_samp_factor),
+ (JDIMENSION) jround_up((long) compptr->height_in_blocks,
+ (long) compptr->v_samp_factor),
+ (JDIMENSION) access_rows);
+ }
+ coef->pub.consume_data = consume_data;
+ coef->pub.decompress_data = decompress_data;
+ coef->pub.coef_arrays = coef->whole_image; /* link to virtual arrays */
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ } else {
+ /* We only need a single-MCU buffer. */
+ JBLOCKROW buffer;
+ int i;
+
+ buffer = (JBLOCKROW)
+ (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ D_MAX_BLOCKS_IN_MCU * SIZEOF(JBLOCK));
+ for (i = 0; i < D_MAX_BLOCKS_IN_MCU; i++) {
+ coef->MCU_buffer[i] = buffer + i;
+ }
+ coef->pub.consume_data = dummy_consume_data;
+ coef->pub.decompress_data = decompress_onepass;
+ coef->pub.coef_arrays = NULL; /* flag for no virtual arrays */
+ }
+}
diff --git a/libs/jpeg6/jdcolor.cpp b/libs/jpeg6/jdcolor.cpp
index d360b53..b2bdf6e 100755
--- a/libs/jpeg6/jdcolor.cpp
+++ b/libs/jpeg6/jdcolor.cpp
@@ -1,367 +1,367 @@
-/*
- * jdcolor.c
- *
- * Copyright (C) 1991-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains output colorspace conversion routines.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private subobject */
-
-typedef struct {
- struct jpeg_color_deconverter pub; /* public fields */
-
- /* Private state for YCC->RGB conversion */
- int * Cr_r_tab; /* => table for Cr to R conversion */
- int * Cb_b_tab; /* => table for Cb to B conversion */
- INT32 * Cr_g_tab; /* => table for Cr to G conversion */
- INT32 * Cb_g_tab; /* => table for Cb to G conversion */
-} my_color_deconverter;
-
-typedef my_color_deconverter * my_cconvert_ptr;
-
-
-/**************** YCbCr -> RGB conversion: most common case **************/
-
-/*
- * YCbCr is defined per CCIR 601-1, except that Cb and Cr are
- * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
- * The conversion equations to be implemented are therefore
- * R = Y + 1.40200 * Cr
- * G = Y - 0.34414 * Cb - 0.71414 * Cr
- * B = Y + 1.77200 * Cb
- * where Cb and Cr represent the incoming values less CENTERJSAMPLE.
- * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
- *
- * To avoid floating-point arithmetic, we represent the fractional constants
- * as integers scaled up by 2^16 (about 4 digits precision); we have to divide
- * the products by 2^16, with appropriate rounding, to get the correct answer.
- * Notice that Y, being an integral input, does not contribute any fraction
- * so it need not participate in the rounding.
- *
- * For even more speed, we avoid doing any multiplications in the inner loop
- * by precalculating the constants times Cb and Cr for all possible values.
- * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
- * for 12-bit samples it is still acceptable. It's not very reasonable for
- * 16-bit samples, but if you want lossless storage you shouldn't be changing
- * colorspace anyway.
- * The Cr=>R and Cb=>B values can be rounded to integers in advance; the
- * values for the G calculation are left scaled up, since we must add them
- * together before rounding.
- */
-
-#define SCALEBITS 16 /* speediest right-shift on some machines */
-#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
-#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
-
-
-/*
- * Initialize tables for YCC->RGB colorspace conversion.
- */
-
-LOCAL void
-build_ycc_rgb_table (j_decompress_ptr cinfo)
-{
- my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
- int i;
- INT32 x;
- SHIFT_TEMPS
-
- cconvert->Cr_r_tab = (int *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(int));
- cconvert->Cb_b_tab = (int *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(int));
- cconvert->Cr_g_tab = (INT32 *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(INT32));
- cconvert->Cb_g_tab = (INT32 *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (MAXJSAMPLE+1) * SIZEOF(INT32));
-
- for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
- /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
- /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
- /* Cr=>R value is nearest int to 1.40200 * x */
- cconvert->Cr_r_tab[i] = (int)
- RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
- /* Cb=>B value is nearest int to 1.77200 * x */
- cconvert->Cb_b_tab[i] = (int)
- RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
- /* Cr=>G value is scaled-up -0.71414 * x */
- cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x;
- /* Cb=>G value is scaled-up -0.34414 * x */
- /* We also add in ONE_HALF so that need not do it in inner loop */
- cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
- }
-}
-
-
-/*
- * Convert some rows of samples to the output colorspace.
- *
- * Note that we change from noninterleaved, one-plane-per-component format
- * to interleaved-pixel format. The output buffer is therefore three times
- * as wide as the input buffer.
- * A starting row offset is provided only for the input buffer. The caller
- * can easily adjust the passed output_buf value to accommodate any row
- * offset required on that side.
- */
-
-METHODDEF void
-ycc_rgb_convert (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION input_row,
- JSAMPARRAY output_buf, int num_rows)
-{
- my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
- register int y, cb, cr;
- register JSAMPROW outptr;
- register JSAMPROW inptr0, inptr1, inptr2;
- register JDIMENSION col;
- JDIMENSION num_cols = cinfo->output_width;
- /* copy these pointers into registers if possible */
- register JSAMPLE * range_limit = cinfo->sample_range_limit;
- register int * Crrtab = cconvert->Cr_r_tab;
- register int * Cbbtab = cconvert->Cb_b_tab;
- register INT32 * Crgtab = cconvert->Cr_g_tab;
- register INT32 * Cbgtab = cconvert->Cb_g_tab;
- SHIFT_TEMPS
-
- while (--num_rows >= 0) {
- inptr0 = input_buf[0][input_row];
- inptr1 = input_buf[1][input_row];
- inptr2 = input_buf[2][input_row];
- input_row++;
- outptr = *output_buf++;
- for (col = 0; col < num_cols; col++) {
- y = GETJSAMPLE(inptr0[col]);
- cb = GETJSAMPLE(inptr1[col]);
- cr = GETJSAMPLE(inptr2[col]);
- /* Range-limiting is essential due to noise introduced by DCT losses. */
- outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
- outptr[RGB_GREEN] = range_limit[y +
- ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
- SCALEBITS))];
- outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
- outptr += RGB_PIXELSIZE;
- }
- }
-}
-
-
-/**************** Cases other than YCbCr -> RGB **************/
-
-
-/*
- * Color conversion for no colorspace change: just copy the data,
- * converting from separate-planes to interleaved representation.
- */
-
-METHODDEF void
-null_convert (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION input_row,
- JSAMPARRAY output_buf, int num_rows)
-{
- register JSAMPROW inptr, outptr;
- register JDIMENSION count;
- register int num_components = cinfo->num_components;
- JDIMENSION num_cols = cinfo->output_width;
- int ci;
-
- while (--num_rows >= 0) {
- for (ci = 0; ci < num_components; ci++) {
- inptr = input_buf[ci][input_row];
- outptr = output_buf[0] + ci;
- for (count = num_cols; count > 0; count--) {
- *outptr = *inptr++; /* needn't bother with GETJSAMPLE() here */
- outptr += num_components;
- }
- }
- input_row++;
- output_buf++;
- }
-}
-
-
-/*
- * Color conversion for grayscale: just copy the data.
- * This also works for YCbCr -> grayscale conversion, in which
- * we just copy the Y (luminance) component and ignore chrominance.
- */
-
-METHODDEF void
-grayscale_convert (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION input_row,
- JSAMPARRAY output_buf, int num_rows)
-{
- jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0,
- num_rows, cinfo->output_width);
-}
-
-
-/*
- * Adobe-style YCCK->CMYK conversion.
- * We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same
- * conversion as above, while passing K (black) unchanged.
- * We assume build_ycc_rgb_table has been called.
- */
-
-METHODDEF void
-ycck_cmyk_convert (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION input_row,
- JSAMPARRAY output_buf, int num_rows)
-{
- my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
- register int y, cb, cr;
- register JSAMPROW outptr;
- register JSAMPROW inptr0, inptr1, inptr2, inptr3;
- register JDIMENSION col;
- JDIMENSION num_cols = cinfo->output_width;
- /* copy these pointers into registers if possible */
- register JSAMPLE * range_limit = cinfo->sample_range_limit;
- register int * Crrtab = cconvert->Cr_r_tab;
- register int * Cbbtab = cconvert->Cb_b_tab;
- register INT32 * Crgtab = cconvert->Cr_g_tab;
- register INT32 * Cbgtab = cconvert->Cb_g_tab;
- SHIFT_TEMPS
-
- while (--num_rows >= 0) {
- inptr0 = input_buf[0][input_row];
- inptr1 = input_buf[1][input_row];
- inptr2 = input_buf[2][input_row];
- inptr3 = input_buf[3][input_row];
- input_row++;
- outptr = *output_buf++;
- for (col = 0; col < num_cols; col++) {
- y = GETJSAMPLE(inptr0[col]);
- cb = GETJSAMPLE(inptr1[col]);
- cr = GETJSAMPLE(inptr2[col]);
- /* Range-limiting is essential due to noise introduced by DCT losses. */
- outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */
- outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */
- ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
- SCALEBITS)))];
- outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */
- /* K passes through unchanged */
- outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */
- outptr += 4;
- }
- }
-}
-
-
-/*
- * Empty method for start_pass.
- */
-
-METHODDEF void
-start_pass_dcolor (j_decompress_ptr cinfo)
-{
- /* no work needed */
-}
-
-
-/*
- * Module initialization routine for output colorspace conversion.
- */
-
-GLOBAL void
-jinit_color_deconverter (j_decompress_ptr cinfo)
-{
- my_cconvert_ptr cconvert;
- int ci;
-
- cconvert = (my_cconvert_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_color_deconverter));
- cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert;
- cconvert->pub.start_pass = start_pass_dcolor;
-
- /* Make sure num_components agrees with jpeg_color_space */
- switch (cinfo->jpeg_color_space) {
- case JCS_GRAYSCALE:
- if (cinfo->num_components != 1)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- break;
-
- case JCS_RGB:
- case JCS_YCbCr:
- if (cinfo->num_components != 3)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- break;
-
- case JCS_CMYK:
- case JCS_YCCK:
- if (cinfo->num_components != 4)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- break;
-
- default: /* JCS_UNKNOWN can be anything */
- if (cinfo->num_components < 1)
- ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
- break;
- }
-
- /* Set out_color_components and conversion method based on requested space.
- * Also clear the component_needed flags for any unused components,
- * so that earlier pipeline stages can avoid useless computation.
- */
-
- switch (cinfo->out_color_space) {
- case JCS_GRAYSCALE:
- cinfo->out_color_components = 1;
- if (cinfo->jpeg_color_space == JCS_GRAYSCALE ||
- cinfo->jpeg_color_space == JCS_YCbCr) {
- cconvert->pub.color_convert = grayscale_convert;
- /* For color->grayscale conversion, only the Y (0) component is needed */
- for (ci = 1; ci < cinfo->num_components; ci++)
- cinfo->comp_info[ci].component_needed = FALSE;
- } else
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
-
- case JCS_RGB:
- cinfo->out_color_components = RGB_PIXELSIZE;
- if (cinfo->jpeg_color_space == JCS_YCbCr) {
- cconvert->pub.color_convert = ycc_rgb_convert;
- build_ycc_rgb_table(cinfo);
- } else if (cinfo->jpeg_color_space == JCS_RGB && RGB_PIXELSIZE == 3) {
- cconvert->pub.color_convert = null_convert;
- } else
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
-
- case JCS_CMYK:
- cinfo->out_color_components = 4;
- if (cinfo->jpeg_color_space == JCS_YCCK) {
- cconvert->pub.color_convert = ycck_cmyk_convert;
- build_ycc_rgb_table(cinfo);
- } else if (cinfo->jpeg_color_space == JCS_CMYK) {
- cconvert->pub.color_convert = null_convert;
- } else
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
-
- default:
- /* Permit null conversion to same output space */
- if (cinfo->out_color_space == cinfo->jpeg_color_space) {
- cinfo->out_color_components = cinfo->num_components;
- cconvert->pub.color_convert = null_convert;
- } else /* unsupported non-null conversion */
- ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
- break;
- }
-
- if (cinfo->quantize_colors)
- cinfo->output_components = 1; /* single colormapped output component */
- else
- cinfo->output_components = cinfo->out_color_components;
-}
+/*
+ * jdcolor.c
+ *
+ * Copyright (C) 1991-1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains output colorspace conversion routines.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Private subobject */
+
+typedef struct {
+ struct jpeg_color_deconverter pub; /* public fields */
+
+ /* Private state for YCC->RGB conversion */
+ int * Cr_r_tab; /* => table for Cr to R conversion */
+ int * Cb_b_tab; /* => table for Cb to B conversion */
+ INT32 * Cr_g_tab; /* => table for Cr to G conversion */
+ INT32 * Cb_g_tab; /* => table for Cb to G conversion */
+} my_color_deconverter;
+
+typedef my_color_deconverter * my_cconvert_ptr;
+
+
+/**************** YCbCr -> RGB conversion: most common case **************/
+
+/*
+ * YCbCr is defined per CCIR 601-1, except that Cb and Cr are
+ * normalized to the range 0..MAXJSAMPLE rather than -0.5 .. 0.5.
+ * The conversion equations to be implemented are therefore
+ * R = Y + 1.40200 * Cr
+ * G = Y - 0.34414 * Cb - 0.71414 * Cr
+ * B = Y + 1.77200 * Cb
+ * where Cb and Cr represent the incoming values less CENTERJSAMPLE.
+ * (These numbers are derived from TIFF 6.0 section 21, dated 3-June-92.)
+ *
+ * To avoid floating-point arithmetic, we represent the fractional constants
+ * as integers scaled up by 2^16 (about 4 digits precision); we have to divide
+ * the products by 2^16, with appropriate rounding, to get the correct answer.
+ * Notice that Y, being an integral input, does not contribute any fraction
+ * so it need not participate in the rounding.
+ *
+ * For even more speed, we avoid doing any multiplications in the inner loop
+ * by precalculating the constants times Cb and Cr for all possible values.
+ * For 8-bit JSAMPLEs this is very reasonable (only 256 entries per table);
+ * for 12-bit samples it is still acceptable. It's not very reasonable for
+ * 16-bit samples, but if you want lossless storage you shouldn't be changing
+ * colorspace anyway.
+ * The Cr=>R and Cb=>B values can be rounded to integers in advance; the
+ * values for the G calculation are left scaled up, since we must add them
+ * together before rounding.
+ */
+
+#define SCALEBITS 16 /* speediest right-shift on some machines */
+#define ONE_HALF ((INT32) 1 << (SCALEBITS-1))
+#define FIX(x) ((INT32) ((x) * (1L<<SCALEBITS) + 0.5))
+
+
+/*
+ * Initialize tables for YCC->RGB colorspace conversion.
+ */
+
+LOCAL void
+build_ycc_rgb_table (j_decompress_ptr cinfo)
+{
+ my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+ int i;
+ INT32 x;
+ SHIFT_TEMPS
+
+ cconvert->Cr_r_tab = (int *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(int));
+ cconvert->Cb_b_tab = (int *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(int));
+ cconvert->Cr_g_tab = (INT32 *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(INT32));
+ cconvert->Cb_g_tab = (INT32 *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (MAXJSAMPLE+1) * SIZEOF(INT32));
+
+ for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) {
+ /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */
+ /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */
+ /* Cr=>R value is nearest int to 1.40200 * x */
+ cconvert->Cr_r_tab[i] = (int)
+ RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS);
+ /* Cb=>B value is nearest int to 1.77200 * x */
+ cconvert->Cb_b_tab[i] = (int)
+ RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS);
+ /* Cr=>G value is scaled-up -0.71414 * x */
+ cconvert->Cr_g_tab[i] = (- FIX(0.71414)) * x;
+ /* Cb=>G value is scaled-up -0.34414 * x */
+ /* We also add in ONE_HALF so that need not do it in inner loop */
+ cconvert->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF;
+ }
+}
+
+
+/*
+ * Convert some rows of samples to the output colorspace.
+ *
+ * Note that we change from noninterleaved, one-plane-per-component format
+ * to interleaved-pixel format. The output buffer is therefore three times
+ * as wide as the input buffer.
+ * A starting row offset is provided only for the input buffer. The caller
+ * can easily adjust the passed output_buf value to accommodate any row
+ * offset required on that side.
+ */
+
+METHODDEF void
+ycc_rgb_convert (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows)
+{
+ my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+ register int y, cb, cr;
+ register JSAMPROW outptr;
+ register JSAMPROW inptr0, inptr1, inptr2;
+ register JDIMENSION col;
+ JDIMENSION num_cols = cinfo->output_width;
+ /* copy these pointers into registers if possible */
+ register JSAMPLE * range_limit = cinfo->sample_range_limit;
+ register int * Crrtab = cconvert->Cr_r_tab;
+ register int * Cbbtab = cconvert->Cb_b_tab;
+ register INT32 * Crgtab = cconvert->Cr_g_tab;
+ register INT32 * Cbgtab = cconvert->Cb_g_tab;
+ SHIFT_TEMPS
+
+ while (--num_rows >= 0) {
+ inptr0 = input_buf[0][input_row];
+ inptr1 = input_buf[1][input_row];
+ inptr2 = input_buf[2][input_row];
+ input_row++;
+ outptr = *output_buf++;
+ for (col = 0; col < num_cols; col++) {
+ y = GETJSAMPLE(inptr0[col]);
+ cb = GETJSAMPLE(inptr1[col]);
+ cr = GETJSAMPLE(inptr2[col]);
+ /* Range-limiting is essential due to noise introduced by DCT losses. */
+ outptr[RGB_RED] = range_limit[y + Crrtab[cr]];
+ outptr[RGB_GREEN] = range_limit[y +
+ ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
+ SCALEBITS))];
+ outptr[RGB_BLUE] = range_limit[y + Cbbtab[cb]];
+ outptr += RGB_PIXELSIZE;
+ }
+ }
+}
+
+
+/**************** Cases other than YCbCr -> RGB **************/
+
+
+/*
+ * Color conversion for no colorspace change: just copy the data,
+ * converting from separate-planes to interleaved representation.
+ */
+
+METHODDEF void
+null_convert (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows)
+{
+ register JSAMPROW inptr, outptr;
+ register JDIMENSION count;
+ register int num_components = cinfo->num_components;
+ JDIMENSION num_cols = cinfo->output_width;
+ int ci;
+
+ while (--num_rows >= 0) {
+ for (ci = 0; ci < num_components; ci++) {
+ inptr = input_buf[ci][input_row];
+ outptr = output_buf[0] + ci;
+ for (count = num_cols; count > 0; count--) {
+ *outptr = *inptr++; /* needn't bother with GETJSAMPLE() here */
+ outptr += num_components;
+ }
+ }
+ input_row++;
+ output_buf++;
+ }
+}
+
+
+/*
+ * Color conversion for grayscale: just copy the data.
+ * This also works for YCbCr -> grayscale conversion, in which
+ * we just copy the Y (luminance) component and ignore chrominance.
+ */
+
+METHODDEF void
+grayscale_convert (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows)
+{
+ jcopy_sample_rows(input_buf[0], (int) input_row, output_buf, 0,
+ num_rows, cinfo->output_width);
+}
+
+
+/*
+ * Adobe-style YCCK->CMYK conversion.
+ * We convert YCbCr to R=1-C, G=1-M, and B=1-Y using the same
+ * conversion as above, while passing K (black) unchanged.
+ * We assume build_ycc_rgb_table has been called.
+ */
+
+METHODDEF void
+ycck_cmyk_convert (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows)
+{
+ my_cconvert_ptr cconvert = (my_cconvert_ptr) cinfo->cconvert;
+ register int y, cb, cr;
+ register JSAMPROW outptr;
+ register JSAMPROW inptr0, inptr1, inptr2, inptr3;
+ register JDIMENSION col;
+ JDIMENSION num_cols = cinfo->output_width;
+ /* copy these pointers into registers if possible */
+ register JSAMPLE * range_limit = cinfo->sample_range_limit;
+ register int * Crrtab = cconvert->Cr_r_tab;
+ register int * Cbbtab = cconvert->Cb_b_tab;
+ register INT32 * Crgtab = cconvert->Cr_g_tab;
+ register INT32 * Cbgtab = cconvert->Cb_g_tab;
+ SHIFT_TEMPS
+
+ while (--num_rows >= 0) {
+ inptr0 = input_buf[0][input_row];
+ inptr1 = input_buf[1][input_row];
+ inptr2 = input_buf[2][input_row];
+ inptr3 = input_buf[3][input_row];
+ input_row++;
+ outptr = *output_buf++;
+ for (col = 0; col < num_cols; col++) {
+ y = GETJSAMPLE(inptr0[col]);
+ cb = GETJSAMPLE(inptr1[col]);
+ cr = GETJSAMPLE(inptr2[col]);
+ /* Range-limiting is essential due to noise introduced by DCT losses. */
+ outptr[0] = range_limit[MAXJSAMPLE - (y + Crrtab[cr])]; /* red */
+ outptr[1] = range_limit[MAXJSAMPLE - (y + /* green */
+ ((int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr],
+ SCALEBITS)))];
+ outptr[2] = range_limit[MAXJSAMPLE - (y + Cbbtab[cb])]; /* blue */
+ /* K passes through unchanged */
+ outptr[3] = inptr3[col]; /* don't need GETJSAMPLE here */
+ outptr += 4;
+ }
+ }
+}
+
+
+/*
+ * Empty method for start_pass.
+ */
+
+METHODDEF void
+start_pass_dcolor (j_decompress_ptr cinfo)
+{
+ /* no work needed */
+}
+
+
+/*
+ * Module initialization routine for output colorspace conversion.
+ */
+
+GLOBAL void
+jinit_color_deconverter (j_decompress_ptr cinfo)
+{
+ my_cconvert_ptr cconvert;
+ int ci;
+
+ cconvert = (my_cconvert_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_color_deconverter));
+ cinfo->cconvert = (struct jpeg_color_deconverter *) cconvert;
+ cconvert->pub.start_pass = start_pass_dcolor;
+
+ /* Make sure num_components agrees with jpeg_color_space */
+ switch (cinfo->jpeg_color_space) {
+ case JCS_GRAYSCALE:
+ if (cinfo->num_components != 1)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ break;
+
+ case JCS_RGB:
+ case JCS_YCbCr:
+ if (cinfo->num_components != 3)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ break;
+
+ case JCS_CMYK:
+ case JCS_YCCK:
+ if (cinfo->num_components != 4)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ break;
+
+ default: /* JCS_UNKNOWN can be anything */
+ if (cinfo->num_components < 1)
+ ERREXIT(cinfo, JERR_BAD_J_COLORSPACE);
+ break;
+ }
+
+ /* Set out_color_components and conversion method based on requested space.
+ * Also clear the component_needed flags for any unused components,
+ * so that earlier pipeline stages can avoid useless computation.
+ */
+
+ switch (cinfo->out_color_space) {
+ case JCS_GRAYSCALE:
+ cinfo->out_color_components = 1;
+ if (cinfo->jpeg_color_space == JCS_GRAYSCALE ||
+ cinfo->jpeg_color_space == JCS_YCbCr) {
+ cconvert->pub.color_convert = grayscale_convert;
+ /* For color->grayscale conversion, only the Y (0) component is needed */
+ for (ci = 1; ci < cinfo->num_components; ci++)
+ cinfo->comp_info[ci].component_needed = FALSE;
+ } else
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+
+ case JCS_RGB:
+ cinfo->out_color_components = RGB_PIXELSIZE;
+ if (cinfo->jpeg_color_space == JCS_YCbCr) {
+ cconvert->pub.color_convert = ycc_rgb_convert;
+ build_ycc_rgb_table(cinfo);
+ } else if (cinfo->jpeg_color_space == JCS_RGB && RGB_PIXELSIZE == 3) {
+ cconvert->pub.color_convert = null_convert;
+ } else
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+
+ case JCS_CMYK:
+ cinfo->out_color_components = 4;
+ if (cinfo->jpeg_color_space == JCS_YCCK) {
+ cconvert->pub.color_convert = ycck_cmyk_convert;
+ build_ycc_rgb_table(cinfo);
+ } else if (cinfo->jpeg_color_space == JCS_CMYK) {
+ cconvert->pub.color_convert = null_convert;
+ } else
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+
+ default:
+ /* Permit null conversion to same output space */
+ if (cinfo->out_color_space == cinfo->jpeg_color_space) {
+ cinfo->out_color_components = cinfo->num_components;
+ cconvert->pub.color_convert = null_convert;
+ } else /* unsupported non-null conversion */
+ ERREXIT(cinfo, JERR_CONVERSION_NOTIMPL);
+ break;
+ }
+
+ if (cinfo->quantize_colors)
+ cinfo->output_components = 1; /* single colormapped output component */
+ else
+ cinfo->output_components = cinfo->out_color_components;
+}
diff --git a/libs/jpeg6/jdct.h b/libs/jpeg6/jdct.h
index 1d66d4f..3ce790b 100755
--- a/libs/jpeg6/jdct.h
+++ b/libs/jpeg6/jdct.h
@@ -1,176 +1,176 @@
-/*
- * jdct.h
- *
- * Copyright (C) 1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This include file contains common declarations for the forward and
- * inverse DCT modules. These declarations are private to the DCT managers
- * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
- * The individual DCT algorithms are kept in separate files to ease
- * machine-dependent tuning (e.g., assembly coding).
- */
-
-
-/*
- * A forward DCT routine is given a pointer to a work area of type DCTELEM[];
- * the DCT is to be performed in-place in that buffer. Type DCTELEM is int
- * for 8-bit samples, INT32 for 12-bit samples. (NOTE: Floating-point DCT
- * implementations use an array of type FAST_FLOAT, instead.)
- * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
- * The DCT outputs are returned scaled up by a factor of 8; they therefore
- * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
- * convention improves accuracy in integer implementations and saves some
- * work in floating-point ones.
- * Quantization of the output coefficients is done by jcdctmgr.c.
- */
-
-#if BITS_IN_JSAMPLE == 8
-typedef int DCTELEM; /* 16 or 32 bits is fine */
-#else
-typedef INT32 DCTELEM; /* must have 32 bits */
-#endif
-
-typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
-typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
-
-
-/*
- * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
- * to an output sample array. The routine must dequantize the input data as
- * well as perform the IDCT; for dequantization, it uses the multiplier table
- * pointed to by compptr->dct_table. The output data is to be placed into the
- * sample array starting at a specified column. (Any row offset needed will
- * be applied to the array pointer before it is passed to the IDCT code.)
- * Note that the number of samples emitted by the IDCT routine is
- * DCT_scaled_size * DCT_scaled_size.
- */
-
-/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
-
-/*
- * Each IDCT routine has its own ideas about the best dct_table element type.
- */
-
-typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
-#if BITS_IN_JSAMPLE == 8
-typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
-#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
-#else
-typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
-#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
-#endif
-typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
-
-
-/*
- * Each IDCT routine is responsible for range-limiting its results and
- * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
- * be quite far out of range if the input data is corrupt, so a bulletproof
- * range-limiting step is required. We use a mask-and-table-lookup method
- * to do the combined operations quickly. See the comments with
- * prepare_range_limit_table (in jdmaster.c) for more info.
- */
-
-#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
-
-#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
-
-
-/* Short forms of external names for systems with brain-damaged linkers. */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jpeg_fdct_islow jFDislow
-#define jpeg_fdct_ifast jFDifast
-#define jpeg_fdct_float jFDfloat
-#define jpeg_idct_islow jRDislow
-#define jpeg_idct_ifast jRDifast
-#define jpeg_idct_float jRDfloat
-#define jpeg_idct_4x4 jRD4x4
-#define jpeg_idct_2x2 jRD2x2
-#define jpeg_idct_1x1 jRD1x1
-#endif /* NEED_SHORT_EXTERNAL_NAMES */
-
-/* Extern declarations for the forward and inverse DCT routines. */
-
-EXTERN void jpeg_fdct_islow JPP((DCTELEM * data));
-EXTERN void jpeg_fdct_ifast JPP((DCTELEM * data));
-EXTERN void jpeg_fdct_float JPP((FAST_FLOAT * data));
-
-EXTERN void jpeg_idct_islow
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN void jpeg_idct_ifast
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN void jpeg_idct_float
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN void jpeg_idct_4x4
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN void jpeg_idct_2x2
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-EXTERN void jpeg_idct_1x1
- JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
-
-
-/*
- * Macros for handling fixed-point arithmetic; these are used by many
- * but not all of the DCT/IDCT modules.
- *
- * All values are expected to be of type INT32.
- * Fractional constants are scaled left by CONST_BITS bits.
- * CONST_BITS is defined within each module using these macros,
- * and may differ from one module to the next.
- */
-
-#define ONE ((INT32) 1)
-#define CONST_SCALE (ONE << CONST_BITS)
-
-/* Convert a positive real constant to an integer scaled by CONST_SCALE.
- * Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
- * thus causing a lot of useless floating-point operations at run time.
- */
-
-#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
-
-/* Descale and correctly round an INT32 value that's scaled by N bits.
- * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
- * the fudge factor is correct for either sign of X.
- */
-
-#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
-
-/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
- * This macro is used only when the two inputs will actually be no more than
- * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
- * full 32x32 multiply. This provides a useful speedup on many machines.
- * Unfortunately there is no way to specify a 16x16->32 multiply portably
- * in C, but some C compilers will do the right thing if you provide the
- * correct combination of casts.
- */
-
-#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
-#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
-#endif
-#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
-#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
-#endif
-
-#ifndef MULTIPLY16C16 /* default definition */
-#define MULTIPLY16C16(var,const) ((var) * (const))
-#endif
-
-/* Same except both inputs are variables. */
-
-#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
-#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
-#endif
-
-#ifndef MULTIPLY16V16 /* default definition */
-#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
-#endif
+/*
+ * jdct.h
+ *
+ * Copyright (C) 1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This include file contains common declarations for the forward and
+ * inverse DCT modules. These declarations are private to the DCT managers
+ * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
+ * The individual DCT algorithms are kept in separate files to ease
+ * machine-dependent tuning (e.g., assembly coding).
+ */
+
+
+/*
+ * A forward DCT routine is given a pointer to a work area of type DCTELEM[];
+ * the DCT is to be performed in-place in that buffer. Type DCTELEM is int
+ * for 8-bit samples, INT32 for 12-bit samples. (NOTE: Floating-point DCT
+ * implementations use an array of type FAST_FLOAT, instead.)
+ * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
+ * The DCT outputs are returned scaled up by a factor of 8; they therefore
+ * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
+ * convention improves accuracy in integer implementations and saves some
+ * work in floating-point ones.
+ * Quantization of the output coefficients is done by jcdctmgr.c.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+typedef int DCTELEM; /* 16 or 32 bits is fine */
+#else
+typedef INT32 DCTELEM; /* must have 32 bits */
+#endif
+
+typedef JMETHOD(void, forward_DCT_method_ptr, (DCTELEM * data));
+typedef JMETHOD(void, float_DCT_method_ptr, (FAST_FLOAT * data));
+
+
+/*
+ * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
+ * to an output sample array. The routine must dequantize the input data as
+ * well as perform the IDCT; for dequantization, it uses the multiplier table
+ * pointed to by compptr->dct_table. The output data is to be placed into the
+ * sample array starting at a specified column. (Any row offset needed will
+ * be applied to the array pointer before it is passed to the IDCT code.)
+ * Note that the number of samples emitted by the IDCT routine is
+ * DCT_scaled_size * DCT_scaled_size.
+ */
+
+/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
+
+/*
+ * Each IDCT routine has its own ideas about the best dct_table element type.
+ */
+
+typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
+#if BITS_IN_JSAMPLE == 8
+typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
+#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
+#else
+typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
+#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
+#endif
+typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
+
+
+/*
+ * Each IDCT routine is responsible for range-limiting its results and
+ * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
+ * be quite far out of range if the input data is corrupt, so a bulletproof
+ * range-limiting step is required. We use a mask-and-table-lookup method
+ * to do the combined operations quickly. See the comments with
+ * prepare_range_limit_table (in jdmaster.c) for more info.
+ */
+
+#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
+
+#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
+
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_fdct_islow jFDislow
+#define jpeg_fdct_ifast jFDifast
+#define jpeg_fdct_float jFDfloat
+#define jpeg_idct_islow jRDislow
+#define jpeg_idct_ifast jRDifast
+#define jpeg_idct_float jRDfloat
+#define jpeg_idct_4x4 jRD4x4
+#define jpeg_idct_2x2 jRD2x2
+#define jpeg_idct_1x1 jRD1x1
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+/* Extern declarations for the forward and inverse DCT routines. */
+
+EXTERN void jpeg_fdct_islow JPP((DCTELEM * data));
+EXTERN void jpeg_fdct_ifast JPP((DCTELEM * data));
+EXTERN void jpeg_fdct_float JPP((FAST_FLOAT * data));
+
+EXTERN void jpeg_idct_islow
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN void jpeg_idct_ifast
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN void jpeg_idct_float
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN void jpeg_idct_4x4
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN void jpeg_idct_2x2
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+EXTERN void jpeg_idct_1x1
+ JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
+
+
+/*
+ * Macros for handling fixed-point arithmetic; these are used by many
+ * but not all of the DCT/IDCT modules.
+ *
+ * All values are expected to be of type INT32.
+ * Fractional constants are scaled left by CONST_BITS bits.
+ * CONST_BITS is defined within each module using these macros,
+ * and may differ from one module to the next.
+ */
+
+#define ONE ((INT32) 1)
+#define CONST_SCALE (ONE << CONST_BITS)
+
+/* Convert a positive real constant to an integer scaled by CONST_SCALE.
+ * Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
+ * thus causing a lot of useless floating-point operations at run time.
+ */
+
+#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
+
+/* Descale and correctly round an INT32 value that's scaled by N bits.
+ * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
+ * the fudge factor is correct for either sign of X.
+ */
+
+#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
+
+/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
+ * This macro is used only when the two inputs will actually be no more than
+ * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
+ * full 32x32 multiply. This provides a useful speedup on many machines.
+ * Unfortunately there is no way to specify a 16x16->32 multiply portably
+ * in C, but some C compilers will do the right thing if you provide the
+ * correct combination of casts.
+ */
+
+#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
+#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
+#endif
+#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
+#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
+#endif
+
+#ifndef MULTIPLY16C16 /* default definition */
+#define MULTIPLY16C16(var,const) ((var) * (const))
+#endif
+
+/* Same except both inputs are variables. */
+
+#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
+#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
+#endif
+
+#ifndef MULTIPLY16V16 /* default definition */
+#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
+#endif
diff --git a/libs/jpeg6/jddctmgr.cpp b/libs/jpeg6/jddctmgr.cpp
index ba01fc6..71215f1 100755
--- a/libs/jpeg6/jddctmgr.cpp
+++ b/libs/jpeg6/jddctmgr.cpp
@@ -1,270 +1,270 @@
-/*
- * jddctmgr.c
- *
- * Copyright (C) 1994-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the inverse-DCT management logic.
- * This code selects a particular IDCT implementation to be used,
- * and it performs related housekeeping chores. No code in this file
- * is executed per IDCT step, only during output pass setup.
- *
- * Note that the IDCT routines are responsible for performing coefficient
- * dequantization as well as the IDCT proper. This module sets up the
- * dequantization multiplier table needed by the IDCT routine.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
-
-
-/*
- * The decompressor input side (jdinput.c) saves away the appropriate
- * quantization table for each component at the start of the first scan
- * involving that component. (This is necessary in order to correctly
- * decode files that reuse Q-table slots.)
- * When we are ready to make an output pass, the saved Q-table is converted
- * to a multiplier table that will actually be used by the IDCT routine.
- * The multiplier table contents are IDCT-method-dependent. To support
- * application changes in IDCT method between scans, we can remake the
- * multiplier tables if necessary.
- * In buffered-image mode, the first output pass may occur before any data
- * has been seen for some components, and thus before their Q-tables have
- * been saved away. To handle this case, multiplier tables are preset
- * to zeroes; the result of the IDCT will be a neutral gray level.
- */
-
-
-/* Private subobject for this module */
-
-typedef struct {
- struct jpeg_inverse_dct pub; /* public fields */
-
- /* This array contains the IDCT method code that each multiplier table
- * is currently set up for, or -1 if it's not yet set up.
- * The actual multiplier tables are pointed to by dct_table in the
- * per-component comp_info structures.
- */
- int cur_method[MAX_COMPONENTS];
-} my_idct_controller;
-
-typedef my_idct_controller * my_idct_ptr;
-
-
-/* Allocated multiplier tables: big enough for any supported variant */
-
-typedef union {
- ISLOW_MULT_TYPE islow_array[DCTSIZE2];
-#ifdef DCT_IFAST_SUPPORTED
- IFAST_MULT_TYPE ifast_array[DCTSIZE2];
-#endif
-#ifdef DCT_FLOAT_SUPPORTED
- FLOAT_MULT_TYPE float_array[DCTSIZE2];
-#endif
-} multiplier_table;
-
-
-/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
- * so be sure to compile that code if either ISLOW or SCALING is requested.
- */
-#ifdef DCT_ISLOW_SUPPORTED
-#define PROVIDE_ISLOW_TABLES
-#else
-#ifdef IDCT_SCALING_SUPPORTED
-#define PROVIDE_ISLOW_TABLES
-#endif
-#endif
-
-
-/*
- * Prepare for an output pass.
- * Here we select the proper IDCT routine for each component and build
- * a matching multiplier table.
- */
-
-METHODDEF void
-start_pass (j_decompress_ptr cinfo)
-{
- my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
- int ci, i;
- jpeg_component_info *compptr;
- int method = 0;
- inverse_DCT_method_ptr method_ptr = NULL;
- JQUANT_TBL * qtbl;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Select the proper IDCT routine for this component's scaling */
- switch (compptr->DCT_scaled_size) {
-#ifdef IDCT_SCALING_SUPPORTED
- case 1:
- method_ptr = jpeg_idct_1x1;
- method = JDCT_ISLOW; /* jidctred uses islow-style table */
- break;
- case 2:
- method_ptr = jpeg_idct_2x2;
- method = JDCT_ISLOW; /* jidctred uses islow-style table */
- break;
- case 4:
- method_ptr = jpeg_idct_4x4;
- method = JDCT_ISLOW; /* jidctred uses islow-style table */
- break;
-#endif
- case DCTSIZE:
- switch (cinfo->dct_method) {
-#ifdef DCT_ISLOW_SUPPORTED
- case JDCT_ISLOW:
- method_ptr = jpeg_idct_islow;
- method = JDCT_ISLOW;
- break;
-#endif
-#ifdef DCT_IFAST_SUPPORTED
- case JDCT_IFAST:
- method_ptr = jpeg_idct_ifast;
- method = JDCT_IFAST;
- break;
-#endif
-#ifdef DCT_FLOAT_SUPPORTED
- case JDCT_FLOAT:
- method_ptr = jpeg_idct_float;
- method = JDCT_FLOAT;
- break;
-#endif
- default:
- ERREXIT(cinfo, JERR_NOT_COMPILED);
- break;
- }
- break;
- default:
- ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
- break;
- }
- idct->pub.inverse_DCT[ci] = method_ptr;
- /* Create multiplier table from quant table.
- * However, we can skip this if the component is uninteresting
- * or if we already built the table. Also, if no quant table
- * has yet been saved for the component, we leave the
- * multiplier table all-zero; we'll be reading zeroes from the
- * coefficient controller's buffer anyway.
- */
- if (! compptr->component_needed || idct->cur_method[ci] == method)
- continue;
- qtbl = compptr->quant_table;
- if (qtbl == NULL) /* happens if no data yet for component */
- continue;
- idct->cur_method[ci] = method;
- switch (method) {
-#ifdef PROVIDE_ISLOW_TABLES
- case JDCT_ISLOW:
- {
- /* For LL&M IDCT method, multipliers are equal to raw quantization
- * coefficients, but are stored in natural order as ints.
- */
- ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
- for (i = 0; i < DCTSIZE2; i++) {
- ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[jpeg_zigzag_order[i]];
- }
- }
- break;
-#endif
-#ifdef DCT_IFAST_SUPPORTED
- case JDCT_IFAST:
- {
- /* For AA&N IDCT method, multipliers are equal to quantization
- * coefficients scaled by scalefactor[row]*scalefactor[col], where
- * scalefactor[0] = 1
- * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
- * For integer operation, the multiplier table is to be scaled by
- * IFAST_SCALE_BITS. The multipliers are stored in natural order.
- */
- IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
-#define CONST_BITS 14
- static const INT16 aanscales[DCTSIZE2] = {
- /* precomputed values scaled up by 14 bits */
- 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
- 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
- 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
- 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
- 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
- 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
- 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
- 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
- };
- SHIFT_TEMPS
-
- for (i = 0; i < DCTSIZE2; i++) {
- ifmtbl[i] = (IFAST_MULT_TYPE)
- DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[jpeg_zigzag_order[i]],
- (INT32) aanscales[i]),
- CONST_BITS-IFAST_SCALE_BITS);
- }
- }
- break;
-#endif
-#ifdef DCT_FLOAT_SUPPORTED
- case JDCT_FLOAT:
- {
- /* For float AA&N IDCT method, multipliers are equal to quantization
- * coefficients scaled by scalefactor[row]*scalefactor[col], where
- * scalefactor[0] = 1
- * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
- * The multipliers are stored in natural order.
- */
- FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
- int row, col;
- static const double aanscalefactor[DCTSIZE] = {
- 1.0, 1.387039845, 1.306562965, 1.175875602,
- 1.0, 0.785694958, 0.541196100, 0.275899379
- };
-
- i = 0;
- for (row = 0; row < DCTSIZE; row++) {
- for (col = 0; col < DCTSIZE; col++) {
- fmtbl[i] = (FLOAT_MULT_TYPE)
- ((double) qtbl->quantval[jpeg_zigzag_order[i]] *
- aanscalefactor[row] * aanscalefactor[col]);
- i++;
- }
- }
- }
- break;
-#endif
- default:
- ERREXIT(cinfo, JERR_NOT_COMPILED);
- break;
- }
- }
-}
-
-
-/*
- * Initialize IDCT manager.
- */
-
-GLOBAL void
-jinit_inverse_dct (j_decompress_ptr cinfo)
-{
- my_idct_ptr idct;
- int ci;
- jpeg_component_info *compptr;
-
- idct = (my_idct_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_idct_controller));
- cinfo->idct = (struct jpeg_inverse_dct *) idct;
- idct->pub.start_pass = start_pass;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Allocate and pre-zero a multiplier table for each component */
- compptr->dct_table =
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(multiplier_table));
- MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
- /* Mark multiplier table not yet set up for any method */
- idct->cur_method[ci] = -1;
- }
-}
+/*
+ * jddctmgr.c
+ *
+ * Copyright (C) 1994-1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the inverse-DCT management logic.
+ * This code selects a particular IDCT implementation to be used,
+ * and it performs related housekeeping chores. No code in this file
+ * is executed per IDCT step, only during output pass setup.
+ *
+ * Note that the IDCT routines are responsible for performing coefficient
+ * dequantization as well as the IDCT proper. This module sets up the
+ * dequantization multiplier table needed by the IDCT routine.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+
+/*
+ * The decompressor input side (jdinput.c) saves away the appropriate
+ * quantization table for each component at the start of the first scan
+ * involving that component. (This is necessary in order to correctly
+ * decode files that reuse Q-table slots.)
+ * When we are ready to make an output pass, the saved Q-table is converted
+ * to a multiplier table that will actually be used by the IDCT routine.
+ * The multiplier table contents are IDCT-method-dependent. To support
+ * application changes in IDCT method between scans, we can remake the
+ * multiplier tables if necessary.
+ * In buffered-image mode, the first output pass may occur before any data
+ * has been seen for some components, and thus before their Q-tables have
+ * been saved away. To handle this case, multiplier tables are preset
+ * to zeroes; the result of the IDCT will be a neutral gray level.
+ */
+
+
+/* Private subobject for this module */
+
+typedef struct {
+ struct jpeg_inverse_dct pub; /* public fields */
+
+ /* This array contains the IDCT method code that each multiplier table
+ * is currently set up for, or -1 if it's not yet set up.
+ * The actual multiplier tables are pointed to by dct_table in the
+ * per-component comp_info structures.
+ */
+ int cur_method[MAX_COMPONENTS];
+} my_idct_controller;
+
+typedef my_idct_controller * my_idct_ptr;
+
+
+/* Allocated multiplier tables: big enough for any supported variant */
+
+typedef union {
+ ISLOW_MULT_TYPE islow_array[DCTSIZE2];
+#ifdef DCT_IFAST_SUPPORTED
+ IFAST_MULT_TYPE ifast_array[DCTSIZE2];
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+ FLOAT_MULT_TYPE float_array[DCTSIZE2];
+#endif
+} multiplier_table;
+
+
+/* The current scaled-IDCT routines require ISLOW-style multiplier tables,
+ * so be sure to compile that code if either ISLOW or SCALING is requested.
+ */
+#ifdef DCT_ISLOW_SUPPORTED
+#define PROVIDE_ISLOW_TABLES
+#else
+#ifdef IDCT_SCALING_SUPPORTED
+#define PROVIDE_ISLOW_TABLES
+#endif
+#endif
+
+
+/*
+ * Prepare for an output pass.
+ * Here we select the proper IDCT routine for each component and build
+ * a matching multiplier table.
+ */
+
+METHODDEF void
+start_pass (j_decompress_ptr cinfo)
+{
+ my_idct_ptr idct = (my_idct_ptr) cinfo->idct;
+ int ci, i;
+ jpeg_component_info *compptr;
+ int method = 0;
+ inverse_DCT_method_ptr method_ptr = NULL;
+ JQUANT_TBL * qtbl;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Select the proper IDCT routine for this component's scaling */
+ switch (compptr->DCT_scaled_size) {
+#ifdef IDCT_SCALING_SUPPORTED
+ case 1:
+ method_ptr = jpeg_idct_1x1;
+ method = JDCT_ISLOW; /* jidctred uses islow-style table */
+ break;
+ case 2:
+ method_ptr = jpeg_idct_2x2;
+ method = JDCT_ISLOW; /* jidctred uses islow-style table */
+ break;
+ case 4:
+ method_ptr = jpeg_idct_4x4;
+ method = JDCT_ISLOW; /* jidctred uses islow-style table */
+ break;
+#endif
+ case DCTSIZE:
+ switch (cinfo->dct_method) {
+#ifdef DCT_ISLOW_SUPPORTED
+ case JDCT_ISLOW:
+ method_ptr = jpeg_idct_islow;
+ method = JDCT_ISLOW;
+ break;
+#endif
+#ifdef DCT_IFAST_SUPPORTED
+ case JDCT_IFAST:
+ method_ptr = jpeg_idct_ifast;
+ method = JDCT_IFAST;
+ break;
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+ case JDCT_FLOAT:
+ method_ptr = jpeg_idct_float;
+ method = JDCT_FLOAT;
+ break;
+#endif
+ default:
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+ break;
+ }
+ break;
+ default:
+ ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size);
+ break;
+ }
+ idct->pub.inverse_DCT[ci] = method_ptr;
+ /* Create multiplier table from quant table.
+ * However, we can skip this if the component is uninteresting
+ * or if we already built the table. Also, if no quant table
+ * has yet been saved for the component, we leave the
+ * multiplier table all-zero; we'll be reading zeroes from the
+ * coefficient controller's buffer anyway.
+ */
+ if (! compptr->component_needed || idct->cur_method[ci] == method)
+ continue;
+ qtbl = compptr->quant_table;
+ if (qtbl == NULL) /* happens if no data yet for component */
+ continue;
+ idct->cur_method[ci] = method;
+ switch (method) {
+#ifdef PROVIDE_ISLOW_TABLES
+ case JDCT_ISLOW:
+ {
+ /* For LL&M IDCT method, multipliers are equal to raw quantization
+ * coefficients, but are stored in natural order as ints.
+ */
+ ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table;
+ for (i = 0; i < DCTSIZE2; i++) {
+ ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[jpeg_zigzag_order[i]];
+ }
+ }
+ break;
+#endif
+#ifdef DCT_IFAST_SUPPORTED
+ case JDCT_IFAST:
+ {
+ /* For AA&N IDCT method, multipliers are equal to quantization
+ * coefficients scaled by scalefactor[row]*scalefactor[col], where
+ * scalefactor[0] = 1
+ * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
+ * For integer operation, the multiplier table is to be scaled by
+ * IFAST_SCALE_BITS. The multipliers are stored in natural order.
+ */
+ IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table;
+#define CONST_BITS 14
+ static const INT16 aanscales[DCTSIZE2] = {
+ /* precomputed values scaled up by 14 bits */
+ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
+ 22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
+ 21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
+ 19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
+ 16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
+ 12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
+ 8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
+ 4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
+ };
+ SHIFT_TEMPS
+
+ for (i = 0; i < DCTSIZE2; i++) {
+ ifmtbl[i] = (IFAST_MULT_TYPE)
+ DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[jpeg_zigzag_order[i]],
+ (INT32) aanscales[i]),
+ CONST_BITS-IFAST_SCALE_BITS);
+ }
+ }
+ break;
+#endif
+#ifdef DCT_FLOAT_SUPPORTED
+ case JDCT_FLOAT:
+ {
+ /* For float AA&N IDCT method, multipliers are equal to quantization
+ * coefficients scaled by scalefactor[row]*scalefactor[col], where
+ * scalefactor[0] = 1
+ * scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
+ * The multipliers are stored in natural order.
+ */
+ FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table;
+ int row, col;
+ static const double aanscalefactor[DCTSIZE] = {
+ 1.0, 1.387039845, 1.306562965, 1.175875602,
+ 1.0, 0.785694958, 0.541196100, 0.275899379
+ };
+
+ i = 0;
+ for (row = 0; row < DCTSIZE; row++) {
+ for (col = 0; col < DCTSIZE; col++) {
+ fmtbl[i] = (FLOAT_MULT_TYPE)
+ ((double) qtbl->quantval[jpeg_zigzag_order[i]] *
+ aanscalefactor[row] * aanscalefactor[col]);
+ i++;
+ }
+ }
+ }
+ break;
+#endif
+ default:
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+ break;
+ }
+ }
+}
+
+
+/*
+ * Initialize IDCT manager.
+ */
+
+GLOBAL void
+jinit_inverse_dct (j_decompress_ptr cinfo)
+{
+ my_idct_ptr idct;
+ int ci;
+ jpeg_component_info *compptr;
+
+ idct = (my_idct_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_idct_controller));
+ cinfo->idct = (struct jpeg_inverse_dct *) idct;
+ idct->pub.start_pass = start_pass;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Allocate and pre-zero a multiplier table for each component */
+ compptr->dct_table =
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(multiplier_table));
+ MEMZERO(compptr->dct_table, SIZEOF(multiplier_table));
+ /* Mark multiplier table not yet set up for any method */
+ idct->cur_method[ci] = -1;
+ }
+}
diff --git a/libs/jpeg6/jdhuff.cpp b/libs/jpeg6/jdhuff.cpp
index db42772..95174b1 100755
--- a/libs/jpeg6/jdhuff.cpp
+++ b/libs/jpeg6/jdhuff.cpp
@@ -1,574 +1,574 @@
-/*
- * jdhuff.c
- *
- * Copyright (C) 1991-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains Huffman entropy decoding routines.
- *
- * Much of the complexity here has to do with supporting input suspension.
- * If the data source module demands suspension, we want to be able to back
- * up to the start of the current MCU. To do this, we copy state variables
- * into local working storage, and update them back to the permanent
- * storage only upon successful completion of an MCU.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdhuff.h" /* Declarations shared with jdphuff.c */
-
-
-/*
- * Expanded entropy decoder object for Huffman decoding.
- *
- * The savable_state subrecord contains fields that change within an MCU,
- * but must not be updated permanently until we complete the MCU.
- */
-
-typedef struct {
- int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
-} savable_state;
-
-/* This macro is to work around compilers with missing or broken
- * structure assignment. You'll need to fix this code if you have
- * such a compiler and you change MAX_COMPS_IN_SCAN.
- */
-
-#ifndef NO_STRUCT_ASSIGN
-#define ASSIGN_STATE(dest,src) ((dest) = (src))
-#else
-#if MAX_COMPS_IN_SCAN == 4
-#define ASSIGN_STATE(dest,src) \
- ((dest).last_dc_val[0] = (src).last_dc_val[0], \
- (dest).last_dc_val[1] = (src).last_dc_val[1], \
- (dest).last_dc_val[2] = (src).last_dc_val[2], \
- (dest).last_dc_val[3] = (src).last_dc_val[3])
-#endif
-#endif
-
-
-typedef struct {
- struct jpeg_entropy_decoder pub; /* public fields */
-
- /* These fields are loaded into local variables at start of each MCU.
- * In case of suspension, we exit WITHOUT updating them.
- */
- bitread_perm_state bitstate; /* Bit buffer at start of MCU */
- savable_state saved; /* Other state at start of MCU */
-
- /* These fields are NOT loaded into local working state. */
- unsigned int restarts_to_go; /* MCUs left in this restart interval */
-
- /* Pointers to derived tables (these workspaces have image lifespan) */
- d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
- d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
-} huff_entropy_decoder;
-
-typedef huff_entropy_decoder * huff_entropy_ptr;
-
-
-/*
- * Initialize for a Huffman-compressed scan.
- */
-
-METHODDEF void
-start_pass_huff_decoder (j_decompress_ptr cinfo)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int ci, dctbl, actbl;
- jpeg_component_info * compptr;
-
- /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
- * This ought to be an error condition, but we make it a warning because
- * there are some baseline files out there with all zeroes in these bytes.
- */
- if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
- cinfo->Ah != 0 || cinfo->Al != 0)
- WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- dctbl = compptr->dc_tbl_no;
- actbl = compptr->ac_tbl_no;
- /* Make sure requested tables are present */
- if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS ||
- cinfo->dc_huff_tbl_ptrs[dctbl] == NULL)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
- if (actbl < 0 || actbl >= NUM_HUFF_TBLS ||
- cinfo->ac_huff_tbl_ptrs[actbl] == NULL)
- ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
- /* Compute derived values for Huffman tables */
- /* We may do this more than once for a table, but it's not expensive */
- jpeg_make_d_derived_tbl(cinfo, cinfo->dc_huff_tbl_ptrs[dctbl],
- & entropy->dc_derived_tbls[dctbl]);
- jpeg_make_d_derived_tbl(cinfo, cinfo->ac_huff_tbl_ptrs[actbl],
- & entropy->ac_derived_tbls[actbl]);
- /* Initialize DC predictions to 0 */
- entropy->saved.last_dc_val[ci] = 0;
- }
-
- /* Initialize bitread state variables */
- entropy->bitstate.bits_left = 0;
- entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
- entropy->bitstate.printed_eod = FALSE;
-
- /* Initialize restart counter */
- entropy->restarts_to_go = cinfo->restart_interval;
-}
-
-
-/*
- * Compute the derived values for a Huffman table.
- * Note this is also used by jdphuff.c.
- */
-
-GLOBAL void
-jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, JHUFF_TBL * htbl,
- d_derived_tbl ** pdtbl)
-{
- d_derived_tbl *dtbl;
- int p, i, l, si;
- int lookbits, ctr;
- char huffsize[257];
- unsigned int huffcode[257];
- unsigned int code;
-
- /* Allocate a workspace if we haven't already done so. */
- if (*pdtbl == NULL)
- *pdtbl = (d_derived_tbl *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(d_derived_tbl));
- dtbl = *pdtbl;
- dtbl->pub = htbl; /* fill in back link */
-
- /* Figure C.1: make table of Huffman code length for each symbol */
- /* Note that this is in code-length order. */
-
- p = 0;
- for (l = 1; l <= 16; l++) {
- for (i = 1; i <= (int) htbl->bits[l]; i++)
- huffsize[p++] = (char) l;
- }
- huffsize[p] = 0;
-
- /* Figure C.2: generate the codes themselves */
- /* Note that this is in code-length order. */
-
- code = 0;
- si = huffsize[0];
- p = 0;
- while (huffsize[p]) {
- while (((int) huffsize[p]) == si) {
- huffcode[p++] = code;
- code++;
- }
- code <<= 1;
- si++;
- }
-
- /* Figure F.15: generate decoding tables for bit-sequential decoding */
-
- p = 0;
- for (l = 1; l <= 16; l++) {
- if (htbl->bits[l]) {
- dtbl->valptr[l] = p; /* huffval[] index of 1st symbol of code length l */
- dtbl->mincode[l] = huffcode[p]; /* minimum code of length l */
- p += htbl->bits[l];
- dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
- } else {
- dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
- }
- }
- dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
-
- /* Compute lookahead tables to speed up decoding.
- * First we set all the table entries to 0, indicating "too long";
- * then we iterate through the Huffman codes that are short enough and
- * fill in all the entries that correspond to bit sequences starting
- * with that code.
- */
-
- MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
-
- p = 0;
- for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
- for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
- /* l = current code's length, p = its index in huffcode[] & huffval[]. */
- /* Generate left-justified code followed by all possible bit sequences */
- lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
- for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
- dtbl->look_nbits[lookbits] = l;
- dtbl->look_sym[lookbits] = htbl->huffval[p];
- lookbits++;
- }
- }
- }
-}
-
-
-/*
- * Out-of-line code for bit fetching (shared with jdphuff.c).
- * See jdhuff.h for info about usage.
- * Note: current values of get_buffer and bits_left are passed as parameters,
- * but are returned in the corresponding fields of the state struct.
- *
- * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
- * of get_buffer to be used. (On machines with wider words, an even larger
- * buffer could be used.) However, on some machines 32-bit shifts are
- * quite slow and take time proportional to the number of places shifted.
- * (This is true with most PC compilers, for instance.) In this case it may
- * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
- * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
- */
-
-#ifdef SLOW_SHIFT_32
-#define MIN_GET_BITS 15 /* minimum allowable value */
-#else
-#define MIN_GET_BITS (BIT_BUF_SIZE-7)
-#endif
-
-
-GLOBAL boolean
-jpeg_fill_bit_buffer (bitread_working_state * state,
- register bit_buf_type get_buffer, register int bits_left,
- int nbits)
-/* Load up the bit buffer to a depth of at least nbits */
-{
- /* Copy heavily used state fields into locals (hopefully registers) */
- register const JOCTET * next_input_byte = state->next_input_byte;
- register size_t bytes_in_buffer = state->bytes_in_buffer;
- register int c;
-
- /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
- /* (It is assumed that no request will be for more than that many bits.) */
-
- while (bits_left < MIN_GET_BITS) {
- /* Attempt to read a byte */
- if (state->unread_marker != 0)
- goto no_more_data; /* can't advance past a marker */
-
- if (bytes_in_buffer == 0) {
- if (! (*state->cinfo->src->fill_input_buffer) (state->cinfo))
- return FALSE;
- next_input_byte = state->cinfo->src->next_input_byte;
- bytes_in_buffer = state->cinfo->src->bytes_in_buffer;
- }
- bytes_in_buffer--;
- c = GETJOCTET(*next_input_byte++);
-
- /* If it's 0xFF, check and discard stuffed zero byte */
- if (c == 0xFF) {
- do {
- if (bytes_in_buffer == 0) {
- if (! (*state->cinfo->src->fill_input_buffer) (state->cinfo))
- return FALSE;
- next_input_byte = state->cinfo->src->next_input_byte;
- bytes_in_buffer = state->cinfo->src->bytes_in_buffer;
- }
- bytes_in_buffer--;
- c = GETJOCTET(*next_input_byte++);
- } while (c == 0xFF);
-
- if (c == 0) {
- /* Found FF/00, which represents an FF data byte */
- c = 0xFF;
- } else {
- /* Oops, it's actually a marker indicating end of compressed data. */
- /* Better put it back for use later */
- state->unread_marker = c;
-
- no_more_data:
- /* There should be enough bits still left in the data segment; */
- /* if so, just break out of the outer while loop. */
- if (bits_left >= nbits)
- break;
- /* Uh-oh. Report corrupted data to user and stuff zeroes into
- * the data stream, so that we can produce some kind of image.
- * Note that this code will be repeated for each byte demanded
- * for the rest of the segment. We use a nonvolatile flag to ensure
- * that only one warning message appears.
- */
- if (! *(state->printed_eod_ptr)) {
- WARNMS(state->cinfo, JWRN_HIT_MARKER);
- *(state->printed_eod_ptr) = TRUE;
- }
- c = 0; /* insert a zero byte into bit buffer */
- }
- }
-
- /* OK, load c into get_buffer */
- get_buffer = (get_buffer << 8) | c;
- bits_left += 8;
- }
-
- /* Unload the local registers */
- state->next_input_byte = next_input_byte;
- state->bytes_in_buffer = bytes_in_buffer;
- state->get_buffer = get_buffer;
- state->bits_left = bits_left;
-
- return TRUE;
-}
-
-
-/*
- * Out-of-line code for Huffman code decoding.
- * See jdhuff.h for info about usage.
- */
-
-GLOBAL int
-jpeg_huff_decode (bitread_working_state * state,
- register bit_buf_type get_buffer, register int bits_left,
- d_derived_tbl * htbl, int min_bits)
-{
- register int l = min_bits;
- register INT32 code;
-
- /* HUFF_DECODE has determined that the code is at least min_bits */
- /* bits long, so fetch that many bits in one swoop. */
-
- CHECK_BIT_BUFFER(*state, l, return -1);
- code = GET_BITS(l);
-
- /* Collect the rest of the Huffman code one bit at a time. */
- /* This is per Figure F.16 in the JPEG spec. */
-
- while (code > htbl->maxcode[l]) {
- code <<= 1;
- CHECK_BIT_BUFFER(*state, 1, return -1);
- code |= GET_BITS(1);
- l++;
- }
-
- /* Unload the local registers */
- state->get_buffer = get_buffer;
- state->bits_left = bits_left;
-
- /* With garbage input we may reach the sentinel value l = 17. */
-
- if (l > 16) {
- WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
- return 0; /* fake a zero as the safest result */
- }
-
- return htbl->pub->huffval[ htbl->valptr[l] +
- ((int) (code - htbl->mincode[l])) ];
-}
-
-
-/*
- * Figure F.12: extend sign bit.
- * On some machines, a shift and add will be faster than a table lookup.
- */
-
-#ifdef AVOID_TABLES
-
-#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
-
-#else
-
-#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
-
-static const int extend_test[16] = /* entry n is 2**(n-1) */
- { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
- 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
-
-static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
- { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
- ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
- ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
- ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
-
-#endif /* AVOID_TABLES */
-
-
-/*
- * Check for a restart marker & resynchronize decoder.
- * Returns FALSE if must suspend.
- */
-
-LOCAL boolean
-process_restart (j_decompress_ptr cinfo)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- int ci;
-
- /* Throw away any unused bits remaining in bit buffer; */
- /* include any full bytes in next_marker's count of discarded bytes */
- cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
- entropy->bitstate.bits_left = 0;
-
- /* Advance past the RSTn marker */
- if (! (*cinfo->marker->read_restart_marker) (cinfo))
- return FALSE;
-
- /* Re-initialize DC predictions to 0 */
- for (ci = 0; ci < cinfo->comps_in_scan; ci++)
- entropy->saved.last_dc_val[ci] = 0;
-
- /* Reset restart counter */
- entropy->restarts_to_go = cinfo->restart_interval;
-
- /* Next segment can get another out-of-data warning */
- entropy->bitstate.printed_eod = FALSE;
-
- return TRUE;
-}
-
-
-/*
- * Decode and return one MCU's worth of Huffman-compressed coefficients.
- * The coefficients are reordered from zigzag order into natural array order,
- * but are not dequantized.
- *
- * The i'th block of the MCU is stored into the block pointed to by
- * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
- * (Wholesale zeroing is usually a little faster than retail...)
- *
- * Returns FALSE if data source requested suspension. In that case no
- * changes have been made to permanent state. (Exception: some output
- * coefficients may already have been assigned. This is harmless for
- * this module, since we'll just re-assign them on the next call.)
- */
-
-METHODDEF boolean
-decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
-{
- huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
- register int s, k, r;
- int blkn, ci;
- JBLOCKROW block;
- BITREAD_STATE_VARS;
- savable_state state;
- d_derived_tbl * dctbl;
- d_derived_tbl * actbl;
- jpeg_component_info * compptr;
-
- /* Process restart marker if needed; may have to suspend */
- if (cinfo->restart_interval) {
- if (entropy->restarts_to_go == 0)
- if (! process_restart(cinfo))
- return FALSE;
- }
-
- /* Load up working state */
- BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
- ASSIGN_STATE(state, entropy->saved);
-
- /* Outer loop handles each block in the MCU */
-
- for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
- block = MCU_data[blkn];
- ci = cinfo->MCU_membership[blkn];
- compptr = cinfo->cur_comp_info[ci];
- dctbl = entropy->dc_derived_tbls[compptr->dc_tbl_no];
- actbl = entropy->ac_derived_tbls[compptr->ac_tbl_no];
-
- /* Decode a single block's worth of coefficients */
-
- /* Section F.2.2.1: decode the DC coefficient difference */
- HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
- if (s) {
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- }
-
- /* Shortcut if component's values are not interesting */
- if (! compptr->component_needed)
- goto skip_ACs;
-
- /* Convert DC difference to actual value, update last_dc_val */
- s += state.last_dc_val[ci];
- state.last_dc_val[ci] = s;
- /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
- (*block)[0] = (JCOEF) s;
-
- /* Do we need to decode the AC coefficients for this component? */
- if (compptr->DCT_scaled_size > 1) {
-
- /* Section F.2.2.2: decode the AC coefficients */
- /* Since zeroes are skipped, output area must be cleared beforehand */
- for (k = 1; k < DCTSIZE2; k++) {
- HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
-
- r = s >> 4;
- s &= 15;
-
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- r = GET_BITS(s);
- s = HUFF_EXTEND(r, s);
- /* Output coefficient in natural (dezigzagged) order.
- * Note: the extra entries in jpeg_natural_order[] will save us
- * if k >= DCTSIZE2, which could happen if the data is corrupted.
- */
- (*block)[jpeg_natural_order[k]] = (JCOEF) s;
- } else {
- if (r != 15)
- break;
- k += 15;
- }
- }
-
- } else {
-skip_ACs:
-
- /* Section F.2.2.2: decode the AC coefficients */
- /* In this path we just discard the values */
- for (k = 1; k < DCTSIZE2; k++) {
- HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
-
- r = s >> 4;
- s &= 15;
-
- if (s) {
- k += r;
- CHECK_BIT_BUFFER(br_state, s, return FALSE);
- DROP_BITS(s);
- } else {
- if (r != 15)
- break;
- k += 15;
- }
- }
-
- }
- }
-
- /* Completed MCU, so update state */
- BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
- ASSIGN_STATE(entropy->saved, state);
-
- /* Account for restart interval (no-op if not using restarts) */
- entropy->restarts_to_go--;
-
- return TRUE;
-}
-
-
-/*
- * Module initialization routine for Huffman entropy decoding.
- */
-
-GLOBAL void
-jinit_huff_decoder (j_decompress_ptr cinfo)
-{
- huff_entropy_ptr entropy;
- int i;
-
- entropy = (huff_entropy_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(huff_entropy_decoder));
- cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
- entropy->pub.start_pass = start_pass_huff_decoder;
- entropy->pub.decode_mcu = decode_mcu;
-
- /* Mark tables unallocated */
- for (i = 0; i < NUM_HUFF_TBLS; i++) {
- entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
- }
-}
+/*
+ * jdhuff.c
+ *
+ * Copyright (C) 1991-1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains Huffman entropy decoding routines.
+ *
+ * Much of the complexity here has to do with supporting input suspension.
+ * If the data source module demands suspension, we want to be able to back
+ * up to the start of the current MCU. To do this, we copy state variables
+ * into local working storage, and update them back to the permanent
+ * storage only upon successful completion of an MCU.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdhuff.h" /* Declarations shared with jdphuff.c */
+
+
+/*
+ * Expanded entropy decoder object for Huffman decoding.
+ *
+ * The savable_state subrecord contains fields that change within an MCU,
+ * but must not be updated permanently until we complete the MCU.
+ */
+
+typedef struct {
+ int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */
+} savable_state;
+
+/* This macro is to work around compilers with missing or broken
+ * structure assignment. You'll need to fix this code if you have
+ * such a compiler and you change MAX_COMPS_IN_SCAN.
+ */
+
+#ifndef NO_STRUCT_ASSIGN
+#define ASSIGN_STATE(dest,src) ((dest) = (src))
+#else
+#if MAX_COMPS_IN_SCAN == 4
+#define ASSIGN_STATE(dest,src) \
+ ((dest).last_dc_val[0] = (src).last_dc_val[0], \
+ (dest).last_dc_val[1] = (src).last_dc_val[1], \
+ (dest).last_dc_val[2] = (src).last_dc_val[2], \
+ (dest).last_dc_val[3] = (src).last_dc_val[3])
+#endif
+#endif
+
+
+typedef struct {
+ struct jpeg_entropy_decoder pub; /* public fields */
+
+ /* These fields are loaded into local variables at start of each MCU.
+ * In case of suspension, we exit WITHOUT updating them.
+ */
+ bitread_perm_state bitstate; /* Bit buffer at start of MCU */
+ savable_state saved; /* Other state at start of MCU */
+
+ /* These fields are NOT loaded into local working state. */
+ unsigned int restarts_to_go; /* MCUs left in this restart interval */
+
+ /* Pointers to derived tables (these workspaces have image lifespan) */
+ d_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS];
+ d_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS];
+} huff_entropy_decoder;
+
+typedef huff_entropy_decoder * huff_entropy_ptr;
+
+
+/*
+ * Initialize for a Huffman-compressed scan.
+ */
+
+METHODDEF void
+start_pass_huff_decoder (j_decompress_ptr cinfo)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int ci, dctbl, actbl;
+ jpeg_component_info * compptr;
+
+ /* Check that the scan parameters Ss, Se, Ah/Al are OK for sequential JPEG.
+ * This ought to be an error condition, but we make it a warning because
+ * there are some baseline files out there with all zeroes in these bytes.
+ */
+ if (cinfo->Ss != 0 || cinfo->Se != DCTSIZE2-1 ||
+ cinfo->Ah != 0 || cinfo->Al != 0)
+ WARNMS(cinfo, JWRN_NOT_SEQUENTIAL);
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ dctbl = compptr->dc_tbl_no;
+ actbl = compptr->ac_tbl_no;
+ /* Make sure requested tables are present */
+ if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS ||
+ cinfo->dc_huff_tbl_ptrs[dctbl] == NULL)
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl);
+ if (actbl < 0 || actbl >= NUM_HUFF_TBLS ||
+ cinfo->ac_huff_tbl_ptrs[actbl] == NULL)
+ ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl);
+ /* Compute derived values for Huffman tables */
+ /* We may do this more than once for a table, but it's not expensive */
+ jpeg_make_d_derived_tbl(cinfo, cinfo->dc_huff_tbl_ptrs[dctbl],
+ & entropy->dc_derived_tbls[dctbl]);
+ jpeg_make_d_derived_tbl(cinfo, cinfo->ac_huff_tbl_ptrs[actbl],
+ & entropy->ac_derived_tbls[actbl]);
+ /* Initialize DC predictions to 0 */
+ entropy->saved.last_dc_val[ci] = 0;
+ }
+
+ /* Initialize bitread state variables */
+ entropy->bitstate.bits_left = 0;
+ entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */
+ entropy->bitstate.printed_eod = FALSE;
+
+ /* Initialize restart counter */
+ entropy->restarts_to_go = cinfo->restart_interval;
+}
+
+
+/*
+ * Compute the derived values for a Huffman table.
+ * Note this is also used by jdphuff.c.
+ */
+
+GLOBAL void
+jpeg_make_d_derived_tbl (j_decompress_ptr cinfo, JHUFF_TBL * htbl,
+ d_derived_tbl ** pdtbl)
+{
+ d_derived_tbl *dtbl;
+ int p, i, l, si;
+ int lookbits, ctr;
+ char huffsize[257];
+ unsigned int huffcode[257];
+ unsigned int code;
+
+ /* Allocate a workspace if we haven't already done so. */
+ if (*pdtbl == NULL)
+ *pdtbl = (d_derived_tbl *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(d_derived_tbl));
+ dtbl = *pdtbl;
+ dtbl->pub = htbl; /* fill in back link */
+
+ /* Figure C.1: make table of Huffman code length for each symbol */
+ /* Note that this is in code-length order. */
+
+ p = 0;
+ for (l = 1; l <= 16; l++) {
+ for (i = 1; i <= (int) htbl->bits[l]; i++)
+ huffsize[p++] = (char) l;
+ }
+ huffsize[p] = 0;
+
+ /* Figure C.2: generate the codes themselves */
+ /* Note that this is in code-length order. */
+
+ code = 0;
+ si = huffsize[0];
+ p = 0;
+ while (huffsize[p]) {
+ while (((int) huffsize[p]) == si) {
+ huffcode[p++] = code;
+ code++;
+ }
+ code <<= 1;
+ si++;
+ }
+
+ /* Figure F.15: generate decoding tables for bit-sequential decoding */
+
+ p = 0;
+ for (l = 1; l <= 16; l++) {
+ if (htbl->bits[l]) {
+ dtbl->valptr[l] = p; /* huffval[] index of 1st symbol of code length l */
+ dtbl->mincode[l] = huffcode[p]; /* minimum code of length l */
+ p += htbl->bits[l];
+ dtbl->maxcode[l] = huffcode[p-1]; /* maximum code of length l */
+ } else {
+ dtbl->maxcode[l] = -1; /* -1 if no codes of this length */
+ }
+ }
+ dtbl->maxcode[17] = 0xFFFFFL; /* ensures jpeg_huff_decode terminates */
+
+ /* Compute lookahead tables to speed up decoding.
+ * First we set all the table entries to 0, indicating "too long";
+ * then we iterate through the Huffman codes that are short enough and
+ * fill in all the entries that correspond to bit sequences starting
+ * with that code.
+ */
+
+ MEMZERO(dtbl->look_nbits, SIZEOF(dtbl->look_nbits));
+
+ p = 0;
+ for (l = 1; l <= HUFF_LOOKAHEAD; l++) {
+ for (i = 1; i <= (int) htbl->bits[l]; i++, p++) {
+ /* l = current code's length, p = its index in huffcode[] & huffval[]. */
+ /* Generate left-justified code followed by all possible bit sequences */
+ lookbits = huffcode[p] << (HUFF_LOOKAHEAD-l);
+ for (ctr = 1 << (HUFF_LOOKAHEAD-l); ctr > 0; ctr--) {
+ dtbl->look_nbits[lookbits] = l;
+ dtbl->look_sym[lookbits] = htbl->huffval[p];
+ lookbits++;
+ }
+ }
+ }
+}
+
+
+/*
+ * Out-of-line code for bit fetching (shared with jdphuff.c).
+ * See jdhuff.h for info about usage.
+ * Note: current values of get_buffer and bits_left are passed as parameters,
+ * but are returned in the corresponding fields of the state struct.
+ *
+ * On most machines MIN_GET_BITS should be 25 to allow the full 32-bit width
+ * of get_buffer to be used. (On machines with wider words, an even larger
+ * buffer could be used.) However, on some machines 32-bit shifts are
+ * quite slow and take time proportional to the number of places shifted.
+ * (This is true with most PC compilers, for instance.) In this case it may
+ * be a win to set MIN_GET_BITS to the minimum value of 15. This reduces the
+ * average shift distance at the cost of more calls to jpeg_fill_bit_buffer.
+ */
+
+#ifdef SLOW_SHIFT_32
+#define MIN_GET_BITS 15 /* minimum allowable value */
+#else
+#define MIN_GET_BITS (BIT_BUF_SIZE-7)
+#endif
+
+
+GLOBAL boolean
+jpeg_fill_bit_buffer (bitread_working_state * state,
+ register bit_buf_type get_buffer, register int bits_left,
+ int nbits)
+/* Load up the bit buffer to a depth of at least nbits */
+{
+ /* Copy heavily used state fields into locals (hopefully registers) */
+ register const JOCTET * next_input_byte = state->next_input_byte;
+ register size_t bytes_in_buffer = state->bytes_in_buffer;
+ register int c;
+
+ /* Attempt to load at least MIN_GET_BITS bits into get_buffer. */
+ /* (It is assumed that no request will be for more than that many bits.) */
+
+ while (bits_left < MIN_GET_BITS) {
+ /* Attempt to read a byte */
+ if (state->unread_marker != 0)
+ goto no_more_data; /* can't advance past a marker */
+
+ if (bytes_in_buffer == 0) {
+ if (! (*state->cinfo->src->fill_input_buffer) (state->cinfo))
+ return FALSE;
+ next_input_byte = state->cinfo->src->next_input_byte;
+ bytes_in_buffer = state->cinfo->src->bytes_in_buffer;
+ }
+ bytes_in_buffer--;
+ c = GETJOCTET(*next_input_byte++);
+
+ /* If it's 0xFF, check and discard stuffed zero byte */
+ if (c == 0xFF) {
+ do {
+ if (bytes_in_buffer == 0) {
+ if (! (*state->cinfo->src->fill_input_buffer) (state->cinfo))
+ return FALSE;
+ next_input_byte = state->cinfo->src->next_input_byte;
+ bytes_in_buffer = state->cinfo->src->bytes_in_buffer;
+ }
+ bytes_in_buffer--;
+ c = GETJOCTET(*next_input_byte++);
+ } while (c == 0xFF);
+
+ if (c == 0) {
+ /* Found FF/00, which represents an FF data byte */
+ c = 0xFF;
+ } else {
+ /* Oops, it's actually a marker indicating end of compressed data. */
+ /* Better put it back for use later */
+ state->unread_marker = c;
+
+ no_more_data:
+ /* There should be enough bits still left in the data segment; */
+ /* if so, just break out of the outer while loop. */
+ if (bits_left >= nbits)
+ break;
+ /* Uh-oh. Report corrupted data to user and stuff zeroes into
+ * the data stream, so that we can produce some kind of image.
+ * Note that this code will be repeated for each byte demanded
+ * for the rest of the segment. We use a nonvolatile flag to ensure
+ * that only one warning message appears.
+ */
+ if (! *(state->printed_eod_ptr)) {
+ WARNMS(state->cinfo, JWRN_HIT_MARKER);
+ *(state->printed_eod_ptr) = TRUE;
+ }
+ c = 0; /* insert a zero byte into bit buffer */
+ }
+ }
+
+ /* OK, load c into get_buffer */
+ get_buffer = (get_buffer << 8) | c;
+ bits_left += 8;
+ }
+
+ /* Unload the local registers */
+ state->next_input_byte = next_input_byte;
+ state->bytes_in_buffer = bytes_in_buffer;
+ state->get_buffer = get_buffer;
+ state->bits_left = bits_left;
+
+ return TRUE;
+}
+
+
+/*
+ * Out-of-line code for Huffman code decoding.
+ * See jdhuff.h for info about usage.
+ */
+
+GLOBAL int
+jpeg_huff_decode (bitread_working_state * state,
+ register bit_buf_type get_buffer, register int bits_left,
+ d_derived_tbl * htbl, int min_bits)
+{
+ register int l = min_bits;
+ register INT32 code;
+
+ /* HUFF_DECODE has determined that the code is at least min_bits */
+ /* bits long, so fetch that many bits in one swoop. */
+
+ CHECK_BIT_BUFFER(*state, l, return -1);
+ code = GET_BITS(l);
+
+ /* Collect the rest of the Huffman code one bit at a time. */
+ /* This is per Figure F.16 in the JPEG spec. */
+
+ while (code > htbl->maxcode[l]) {
+ code <<= 1;
+ CHECK_BIT_BUFFER(*state, 1, return -1);
+ code |= GET_BITS(1);
+ l++;
+ }
+
+ /* Unload the local registers */
+ state->get_buffer = get_buffer;
+ state->bits_left = bits_left;
+
+ /* With garbage input we may reach the sentinel value l = 17. */
+
+ if (l > 16) {
+ WARNMS(state->cinfo, JWRN_HUFF_BAD_CODE);
+ return 0; /* fake a zero as the safest result */
+ }
+
+ return htbl->pub->huffval[ htbl->valptr[l] +
+ ((int) (code - htbl->mincode[l])) ];
+}
+
+
+/*
+ * Figure F.12: extend sign bit.
+ * On some machines, a shift and add will be faster than a table lookup.
+ */
+
+#ifdef AVOID_TABLES
+
+#define HUFF_EXTEND(x,s) ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x))
+
+#else
+
+#define HUFF_EXTEND(x,s) ((x) < extend_test[s] ? (x) + extend_offset[s] : (x))
+
+static const int extend_test[16] = /* entry n is 2**(n-1) */
+ { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
+ 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 };
+
+static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */
+ { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1,
+ ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1,
+ ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1,
+ ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 };
+
+#endif /* AVOID_TABLES */
+
+
+/*
+ * Check for a restart marker & resynchronize decoder.
+ * Returns FALSE if must suspend.
+ */
+
+LOCAL boolean
+process_restart (j_decompress_ptr cinfo)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ int ci;
+
+ /* Throw away any unused bits remaining in bit buffer; */
+ /* include any full bytes in next_marker's count of discarded bytes */
+ cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8;
+ entropy->bitstate.bits_left = 0;
+
+ /* Advance past the RSTn marker */
+ if (! (*cinfo->marker->read_restart_marker) (cinfo))
+ return FALSE;
+
+ /* Re-initialize DC predictions to 0 */
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++)
+ entropy->saved.last_dc_val[ci] = 0;
+
+ /* Reset restart counter */
+ entropy->restarts_to_go = cinfo->restart_interval;
+
+ /* Next segment can get another out-of-data warning */
+ entropy->bitstate.printed_eod = FALSE;
+
+ return TRUE;
+}
+
+
+/*
+ * Decode and return one MCU's worth of Huffman-compressed coefficients.
+ * The coefficients are reordered from zigzag order into natural array order,
+ * but are not dequantized.
+ *
+ * The i'th block of the MCU is stored into the block pointed to by
+ * MCU_data[i]. WE ASSUME THIS AREA HAS BEEN ZEROED BY THE CALLER.
+ * (Wholesale zeroing is usually a little faster than retail...)
+ *
+ * Returns FALSE if data source requested suspension. In that case no
+ * changes have been made to permanent state. (Exception: some output
+ * coefficients may already have been assigned. This is harmless for
+ * this module, since we'll just re-assign them on the next call.)
+ */
+
+METHODDEF boolean
+decode_mcu (j_decompress_ptr cinfo, JBLOCKROW *MCU_data)
+{
+ huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy;
+ register int s, k, r;
+ int blkn, ci;
+ JBLOCKROW block;
+ BITREAD_STATE_VARS;
+ savable_state state;
+ d_derived_tbl * dctbl;
+ d_derived_tbl * actbl;
+ jpeg_component_info * compptr;
+
+ /* Process restart marker if needed; may have to suspend */
+ if (cinfo->restart_interval) {
+ if (entropy->restarts_to_go == 0)
+ if (! process_restart(cinfo))
+ return FALSE;
+ }
+
+ /* Load up working state */
+ BITREAD_LOAD_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(state, entropy->saved);
+
+ /* Outer loop handles each block in the MCU */
+
+ for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) {
+ block = MCU_data[blkn];
+ ci = cinfo->MCU_membership[blkn];
+ compptr = cinfo->cur_comp_info[ci];
+ dctbl = entropy->dc_derived_tbls[compptr->dc_tbl_no];
+ actbl = entropy->ac_derived_tbls[compptr->ac_tbl_no];
+
+ /* Decode a single block's worth of coefficients */
+
+ /* Section F.2.2.1: decode the DC coefficient difference */
+ HUFF_DECODE(s, br_state, dctbl, return FALSE, label1);
+ if (s) {
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
+ }
+
+ /* Shortcut if component's values are not interesting */
+ if (! compptr->component_needed)
+ goto skip_ACs;
+
+ /* Convert DC difference to actual value, update last_dc_val */
+ s += state.last_dc_val[ci];
+ state.last_dc_val[ci] = s;
+ /* Output the DC coefficient (assumes jpeg_natural_order[0] = 0) */
+ (*block)[0] = (JCOEF) s;
+
+ /* Do we need to decode the AC coefficients for this component? */
+ if (compptr->DCT_scaled_size > 1) {
+
+ /* Section F.2.2.2: decode the AC coefficients */
+ /* Since zeroes are skipped, output area must be cleared beforehand */
+ for (k = 1; k < DCTSIZE2; k++) {
+ HUFF_DECODE(s, br_state, actbl, return FALSE, label2);
+
+ r = s >> 4;
+ s &= 15;
+
+ if (s) {
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ r = GET_BITS(s);
+ s = HUFF_EXTEND(r, s);
+ /* Output coefficient in natural (dezigzagged) order.
+ * Note: the extra entries in jpeg_natural_order[] will save us
+ * if k >= DCTSIZE2, which could happen if the data is corrupted.
+ */
+ (*block)[jpeg_natural_order[k]] = (JCOEF) s;
+ } else {
+ if (r != 15)
+ break;
+ k += 15;
+ }
+ }
+
+ } else {
+skip_ACs:
+
+ /* Section F.2.2.2: decode the AC coefficients */
+ /* In this path we just discard the values */
+ for (k = 1; k < DCTSIZE2; k++) {
+ HUFF_DECODE(s, br_state, actbl, return FALSE, label3);
+
+ r = s >> 4;
+ s &= 15;
+
+ if (s) {
+ k += r;
+ CHECK_BIT_BUFFER(br_state, s, return FALSE);
+ DROP_BITS(s);
+ } else {
+ if (r != 15)
+ break;
+ k += 15;
+ }
+ }
+
+ }
+ }
+
+ /* Completed MCU, so update state */
+ BITREAD_SAVE_STATE(cinfo,entropy->bitstate);
+ ASSIGN_STATE(entropy->saved, state);
+
+ /* Account for restart interval (no-op if not using restarts) */
+ entropy->restarts_to_go--;
+
+ return TRUE;
+}
+
+
+/*
+ * Module initialization routine for Huffman entropy decoding.
+ */
+
+GLOBAL void
+jinit_huff_decoder (j_decompress_ptr cinfo)
+{
+ huff_entropy_ptr entropy;
+ int i;
+
+ entropy = (huff_entropy_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(huff_entropy_decoder));
+ cinfo->entropy = (struct jpeg_entropy_decoder *) entropy;
+ entropy->pub.start_pass = start_pass_huff_decoder;
+ entropy->pub.decode_mcu = decode_mcu;
+
+ /* Mark tables unallocated */
+ for (i = 0; i < NUM_HUFF_TBLS; i++) {
+ entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL;
+ }
+}
diff --git a/libs/jpeg6/jdhuff.h b/libs/jpeg6/jdhuff.h
index 65f3054..d375c78 100755
--- a/libs/jpeg6/jdhuff.h
+++ b/libs/jpeg6/jdhuff.h
@@ -1,202 +1,202 @@
-/*
- * jdhuff.h
- *
- * Copyright (C) 1991-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains declarations for Huffman entropy decoding routines
- * that are shared between the sequential decoder (jdhuff.c) and the
- * progressive decoder (jdphuff.c). No other modules need to see these.
- */
-
-/* Short forms of external names for systems with brain-damaged linkers. */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jpeg_make_d_derived_tbl jMkDDerived
-#define jpeg_fill_bit_buffer jFilBitBuf
-#define jpeg_huff_decode jHufDecode
-#endif /* NEED_SHORT_EXTERNAL_NAMES */
-
-
-/* Derived data constructed for each Huffman table */
-
-#define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
-
-typedef struct {
- /* Basic tables: (element [0] of each array is unused) */
- INT32 mincode[17]; /* smallest code of length k */
- INT32 maxcode[18]; /* largest code of length k (-1 if none) */
- /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
- int valptr[17]; /* huffval[] index of 1st symbol of length k */
-
- /* Link to public Huffman table (needed only in jpeg_huff_decode) */
- JHUFF_TBL *pub;
-
- /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
- * the input data stream. If the next Huffman code is no more
- * than HUFF_LOOKAHEAD bits long, we can obtain its length and
- * the corresponding symbol directly from these tables.
- */
- int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
- UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
-} d_derived_tbl;
-
-/* Expand a Huffman table definition into the derived format */
-EXTERN void jpeg_make_d_derived_tbl JPP((j_decompress_ptr cinfo,
- JHUFF_TBL * htbl, d_derived_tbl ** pdtbl));
-
-
-/*
- * Fetching the next N bits from the input stream is a time-critical operation
- * for the Huffman decoders. We implement it with a combination of inline
- * macros and out-of-line subroutines. Note that N (the number of bits
- * demanded at one time) never exceeds 15 for JPEG use.
- *
- * We read source bytes into get_buffer and dole out bits as needed.
- * If get_buffer already contains enough bits, they are fetched in-line
- * by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough
- * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
- * as full as possible (not just to the number of bits needed; this
- * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
- * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
- * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
- * at least the requested number of bits --- dummy zeroes are inserted if
- * necessary.
- */
-
-typedef INT32 bit_buf_type; /* type of bit-extraction buffer */
-#define BIT_BUF_SIZE 32 /* size of buffer in bits */
-
-/* If long is > 32 bits on your machine, and shifting/masking longs is
- * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
- * appropriately should be a win. Unfortunately we can't do this with
- * something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
- * because not all machines measure sizeof in 8-bit bytes.
- */
-
-typedef struct { /* Bitreading state saved across MCUs */
- bit_buf_type get_buffer; /* current bit-extraction buffer */
- int bits_left; /* # of unused bits in it */
- boolean printed_eod; /* flag to suppress multiple warning msgs */
-} bitread_perm_state;
-
-typedef struct { /* Bitreading working state within an MCU */
- /* current data source state */
- const JOCTET * next_input_byte; /* => next byte to read from source */
- size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
- int unread_marker; /* nonzero if we have hit a marker */
- /* bit input buffer --- note these values are kept in register variables,
- * not in this struct, inside the inner loops.
- */
- bit_buf_type get_buffer; /* current bit-extraction buffer */
- int bits_left; /* # of unused bits in it */
- /* pointers needed by jpeg_fill_bit_buffer */
- j_decompress_ptr cinfo; /* back link to decompress master record */
- boolean * printed_eod_ptr; /* => flag in permanent state */
-} bitread_working_state;
-
-/* Macros to declare and load/save bitread local variables. */
-#define BITREAD_STATE_VARS \
- register bit_buf_type get_buffer; \
- register int bits_left; \
- bitread_working_state br_state
-
-#define BITREAD_LOAD_STATE(cinfop,permstate) \
- br_state.cinfo = cinfop; \
- br_state.next_input_byte = cinfop->src->next_input_byte; \
- br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
- br_state.unread_marker = cinfop->unread_marker; \
- get_buffer = permstate.get_buffer; \
- bits_left = permstate.bits_left; \
- br_state.printed_eod_ptr = & permstate.printed_eod
-
-#define BITREAD_SAVE_STATE(cinfop,permstate) \
- cinfop->src->next_input_byte = br_state.next_input_byte; \
- cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
- cinfop->unread_marker = br_state.unread_marker; \
- permstate.get_buffer = get_buffer; \
- permstate.bits_left = bits_left
-
-/*
- * These macros provide the in-line portion of bit fetching.
- * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
- * before using GET_BITS, PEEK_BITS, or DROP_BITS.
- * The variables get_buffer and bits_left are assumed to be locals,
- * but the state struct might not be (jpeg_huff_decode needs this).
- * CHECK_BIT_BUFFER(state,n,action);
- * Ensure there are N bits in get_buffer; if suspend, take action.
- * val = GET_BITS(n);
- * Fetch next N bits.
- * val = PEEK_BITS(n);
- * Fetch next N bits without removing them from the buffer.
- * DROP_BITS(n);
- * Discard next N bits.
- * The value N should be a simple variable, not an expression, because it
- * is evaluated multiple times.
- */
-
-#define CHECK_BIT_BUFFER(state,nbits,action) \
- { if (bits_left < (nbits)) { \
- if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
- { action; } \
- get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
-
-#define GET_BITS(nbits) \
- (((int) (get_buffer >> (bits_left -= (nbits)))) & ((1<<(nbits))-1))
-
-#define PEEK_BITS(nbits) \
- (((int) (get_buffer >> (bits_left - (nbits)))) & ((1<<(nbits))-1))
-
-#define DROP_BITS(nbits) \
- (bits_left -= (nbits))
-
-/* Load up the bit buffer to a depth of at least nbits */
-EXTERN boolean jpeg_fill_bit_buffer JPP((bitread_working_state * state,
- register bit_buf_type get_buffer, register int bits_left,
- int nbits));
-
-
-/*
- * Code for extracting next Huffman-coded symbol from input bit stream.
- * Again, this is time-critical and we make the main paths be macros.
- *
- * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
- * without looping. Usually, more than 95% of the Huffman codes will be 8
- * or fewer bits long. The few overlength codes are handled with a loop,
- * which need not be inline code.
- *
- * Notes about the HUFF_DECODE macro:
- * 1. Near the end of the data segment, we may fail to get enough bits
- * for a lookahead. In that case, we do it the hard way.
- * 2. If the lookahead table contains no entry, the next code must be
- * more than HUFF_LOOKAHEAD bits long.
- * 3. jpeg_huff_decode returns -1 if forced to suspend.
- */
-
-#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
-{ register int nb, look; \
- if (bits_left < HUFF_LOOKAHEAD) { \
- if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
- get_buffer = state.get_buffer; bits_left = state.bits_left; \
- if (bits_left < HUFF_LOOKAHEAD) { \
- nb = 1; goto slowlabel; \
- } \
- } \
- look = PEEK_BITS(HUFF_LOOKAHEAD); \
- if ((nb = htbl->look_nbits[look]) != 0) { \
- DROP_BITS(nb); \
- result = htbl->look_sym[look]; \
- } else { \
- nb = HUFF_LOOKAHEAD+1; \
-slowlabel: \
- if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
- { failaction; } \
- get_buffer = state.get_buffer; bits_left = state.bits_left; \
- } \
-}
-
-/* Out-of-line case for Huffman code fetching */
-EXTERN int jpeg_huff_decode JPP((bitread_working_state * state,
- register bit_buf_type get_buffer, register int bits_left,
- d_derived_tbl * htbl, int min_bits));
+/*
+ * jdhuff.h
+ *
+ * Copyright (C) 1991-1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains declarations for Huffman entropy decoding routines
+ * that are shared between the sequential decoder (jdhuff.c) and the
+ * progressive decoder (jdphuff.c). No other modules need to see these.
+ */
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_make_d_derived_tbl jMkDDerived
+#define jpeg_fill_bit_buffer jFilBitBuf
+#define jpeg_huff_decode jHufDecode
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+
+/* Derived data constructed for each Huffman table */
+
+#define HUFF_LOOKAHEAD 8 /* # of bits of lookahead */
+
+typedef struct {
+ /* Basic tables: (element [0] of each array is unused) */
+ INT32 mincode[17]; /* smallest code of length k */
+ INT32 maxcode[18]; /* largest code of length k (-1 if none) */
+ /* (maxcode[17] is a sentinel to ensure jpeg_huff_decode terminates) */
+ int valptr[17]; /* huffval[] index of 1st symbol of length k */
+
+ /* Link to public Huffman table (needed only in jpeg_huff_decode) */
+ JHUFF_TBL *pub;
+
+ /* Lookahead tables: indexed by the next HUFF_LOOKAHEAD bits of
+ * the input data stream. If the next Huffman code is no more
+ * than HUFF_LOOKAHEAD bits long, we can obtain its length and
+ * the corresponding symbol directly from these tables.
+ */
+ int look_nbits[1<<HUFF_LOOKAHEAD]; /* # bits, or 0 if too long */
+ UINT8 look_sym[1<<HUFF_LOOKAHEAD]; /* symbol, or unused */
+} d_derived_tbl;
+
+/* Expand a Huffman table definition into the derived format */
+EXTERN void jpeg_make_d_derived_tbl JPP((j_decompress_ptr cinfo,
+ JHUFF_TBL * htbl, d_derived_tbl ** pdtbl));
+
+
+/*
+ * Fetching the next N bits from the input stream is a time-critical operation
+ * for the Huffman decoders. We implement it with a combination of inline
+ * macros and out-of-line subroutines. Note that N (the number of bits
+ * demanded at one time) never exceeds 15 for JPEG use.
+ *
+ * We read source bytes into get_buffer and dole out bits as needed.
+ * If get_buffer already contains enough bits, they are fetched in-line
+ * by the macros CHECK_BIT_BUFFER and GET_BITS. When there aren't enough
+ * bits, jpeg_fill_bit_buffer is called; it will attempt to fill get_buffer
+ * as full as possible (not just to the number of bits needed; this
+ * prefetching reduces the overhead cost of calling jpeg_fill_bit_buffer).
+ * Note that jpeg_fill_bit_buffer may return FALSE to indicate suspension.
+ * On TRUE return, jpeg_fill_bit_buffer guarantees that get_buffer contains
+ * at least the requested number of bits --- dummy zeroes are inserted if
+ * necessary.
+ */
+
+typedef INT32 bit_buf_type; /* type of bit-extraction buffer */
+#define BIT_BUF_SIZE 32 /* size of buffer in bits */
+
+/* If long is > 32 bits on your machine, and shifting/masking longs is
+ * reasonably fast, making bit_buf_type be long and setting BIT_BUF_SIZE
+ * appropriately should be a win. Unfortunately we can't do this with
+ * something like #define BIT_BUF_SIZE (sizeof(bit_buf_type)*8)
+ * because not all machines measure sizeof in 8-bit bytes.
+ */
+
+typedef struct { /* Bitreading state saved across MCUs */
+ bit_buf_type get_buffer; /* current bit-extraction buffer */
+ int bits_left; /* # of unused bits in it */
+ boolean printed_eod; /* flag to suppress multiple warning msgs */
+} bitread_perm_state;
+
+typedef struct { /* Bitreading working state within an MCU */
+ /* current data source state */
+ const JOCTET * next_input_byte; /* => next byte to read from source */
+ size_t bytes_in_buffer; /* # of bytes remaining in source buffer */
+ int unread_marker; /* nonzero if we have hit a marker */
+ /* bit input buffer --- note these values are kept in register variables,
+ * not in this struct, inside the inner loops.
+ */
+ bit_buf_type get_buffer; /* current bit-extraction buffer */
+ int bits_left; /* # of unused bits in it */
+ /* pointers needed by jpeg_fill_bit_buffer */
+ j_decompress_ptr cinfo; /* back link to decompress master record */
+ boolean * printed_eod_ptr; /* => flag in permanent state */
+} bitread_working_state;
+
+/* Macros to declare and load/save bitread local variables. */
+#define BITREAD_STATE_VARS \
+ register bit_buf_type get_buffer; \
+ register int bits_left; \
+ bitread_working_state br_state
+
+#define BITREAD_LOAD_STATE(cinfop,permstate) \
+ br_state.cinfo = cinfop; \
+ br_state.next_input_byte = cinfop->src->next_input_byte; \
+ br_state.bytes_in_buffer = cinfop->src->bytes_in_buffer; \
+ br_state.unread_marker = cinfop->unread_marker; \
+ get_buffer = permstate.get_buffer; \
+ bits_left = permstate.bits_left; \
+ br_state.printed_eod_ptr = & permstate.printed_eod
+
+#define BITREAD_SAVE_STATE(cinfop,permstate) \
+ cinfop->src->next_input_byte = br_state.next_input_byte; \
+ cinfop->src->bytes_in_buffer = br_state.bytes_in_buffer; \
+ cinfop->unread_marker = br_state.unread_marker; \
+ permstate.get_buffer = get_buffer; \
+ permstate.bits_left = bits_left
+
+/*
+ * These macros provide the in-line portion of bit fetching.
+ * Use CHECK_BIT_BUFFER to ensure there are N bits in get_buffer
+ * before using GET_BITS, PEEK_BITS, or DROP_BITS.
+ * The variables get_buffer and bits_left are assumed to be locals,
+ * but the state struct might not be (jpeg_huff_decode needs this).
+ * CHECK_BIT_BUFFER(state,n,action);
+ * Ensure there are N bits in get_buffer; if suspend, take action.
+ * val = GET_BITS(n);
+ * Fetch next N bits.
+ * val = PEEK_BITS(n);
+ * Fetch next N bits without removing them from the buffer.
+ * DROP_BITS(n);
+ * Discard next N bits.
+ * The value N should be a simple variable, not an expression, because it
+ * is evaluated multiple times.
+ */
+
+#define CHECK_BIT_BUFFER(state,nbits,action) \
+ { if (bits_left < (nbits)) { \
+ if (! jpeg_fill_bit_buffer(&(state),get_buffer,bits_left,nbits)) \
+ { action; } \
+ get_buffer = (state).get_buffer; bits_left = (state).bits_left; } }
+
+#define GET_BITS(nbits) \
+ (((int) (get_buffer >> (bits_left -= (nbits)))) & ((1<<(nbits))-1))
+
+#define PEEK_BITS(nbits) \
+ (((int) (get_buffer >> (bits_left - (nbits)))) & ((1<<(nbits))-1))
+
+#define DROP_BITS(nbits) \
+ (bits_left -= (nbits))
+
+/* Load up the bit buffer to a depth of at least nbits */
+EXTERN boolean jpeg_fill_bit_buffer JPP((bitread_working_state * state,
+ register bit_buf_type get_buffer, register int bits_left,
+ int nbits));
+
+
+/*
+ * Code for extracting next Huffman-coded symbol from input bit stream.
+ * Again, this is time-critical and we make the main paths be macros.
+ *
+ * We use a lookahead table to process codes of up to HUFF_LOOKAHEAD bits
+ * without looping. Usually, more than 95% of the Huffman codes will be 8
+ * or fewer bits long. The few overlength codes are handled with a loop,
+ * which need not be inline code.
+ *
+ * Notes about the HUFF_DECODE macro:
+ * 1. Near the end of the data segment, we may fail to get enough bits
+ * for a lookahead. In that case, we do it the hard way.
+ * 2. If the lookahead table contains no entry, the next code must be
+ * more than HUFF_LOOKAHEAD bits long.
+ * 3. jpeg_huff_decode returns -1 if forced to suspend.
+ */
+
+#define HUFF_DECODE(result,state,htbl,failaction,slowlabel) \
+{ register int nb, look; \
+ if (bits_left < HUFF_LOOKAHEAD) { \
+ if (! jpeg_fill_bit_buffer(&state,get_buffer,bits_left, 0)) {failaction;} \
+ get_buffer = state.get_buffer; bits_left = state.bits_left; \
+ if (bits_left < HUFF_LOOKAHEAD) { \
+ nb = 1; goto slowlabel; \
+ } \
+ } \
+ look = PEEK_BITS(HUFF_LOOKAHEAD); \
+ if ((nb = htbl->look_nbits[look]) != 0) { \
+ DROP_BITS(nb); \
+ result = htbl->look_sym[look]; \
+ } else { \
+ nb = HUFF_LOOKAHEAD+1; \
+slowlabel: \
+ if ((result=jpeg_huff_decode(&state,get_buffer,bits_left,htbl,nb)) < 0) \
+ { failaction; } \
+ get_buffer = state.get_buffer; bits_left = state.bits_left; \
+ } \
+}
+
+/* Out-of-line case for Huffman code fetching */
+EXTERN int jpeg_huff_decode JPP((bitread_working_state * state,
+ register bit_buf_type get_buffer, register int bits_left,
+ d_derived_tbl * htbl, int min_bits));
diff --git a/libs/jpeg6/jdinput.cpp b/libs/jpeg6/jdinput.cpp
index 5b4774f..3061a17 100755
--- a/libs/jpeg6/jdinput.cpp
+++ b/libs/jpeg6/jdinput.cpp
@@ -1,381 +1,381 @@
-/*
- * jdinput.c
- *
- * Copyright (C) 1991-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains input control logic for the JPEG decompressor.
- * These routines are concerned with controlling the decompressor's input
- * processing (marker reading and coefficient decoding). The actual input
- * reading is done in jdmarker.c, jdhuff.c, and jdphuff.c.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private state */
-
-typedef struct {
- struct jpeg_input_controller pub; /* public fields */
-
- boolean inheaders; /* TRUE until first SOS is reached */
-} my_input_controller;
-
-typedef my_input_controller * my_inputctl_ptr;
-
-
-/* Forward declarations */
-METHODDEF int consume_markers JPP((j_decompress_ptr cinfo));
-
-
-/*
- * Routines to calculate various quantities related to the size of the image.
- */
-
-LOCAL void
-initial_setup (j_decompress_ptr cinfo)
-/* Called once, when first SOS marker is reached */
-{
- int ci;
- jpeg_component_info *compptr;
-
- /* Make sure image isn't bigger than I can handle */
- if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
- (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
- ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
-
- /* For now, precision must match compiled-in value... */
- if (cinfo->data_precision != BITS_IN_JSAMPLE)
- ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
-
- /* Check that number of components won't exceed internal array sizes */
- if (cinfo->num_components > MAX_COMPONENTS)
- ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
- MAX_COMPONENTS);
-
- /* Compute maximum sampling factors; check factor validity */
- cinfo->max_h_samp_factor = 1;
- cinfo->max_v_samp_factor = 1;
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
- compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
- ERREXIT(cinfo, JERR_BAD_SAMPLING);
- cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
- compptr->h_samp_factor);
- cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
- compptr->v_samp_factor);
- }
-
- /* We initialize DCT_scaled_size and min_DCT_scaled_size to DCTSIZE.
- * In the full decompressor, this will be overridden by jdmaster.c;
- * but in the transcoder, jdmaster.c is not used, so we must do it here.
- */
- cinfo->min_DCT_scaled_size = DCTSIZE;
-
- /* Compute dimensions of components */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- compptr->DCT_scaled_size = DCTSIZE;
- /* Size in DCT blocks */
- compptr->width_in_blocks = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
- (long) (cinfo->max_h_samp_factor * DCTSIZE));
- compptr->height_in_blocks = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
- (long) (cinfo->max_v_samp_factor * DCTSIZE));
- /* downsampled_width and downsampled_height will also be overridden by
- * jdmaster.c if we are doing full decompression. The transcoder library
- * doesn't use these values, but the calling application might.
- */
- /* Size in samples */
- compptr->downsampled_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
- (long) cinfo->max_h_samp_factor);
- compptr->downsampled_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
- (long) cinfo->max_v_samp_factor);
- /* Mark component needed, until color conversion says otherwise */
- compptr->component_needed = TRUE;
- /* Mark no quantization table yet saved for component */
- compptr->quant_table = NULL;
- }
-
- /* Compute number of fully interleaved MCU rows. */
- cinfo->total_iMCU_rows = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height,
- (long) (cinfo->max_v_samp_factor*DCTSIZE));
-
- /* Decide whether file contains multiple scans */
- if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode)
- cinfo->inputctl->has_multiple_scans = TRUE;
- else
- cinfo->inputctl->has_multiple_scans = FALSE;
-}
-
-
-LOCAL void
-per_scan_setup (j_decompress_ptr cinfo)
-/* Do computations that are needed before processing a JPEG scan */
-/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */
-{
- int ci, mcublks, tmp;
- jpeg_component_info *compptr;
-
- if (cinfo->comps_in_scan == 1) {
-
- /* Noninterleaved (single-component) scan */
- compptr = cinfo->cur_comp_info[0];
-
- /* Overall image size in MCUs */
- cinfo->MCUs_per_row = compptr->width_in_blocks;
- cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
-
- /* For noninterleaved scan, always one block per MCU */
- compptr->MCU_width = 1;
- compptr->MCU_height = 1;
- compptr->MCU_blocks = 1;
- compptr->MCU_sample_width = compptr->DCT_scaled_size;
- compptr->last_col_width = 1;
- /* For noninterleaved scans, it is convenient to define last_row_height
- * as the number of block rows present in the last iMCU row.
- */
- tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
- if (tmp == 0) tmp = compptr->v_samp_factor;
- compptr->last_row_height = tmp;
-
- /* Prepare array describing MCU composition */
- cinfo->blocks_in_MCU = 1;
- cinfo->MCU_membership[0] = 0;
-
- } else {
-
- /* Interleaved (multi-component) scan */
- if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
- ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
- MAX_COMPS_IN_SCAN);
-
- /* Overall image size in MCUs */
- cinfo->MCUs_per_row = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width,
- (long) (cinfo->max_h_samp_factor*DCTSIZE));
- cinfo->MCU_rows_in_scan = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height,
- (long) (cinfo->max_v_samp_factor*DCTSIZE));
-
- cinfo->blocks_in_MCU = 0;
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* Sampling factors give # of blocks of component in each MCU */
- compptr->MCU_width = compptr->h_samp_factor;
- compptr->MCU_height = compptr->v_samp_factor;
- compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
- compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_scaled_size;
- /* Figure number of non-dummy blocks in last MCU column & row */
- tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
- if (tmp == 0) tmp = compptr->MCU_width;
- compptr->last_col_width = tmp;
- tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
- if (tmp == 0) tmp = compptr->MCU_height;
- compptr->last_row_height = tmp;
- /* Prepare array describing MCU composition */
- mcublks = compptr->MCU_blocks;
- if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU)
- ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
- while (mcublks-- > 0) {
- cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
- }
- }
-
- }
-}
-
-
-/*
- * Save away a copy of the Q-table referenced by each component present
- * in the current scan, unless already saved during a prior scan.
- *
- * In a multiple-scan JPEG file, the encoder could assign different components
- * the same Q-table slot number, but change table definitions between scans
- * so that each component uses a different Q-table. (The IJG encoder is not
- * currently capable of doing this, but other encoders might.) Since we want
- * to be able to dequantize all the components at the end of the file, this
- * means that we have to save away the table actually used for each component.
- * We do this by copying the table at the start of the first scan containing
- * the component.
- * The JPEG spec prohibits the encoder from changing the contents of a Q-table
- * slot between scans of a component using that slot. If the encoder does so
- * anyway, this decoder will simply use the Q-table values that were current
- * at the start of the first scan for the component.
- *
- * The decompressor output side looks only at the saved quant tables,
- * not at the current Q-table slots.
- */
-
-LOCAL void
-latch_quant_tables (j_decompress_ptr cinfo)
-{
- int ci, qtblno;
- jpeg_component_info *compptr;
- JQUANT_TBL * qtbl;
-
- for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
- compptr = cinfo->cur_comp_info[ci];
- /* No work if we already saved Q-table for this component */
- if (compptr->quant_table != NULL)
- continue;
- /* Make sure specified quantization table is present */
- qtblno = compptr->quant_tbl_no;
- if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
- cinfo->quant_tbl_ptrs[qtblno] == NULL)
- ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
- /* OK, save away the quantization table */
- qtbl = (JQUANT_TBL *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(JQUANT_TBL));
- MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL));
- compptr->quant_table = qtbl;
- }
-}
-
-
-/*
- * Initialize the input modules to read a scan of compressed data.
- * The first call to this is done by jdmaster.c after initializing
- * the entire decompressor (during jpeg_start_decompress).
- * Subsequent calls come from consume_markers, below.
- */
-
-METHODDEF void
-start_input_pass (j_decompress_ptr cinfo)
-{
- per_scan_setup(cinfo);
- latch_quant_tables(cinfo);
- (*cinfo->entropy->start_pass) (cinfo);
- (*cinfo->coef->start_input_pass) (cinfo);
- cinfo->inputctl->consume_input = cinfo->coef->consume_data;
-}
-
-
-/*
- * Finish up after inputting a compressed-data scan.
- * This is called by the coefficient controller after it's read all
- * the expected data of the scan.
- */
-
-METHODDEF void
-finish_input_pass (j_decompress_ptr cinfo)
-{
- cinfo->inputctl->consume_input = consume_markers;
-}
-
-
-/*
- * Read JPEG markers before, between, or after compressed-data scans.
- * Change state as necessary when a new scan is reached.
- * Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
- *
- * The consume_input method pointer points either here or to the
- * coefficient controller's consume_data routine, depending on whether
- * we are reading a compressed data segment or inter-segment markers.
- */
-
-METHODDEF int
-consume_markers (j_decompress_ptr cinfo)
-{
- my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
- int val;
-
- if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */
- return JPEG_REACHED_EOI;
-
- val = (*cinfo->marker->read_markers) (cinfo);
-
- switch (val) {
- case JPEG_REACHED_SOS: /* Found SOS */
- if (inputctl->inheaders) { /* 1st SOS */
- initial_setup(cinfo);
- inputctl->inheaders = FALSE;
- /* Note: start_input_pass must be called by jdmaster.c
- * before any more input can be consumed. jdapi.c is
- * responsible for enforcing this sequencing.
- */
- } else { /* 2nd or later SOS marker */
- if (! inputctl->pub.has_multiple_scans)
- ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */
- start_input_pass(cinfo);
- }
- break;
- case JPEG_REACHED_EOI: /* Found EOI */
- inputctl->pub.eoi_reached = TRUE;
- if (inputctl->inheaders) { /* Tables-only datastream, apparently */
- if (cinfo->marker->saw_SOF)
- ERREXIT(cinfo, JERR_SOF_NO_SOS);
- } else {
- /* Prevent infinite loop in coef ctlr's decompress_data routine
- * if user set output_scan_number larger than number of scans.
- */
- if (cinfo->output_scan_number > cinfo->input_scan_number)
- cinfo->output_scan_number = cinfo->input_scan_number;
- }
- break;
- case JPEG_SUSPENDED:
- break;
- }
-
- return val;
-}
-
-
-/*
- * Reset state to begin a fresh datastream.
- */
-
-METHODDEF void
-reset_input_controller (j_decompress_ptr cinfo)
-{
- my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
-
- inputctl->pub.consume_input = consume_markers;
- inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
- inputctl->pub.eoi_reached = FALSE;
- inputctl->inheaders = TRUE;
- /* Reset other modules */
- (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
- (*cinfo->marker->reset_marker_reader) (cinfo);
- /* Reset progression state -- would be cleaner if entropy decoder did this */
- cinfo->coef_bits = NULL;
-}
-
-
-/*
- * Initialize the input controller module.
- * This is called only once, when the decompression object is created.
- */
-
-GLOBAL void
-jinit_input_controller (j_decompress_ptr cinfo)
-{
- my_inputctl_ptr inputctl;
-
- /* Create subobject in permanent pool */
- inputctl = (my_inputctl_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
- SIZEOF(my_input_controller));
- cinfo->inputctl = (struct jpeg_input_controller *) inputctl;
- /* Initialize method pointers */
- inputctl->pub.consume_input = consume_markers;
- inputctl->pub.reset_input_controller = reset_input_controller;
- inputctl->pub.start_input_pass = start_input_pass;
- inputctl->pub.finish_input_pass = finish_input_pass;
- /* Initialize state: can't use reset_input_controller since we don't
- * want to try to reset other modules yet.
- */
- inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
- inputctl->pub.eoi_reached = FALSE;
- inputctl->inheaders = TRUE;
-}
+/*
+ * jdinput.c
+ *
+ * Copyright (C) 1991-1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains input control logic for the JPEG decompressor.
+ * These routines are concerned with controlling the decompressor's input
+ * processing (marker reading and coefficient decoding). The actual input
+ * reading is done in jdmarker.c, jdhuff.c, and jdphuff.c.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Private state */
+
+typedef struct {
+ struct jpeg_input_controller pub; /* public fields */
+
+ boolean inheaders; /* TRUE until first SOS is reached */
+} my_input_controller;
+
+typedef my_input_controller * my_inputctl_ptr;
+
+
+/* Forward declarations */
+METHODDEF int consume_markers JPP((j_decompress_ptr cinfo));
+
+
+/*
+ * Routines to calculate various quantities related to the size of the image.
+ */
+
+LOCAL void
+initial_setup (j_decompress_ptr cinfo)
+/* Called once, when first SOS marker is reached */
+{
+ int ci;
+ jpeg_component_info *compptr;
+
+ /* Make sure image isn't bigger than I can handle */
+ if ((long) cinfo->image_height > (long) JPEG_MAX_DIMENSION ||
+ (long) cinfo->image_width > (long) JPEG_MAX_DIMENSION)
+ ERREXIT1(cinfo, JERR_IMAGE_TOO_BIG, (unsigned int) JPEG_MAX_DIMENSION);
+
+ /* For now, precision must match compiled-in value... */
+ if (cinfo->data_precision != BITS_IN_JSAMPLE)
+ ERREXIT1(cinfo, JERR_BAD_PRECISION, cinfo->data_precision);
+
+ /* Check that number of components won't exceed internal array sizes */
+ if (cinfo->num_components > MAX_COMPONENTS)
+ ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->num_components,
+ MAX_COMPONENTS);
+
+ /* Compute maximum sampling factors; check factor validity */
+ cinfo->max_h_samp_factor = 1;
+ cinfo->max_v_samp_factor = 1;
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ if (compptr->h_samp_factor<=0 || compptr->h_samp_factor>MAX_SAMP_FACTOR ||
+ compptr->v_samp_factor<=0 || compptr->v_samp_factor>MAX_SAMP_FACTOR)
+ ERREXIT(cinfo, JERR_BAD_SAMPLING);
+ cinfo->max_h_samp_factor = MAX(cinfo->max_h_samp_factor,
+ compptr->h_samp_factor);
+ cinfo->max_v_samp_factor = MAX(cinfo->max_v_samp_factor,
+ compptr->v_samp_factor);
+ }
+
+ /* We initialize DCT_scaled_size and min_DCT_scaled_size to DCTSIZE.
+ * In the full decompressor, this will be overridden by jdmaster.c;
+ * but in the transcoder, jdmaster.c is not used, so we must do it here.
+ */
+ cinfo->min_DCT_scaled_size = DCTSIZE;
+
+ /* Compute dimensions of components */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ compptr->DCT_scaled_size = DCTSIZE;
+ /* Size in DCT blocks */
+ compptr->width_in_blocks = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
+ (long) (cinfo->max_h_samp_factor * DCTSIZE));
+ compptr->height_in_blocks = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
+ (long) (cinfo->max_v_samp_factor * DCTSIZE));
+ /* downsampled_width and downsampled_height will also be overridden by
+ * jdmaster.c if we are doing full decompression. The transcoder library
+ * doesn't use these values, but the calling application might.
+ */
+ /* Size in samples */
+ compptr->downsampled_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width * (long) compptr->h_samp_factor,
+ (long) cinfo->max_h_samp_factor);
+ compptr->downsampled_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height * (long) compptr->v_samp_factor,
+ (long) cinfo->max_v_samp_factor);
+ /* Mark component needed, until color conversion says otherwise */
+ compptr->component_needed = TRUE;
+ /* Mark no quantization table yet saved for component */
+ compptr->quant_table = NULL;
+ }
+
+ /* Compute number of fully interleaved MCU rows. */
+ cinfo->total_iMCU_rows = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height,
+ (long) (cinfo->max_v_samp_factor*DCTSIZE));
+
+ /* Decide whether file contains multiple scans */
+ if (cinfo->comps_in_scan < cinfo->num_components || cinfo->progressive_mode)
+ cinfo->inputctl->has_multiple_scans = TRUE;
+ else
+ cinfo->inputctl->has_multiple_scans = FALSE;
+}
+
+
+LOCAL void
+per_scan_setup (j_decompress_ptr cinfo)
+/* Do computations that are needed before processing a JPEG scan */
+/* cinfo->comps_in_scan and cinfo->cur_comp_info[] were set from SOS marker */
+{
+ int ci, mcublks, tmp;
+ jpeg_component_info *compptr;
+
+ if (cinfo->comps_in_scan == 1) {
+
+ /* Noninterleaved (single-component) scan */
+ compptr = cinfo->cur_comp_info[0];
+
+ /* Overall image size in MCUs */
+ cinfo->MCUs_per_row = compptr->width_in_blocks;
+ cinfo->MCU_rows_in_scan = compptr->height_in_blocks;
+
+ /* For noninterleaved scan, always one block per MCU */
+ compptr->MCU_width = 1;
+ compptr->MCU_height = 1;
+ compptr->MCU_blocks = 1;
+ compptr->MCU_sample_width = compptr->DCT_scaled_size;
+ compptr->last_col_width = 1;
+ /* For noninterleaved scans, it is convenient to define last_row_height
+ * as the number of block rows present in the last iMCU row.
+ */
+ tmp = (int) (compptr->height_in_blocks % compptr->v_samp_factor);
+ if (tmp == 0) tmp = compptr->v_samp_factor;
+ compptr->last_row_height = tmp;
+
+ /* Prepare array describing MCU composition */
+ cinfo->blocks_in_MCU = 1;
+ cinfo->MCU_membership[0] = 0;
+
+ } else {
+
+ /* Interleaved (multi-component) scan */
+ if (cinfo->comps_in_scan <= 0 || cinfo->comps_in_scan > MAX_COMPS_IN_SCAN)
+ ERREXIT2(cinfo, JERR_COMPONENT_COUNT, cinfo->comps_in_scan,
+ MAX_COMPS_IN_SCAN);
+
+ /* Overall image size in MCUs */
+ cinfo->MCUs_per_row = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width,
+ (long) (cinfo->max_h_samp_factor*DCTSIZE));
+ cinfo->MCU_rows_in_scan = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height,
+ (long) (cinfo->max_v_samp_factor*DCTSIZE));
+
+ cinfo->blocks_in_MCU = 0;
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* Sampling factors give # of blocks of component in each MCU */
+ compptr->MCU_width = compptr->h_samp_factor;
+ compptr->MCU_height = compptr->v_samp_factor;
+ compptr->MCU_blocks = compptr->MCU_width * compptr->MCU_height;
+ compptr->MCU_sample_width = compptr->MCU_width * compptr->DCT_scaled_size;
+ /* Figure number of non-dummy blocks in last MCU column & row */
+ tmp = (int) (compptr->width_in_blocks % compptr->MCU_width);
+ if (tmp == 0) tmp = compptr->MCU_width;
+ compptr->last_col_width = tmp;
+ tmp = (int) (compptr->height_in_blocks % compptr->MCU_height);
+ if (tmp == 0) tmp = compptr->MCU_height;
+ compptr->last_row_height = tmp;
+ /* Prepare array describing MCU composition */
+ mcublks = compptr->MCU_blocks;
+ if (cinfo->blocks_in_MCU + mcublks > D_MAX_BLOCKS_IN_MCU)
+ ERREXIT(cinfo, JERR_BAD_MCU_SIZE);
+ while (mcublks-- > 0) {
+ cinfo->MCU_membership[cinfo->blocks_in_MCU++] = ci;
+ }
+ }
+
+ }
+}
+
+
+/*
+ * Save away a copy of the Q-table referenced by each component present
+ * in the current scan, unless already saved during a prior scan.
+ *
+ * In a multiple-scan JPEG file, the encoder could assign different components
+ * the same Q-table slot number, but change table definitions between scans
+ * so that each component uses a different Q-table. (The IJG encoder is not
+ * currently capable of doing this, but other encoders might.) Since we want
+ * to be able to dequantize all the components at the end of the file, this
+ * means that we have to save away the table actually used for each component.
+ * We do this by copying the table at the start of the first scan containing
+ * the component.
+ * The JPEG spec prohibits the encoder from changing the contents of a Q-table
+ * slot between scans of a component using that slot. If the encoder does so
+ * anyway, this decoder will simply use the Q-table values that were current
+ * at the start of the first scan for the component.
+ *
+ * The decompressor output side looks only at the saved quant tables,
+ * not at the current Q-table slots.
+ */
+
+LOCAL void
+latch_quant_tables (j_decompress_ptr cinfo)
+{
+ int ci, qtblno;
+ jpeg_component_info *compptr;
+ JQUANT_TBL * qtbl;
+
+ for (ci = 0; ci < cinfo->comps_in_scan; ci++) {
+ compptr = cinfo->cur_comp_info[ci];
+ /* No work if we already saved Q-table for this component */
+ if (compptr->quant_table != NULL)
+ continue;
+ /* Make sure specified quantization table is present */
+ qtblno = compptr->quant_tbl_no;
+ if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
+ cinfo->quant_tbl_ptrs[qtblno] == NULL)
+ ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
+ /* OK, save away the quantization table */
+ qtbl = (JQUANT_TBL *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(JQUANT_TBL));
+ MEMCOPY(qtbl, cinfo->quant_tbl_ptrs[qtblno], SIZEOF(JQUANT_TBL));
+ compptr->quant_table = qtbl;
+ }
+}
+
+
+/*
+ * Initialize the input modules to read a scan of compressed data.
+ * The first call to this is done by jdmaster.c after initializing
+ * the entire decompressor (during jpeg_start_decompress).
+ * Subsequent calls come from consume_markers, below.
+ */
+
+METHODDEF void
+start_input_pass (j_decompress_ptr cinfo)
+{
+ per_scan_setup(cinfo);
+ latch_quant_tables(cinfo);
+ (*cinfo->entropy->start_pass) (cinfo);
+ (*cinfo->coef->start_input_pass) (cinfo);
+ cinfo->inputctl->consume_input = cinfo->coef->consume_data;
+}
+
+
+/*
+ * Finish up after inputting a compressed-data scan.
+ * This is called by the coefficient controller after it's read all
+ * the expected data of the scan.
+ */
+
+METHODDEF void
+finish_input_pass (j_decompress_ptr cinfo)
+{
+ cinfo->inputctl->consume_input = consume_markers;
+}
+
+
+/*
+ * Read JPEG markers before, between, or after compressed-data scans.
+ * Change state as necessary when a new scan is reached.
+ * Return value is JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
+ *
+ * The consume_input method pointer points either here or to the
+ * coefficient controller's consume_data routine, depending on whether
+ * we are reading a compressed data segment or inter-segment markers.
+ */
+
+METHODDEF int
+consume_markers (j_decompress_ptr cinfo)
+{
+ my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
+ int val;
+
+ if (inputctl->pub.eoi_reached) /* After hitting EOI, read no further */
+ return JPEG_REACHED_EOI;
+
+ val = (*cinfo->marker->read_markers) (cinfo);
+
+ switch (val) {
+ case JPEG_REACHED_SOS: /* Found SOS */
+ if (inputctl->inheaders) { /* 1st SOS */
+ initial_setup(cinfo);
+ inputctl->inheaders = FALSE;
+ /* Note: start_input_pass must be called by jdmaster.c
+ * before any more input can be consumed. jdapi.c is
+ * responsible for enforcing this sequencing.
+ */
+ } else { /* 2nd or later SOS marker */
+ if (! inputctl->pub.has_multiple_scans)
+ ERREXIT(cinfo, JERR_EOI_EXPECTED); /* Oops, I wasn't expecting this! */
+ start_input_pass(cinfo);
+ }
+ break;
+ case JPEG_REACHED_EOI: /* Found EOI */
+ inputctl->pub.eoi_reached = TRUE;
+ if (inputctl->inheaders) { /* Tables-only datastream, apparently */
+ if (cinfo->marker->saw_SOF)
+ ERREXIT(cinfo, JERR_SOF_NO_SOS);
+ } else {
+ /* Prevent infinite loop in coef ctlr's decompress_data routine
+ * if user set output_scan_number larger than number of scans.
+ */
+ if (cinfo->output_scan_number > cinfo->input_scan_number)
+ cinfo->output_scan_number = cinfo->input_scan_number;
+ }
+ break;
+ case JPEG_SUSPENDED:
+ break;
+ }
+
+ return val;
+}
+
+
+/*
+ * Reset state to begin a fresh datastream.
+ */
+
+METHODDEF void
+reset_input_controller (j_decompress_ptr cinfo)
+{
+ my_inputctl_ptr inputctl = (my_inputctl_ptr) cinfo->inputctl;
+
+ inputctl->pub.consume_input = consume_markers;
+ inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
+ inputctl->pub.eoi_reached = FALSE;
+ inputctl->inheaders = TRUE;
+ /* Reset other modules */
+ (*cinfo->err->reset_error_mgr) ((j_common_ptr) cinfo);
+ (*cinfo->marker->reset_marker_reader) (cinfo);
+ /* Reset progression state -- would be cleaner if entropy decoder did this */
+ cinfo->coef_bits = NULL;
+}
+
+
+/*
+ * Initialize the input controller module.
+ * This is called only once, when the decompression object is created.
+ */
+
+GLOBAL void
+jinit_input_controller (j_decompress_ptr cinfo)
+{
+ my_inputctl_ptr inputctl;
+
+ /* Create subobject in permanent pool */
+ inputctl = (my_inputctl_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ SIZEOF(my_input_controller));
+ cinfo->inputctl = (struct jpeg_input_controller *) inputctl;
+ /* Initialize method pointers */
+ inputctl->pub.consume_input = consume_markers;
+ inputctl->pub.reset_input_controller = reset_input_controller;
+ inputctl->pub.start_input_pass = start_input_pass;
+ inputctl->pub.finish_input_pass = finish_input_pass;
+ /* Initialize state: can't use reset_input_controller since we don't
+ * want to try to reset other modules yet.
+ */
+ inputctl->pub.has_multiple_scans = FALSE; /* "unknown" would be better */
+ inputctl->pub.eoi_reached = FALSE;
+ inputctl->inheaders = TRUE;
+}
diff --git a/libs/jpeg6/jdmainct.cpp b/libs/jpeg6/jdmainct.cpp
index c4e0d54..f3a06e5 100755
--- a/libs/jpeg6/jdmainct.cpp
+++ b/libs/jpeg6/jdmainct.cpp
@@ -1,512 +1,512 @@
-/*
- * jdmainct.c
- *
- * Copyright (C) 1994-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the main buffer controller for decompression.
- * The main buffer lies between the JPEG decompressor proper and the
- * post-processor; it holds downsampled data in the JPEG colorspace.
- *
- * Note that this code is bypassed in raw-data mode, since the application
- * supplies the equivalent of the main buffer in that case.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * In the current system design, the main buffer need never be a full-image
- * buffer; any full-height buffers will be found inside the coefficient or
- * postprocessing controllers. Nonetheless, the main controller is not
- * trivial. Its responsibility is to provide context rows for upsampling/
- * rescaling, and doing this in an efficient fashion is a bit tricky.
- *
- * Postprocessor input data is counted in "row groups". A row group
- * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
- * sample rows of each component. (We require DCT_scaled_size values to be
- * chosen such that these numbers are integers. In practice DCT_scaled_size
- * values will likely be powers of two, so we actually have the stronger
- * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
- * Upsampling will typically produce max_v_samp_factor pixel rows from each
- * row group (times any additional scale factor that the upsampler is
- * applying).
- *
- * The coefficient controller will deliver data to us one iMCU row at a time;
- * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
- * exactly min_DCT_scaled_size row groups. (This amount of data corresponds
- * to one row of MCUs when the image is fully interleaved.) Note that the
- * number of sample rows varies across components, but the number of row
- * groups does not. Some garbage sample rows may be included in the last iMCU
- * row at the bottom of the image.
- *
- * Depending on the vertical scaling algorithm used, the upsampler may need
- * access to the sample row(s) above and below its current input row group.
- * The upsampler is required to set need_context_rows TRUE at global selection
- * time if so. When need_context_rows is FALSE, this controller can simply
- * obtain one iMCU row at a time from the coefficient controller and dole it
- * out as row groups to the postprocessor.
- *
- * When need_context_rows is TRUE, this controller guarantees that the buffer
- * passed to postprocessing contains at least one row group's worth of samples
- * above and below the row group(s) being processed. Note that the context
- * rows "above" the first passed row group appear at negative row offsets in
- * the passed buffer. At the top and bottom of the image, the required
- * context rows are manufactured by duplicating the first or last real sample
- * row; this avoids having special cases in the upsampling inner loops.
- *
- * The amount of context is fixed at one row group just because that's a
- * convenient number for this controller to work with. The existing
- * upsamplers really only need one sample row of context. An upsampler
- * supporting arbitrary output rescaling might wish for more than one row
- * group of context when shrinking the image; tough, we don't handle that.
- * (This is justified by the assumption that downsizing will be handled mostly
- * by adjusting the DCT_scaled_size values, so that the actual scale factor at
- * the upsample step needn't be much less than one.)
- *
- * To provide the desired context, we have to retain the last two row groups
- * of one iMCU row while reading in the next iMCU row. (The last row group
- * can't be processed until we have another row group for its below-context,
- * and so we have to save the next-to-last group too for its above-context.)
- * We could do this most simply by copying data around in our buffer, but
- * that'd be very slow. We can avoid copying any data by creating a rather
- * strange pointer structure. Here's how it works. We allocate a workspace
- * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
- * of row groups per iMCU row). We create two sets of redundant pointers to
- * the workspace. Labeling the physical row groups 0 to M+1, the synthesized
- * pointer lists look like this:
- * M+1 M-1
- * master pointer --> 0 master pointer --> 0
- * 1 1
- * ... ...
- * M-3 M-3
- * M-2 M
- * M-1 M+1
- * M M-2
- * M+1 M-1
- * 0 0
- * We read alternate iMCU rows using each master pointer; thus the last two
- * row groups of the previous iMCU row remain un-overwritten in the workspace.
- * The pointer lists are set up so that the required context rows appear to
- * be adjacent to the proper places when we pass the pointer lists to the
- * upsampler.
- *
- * The above pictures describe the normal state of the pointer lists.
- * At top and bottom of the image, we diddle the pointer lists to duplicate
- * the first or last sample row as necessary (this is cheaper than copying
- * sample rows around).
- *
- * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that
- * situation each iMCU row provides only one row group so the buffering logic
- * must be different (eg, we must read two iMCU rows before we can emit the
- * first row group). For now, we simply do not support providing context
- * rows when min_DCT_scaled_size is 1. That combination seems unlikely to
- * be worth providing --- if someone wants a 1/8th-size preview, they probably
- * want it quick and dirty, so a context-free upsampler is sufficient.
- */
-
-
-/* Private buffer controller object */
-
-typedef struct {
- struct jpeg_d_main_controller pub; /* public fields */
-
- /* Pointer to allocated workspace (M or M+2 row groups). */
- JSAMPARRAY buffer[MAX_COMPONENTS];
-
- boolean buffer_full; /* Have we gotten an iMCU row from decoder? */
- JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */
-
- /* Remaining fields are only used in the context case. */
-
- /* These are the master pointers to the funny-order pointer lists. */
- JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */
-
- int whichptr; /* indicates which pointer set is now in use */
- int context_state; /* process_data state machine status */
- JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
- JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */
-} my_main_controller;
-
-typedef my_main_controller * my_main_ptr;
-
-/* context_state values: */
-#define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */
-#define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */
-#define CTX_POSTPONED_ROW 2 /* feeding postponed row group */
-
-
-/* Forward declarations */
-METHODDEF void process_data_simple_main
- JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
- JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
-METHODDEF void process_data_context_main
- JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
- JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
-#ifdef QUANT_2PASS_SUPPORTED
-METHODDEF void process_data_crank_post
- JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
- JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
-#endif
-
-
-LOCAL void
-alloc_funny_pointers (j_decompress_ptr cinfo)
-/* Allocate space for the funny pointer lists.
- * This is done only once, not once per pass.
- */
-{
- my_main_ptr main = (my_main_ptr) cinfo->main;
- int ci, rgroup;
- int M = cinfo->min_DCT_scaled_size;
- jpeg_component_info *compptr;
- JSAMPARRAY xbuf;
-
- /* Get top-level space for component array pointers.
- * We alloc both arrays with one call to save a few cycles.
- */
- main->xbuffer[0] = (JSAMPIMAGE)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
- main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
- cinfo->min_DCT_scaled_size; /* height of a row group of component */
- /* Get space for pointer lists --- M+4 row groups in each list.
- * We alloc both pointer lists with one call to save a few cycles.
- */
- xbuf = (JSAMPARRAY)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
- xbuf += rgroup; /* want one row group at negative offsets */
- main->xbuffer[0][ci] = xbuf;
- xbuf += rgroup * (M + 4);
- main->xbuffer[1][ci] = xbuf;
- }
-}
-
-
-LOCAL void
-make_funny_pointers (j_decompress_ptr cinfo)
-/* Create the funny pointer lists discussed in the comments above.
- * The actual workspace is already allocated (in main->buffer),
- * and the space for the pointer lists is allocated too.
- * This routine just fills in the curiously ordered lists.
- * This will be repeated at the beginning of each pass.
- */
-{
- my_main_ptr main = (my_main_ptr) cinfo->main;
- int ci, i, rgroup;
- int M = cinfo->min_DCT_scaled_size;
- jpeg_component_info *compptr;
- JSAMPARRAY buf, xbuf0, xbuf1;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
- cinfo->min_DCT_scaled_size; /* height of a row group of component */
- xbuf0 = main->xbuffer[0][ci];
- xbuf1 = main->xbuffer[1][ci];
- /* First copy the workspace pointers as-is */
- buf = main->buffer[ci];
- for (i = 0; i < rgroup * (M + 2); i++) {
- xbuf0[i] = xbuf1[i] = buf[i];
- }
- /* In the second list, put the last four row groups in swapped order */
- for (i = 0; i < rgroup * 2; i++) {
- xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
- xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
- }
- /* The wraparound pointers at top and bottom will be filled later
- * (see set_wraparound_pointers, below). Initially we want the "above"
- * pointers to duplicate the first actual data line. This only needs
- * to happen in xbuffer[0].
- */
- for (i = 0; i < rgroup; i++) {
- xbuf0[i - rgroup] = xbuf0[0];
- }
- }
-}
-
-
-LOCAL void
-set_wraparound_pointers (j_decompress_ptr cinfo)
-/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
- * This changes the pointer list state from top-of-image to the normal state.
- */
-{
- my_main_ptr main = (my_main_ptr) cinfo->main;
- int ci, i, rgroup;
- int M = cinfo->min_DCT_scaled_size;
- jpeg_component_info *compptr;
- JSAMPARRAY xbuf0, xbuf1;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
- cinfo->min_DCT_scaled_size; /* height of a row group of component */
- xbuf0 = main->xbuffer[0][ci];
- xbuf1 = main->xbuffer[1][ci];
- for (i = 0; i < rgroup; i++) {
- xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
- xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
- xbuf0[rgroup*(M+2) + i] = xbuf0[i];
- xbuf1[rgroup*(M+2) + i] = xbuf1[i];
- }
- }
-}
-
-
-LOCAL void
-set_bottom_pointers (j_decompress_ptr cinfo)
-/* Change the pointer lists to duplicate the last sample row at the bottom
- * of the image. whichptr indicates which xbuffer holds the final iMCU row.
- * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
- */
-{
- my_main_ptr main = (my_main_ptr) cinfo->main;
- int ci, i, rgroup, iMCUheight, rows_left;
- jpeg_component_info *compptr;
- JSAMPARRAY xbuf;
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Count sample rows in one iMCU row and in one row group */
- iMCUheight = compptr->v_samp_factor * compptr->DCT_scaled_size;
- rgroup = iMCUheight / cinfo->min_DCT_scaled_size;
- /* Count nondummy sample rows remaining for this component */
- rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
- if (rows_left == 0) rows_left = iMCUheight;
- /* Count nondummy row groups. Should get same answer for each component,
- * so we need only do it once.
- */
- if (ci == 0) {
- main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
- }
- /* Duplicate the last real sample row rgroup*2 times; this pads out the
- * last partial rowgroup and ensures at least one full rowgroup of context.
- */
- xbuf = main->xbuffer[main->whichptr][ci];
- for (i = 0; i < rgroup * 2; i++) {
- xbuf[rows_left + i] = xbuf[rows_left-1];
- }
- }
-}
-
-
-/*
- * Initialize for a processing pass.
- */
-
-METHODDEF void
-start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
-{
- my_main_ptr main = (my_main_ptr) cinfo->main;
-
- switch (pass_mode) {
- case JBUF_PASS_THRU:
- if (cinfo->upsample->need_context_rows) {
- main->pub.process_data = process_data_context_main;
- make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
- main->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
- main->context_state = CTX_PREPARE_FOR_IMCU;
- main->iMCU_row_ctr = 0;
- } else {
- /* Simple case with no context needed */
- main->pub.process_data = process_data_simple_main;
- }
- main->buffer_full = FALSE; /* Mark buffer empty */
- main->rowgroup_ctr = 0;
- break;
-#ifdef QUANT_2PASS_SUPPORTED
- case JBUF_CRANK_DEST:
- /* For last pass of 2-pass quantization, just crank the postprocessor */
- main->pub.process_data = process_data_crank_post;
- break;
-#endif
- default:
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- break;
- }
-}
-
-
-/*
- * Process some data.
- * This handles the simple case where no context is required.
- */
-
-METHODDEF void
-process_data_simple_main (j_decompress_ptr cinfo,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- my_main_ptr main = (my_main_ptr) cinfo->main;
- JDIMENSION rowgroups_avail;
-
- /* Read input data if we haven't filled the main buffer yet */
- if (! main->buffer_full) {
- if (! (*cinfo->coef->decompress_data) (cinfo, main->buffer))
- return; /* suspension forced, can do nothing more */
- main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
- }
-
- /* There are always min_DCT_scaled_size row groups in an iMCU row. */
- rowgroups_avail = (JDIMENSION) cinfo->min_DCT_scaled_size;
- /* Note: at the bottom of the image, we may pass extra garbage row groups
- * to the postprocessor. The postprocessor has to check for bottom
- * of image anyway (at row resolution), so no point in us doing it too.
- */
-
- /* Feed the postprocessor */
- (*cinfo->post->post_process_data) (cinfo, main->buffer,
- &main->rowgroup_ctr, rowgroups_avail,
- output_buf, out_row_ctr, out_rows_avail);
-
- /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
- if (main->rowgroup_ctr >= rowgroups_avail) {
- main->buffer_full = FALSE;
- main->rowgroup_ctr = 0;
- }
-}
-
-
-/*
- * Process some data.
- * This handles the case where context rows must be provided.
- */
-
-METHODDEF void
-process_data_context_main (j_decompress_ptr cinfo,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- my_main_ptr main = (my_main_ptr) cinfo->main;
-
- /* Read input data if we haven't filled the main buffer yet */
- if (! main->buffer_full) {
- if (! (*cinfo->coef->decompress_data) (cinfo,
- main->xbuffer[main->whichptr]))
- return; /* suspension forced, can do nothing more */
- main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
- main->iMCU_row_ctr++; /* count rows received */
- }
-
- /* Postprocessor typically will not swallow all the input data it is handed
- * in one call (due to filling the output buffer first). Must be prepared
- * to exit and restart. This switch lets us keep track of how far we got.
- * Note that each case falls through to the next on successful completion.
- */
- switch (main->context_state) {
- case CTX_POSTPONED_ROW:
- /* Call postprocessor using previously set pointers for postponed row */
- (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
- &main->rowgroup_ctr, main->rowgroups_avail,
- output_buf, out_row_ctr, out_rows_avail);
- if (main->rowgroup_ctr < main->rowgroups_avail)
- return; /* Need to suspend */
- main->context_state = CTX_PREPARE_FOR_IMCU;
- if (*out_row_ctr >= out_rows_avail)
- return; /* Postprocessor exactly filled output buf */
- /*FALLTHROUGH*/
- case CTX_PREPARE_FOR_IMCU:
- /* Prepare to process first M-1 row groups of this iMCU row */
- main->rowgroup_ctr = 0;
- main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size - 1);
- /* Check for bottom of image: if so, tweak pointers to "duplicate"
- * the last sample row, and adjust rowgroups_avail to ignore padding rows.
- */
- if (main->iMCU_row_ctr == cinfo->total_iMCU_rows)
- set_bottom_pointers(cinfo);
- main->context_state = CTX_PROCESS_IMCU;
- /*FALLTHROUGH*/
- case CTX_PROCESS_IMCU:
- /* Call postprocessor using previously set pointers */
- (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
- &main->rowgroup_ctr, main->rowgroups_avail,
- output_buf, out_row_ctr, out_rows_avail);
- if (main->rowgroup_ctr < main->rowgroups_avail)
- return; /* Need to suspend */
- /* After the first iMCU, change wraparound pointers to normal state */
- if (main->iMCU_row_ctr == 1)
- set_wraparound_pointers(cinfo);
- /* Prepare to load new iMCU row using other xbuffer list */
- main->whichptr ^= 1; /* 0=>1 or 1=>0 */
- main->buffer_full = FALSE;
- /* Still need to process last row group of this iMCU row, */
- /* which is saved at index M+1 of the other xbuffer */
- main->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_scaled_size + 1);
- main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size + 2);
- main->context_state = CTX_POSTPONED_ROW;
- }
-}
-
-
-/*
- * Process some data.
- * Final pass of two-pass quantization: just call the postprocessor.
- * Source data will be the postprocessor controller's internal buffer.
- */
-
-#ifdef QUANT_2PASS_SUPPORTED
-
-METHODDEF void
-process_data_crank_post (j_decompress_ptr cinfo,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
- (JDIMENSION *) NULL, (JDIMENSION) 0,
- output_buf, out_row_ctr, out_rows_avail);
-}
-
-#endif /* QUANT_2PASS_SUPPORTED */
-
-
-/*
- * Initialize main buffer controller.
- */
-
-GLOBAL void
-jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
-{
- my_main_ptr main;
- int ci, rgroup, ngroups;
- jpeg_component_info *compptr;
-
- main = (my_main_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_main_controller));
- cinfo->main = (struct jpeg_d_main_controller *) main;
- main->pub.start_pass = start_pass_main;
-
- if (need_full_buffer) /* shouldn't happen */
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-
- /* Allocate the workspace.
- * ngroups is the number of row groups we need.
- */
- if (cinfo->upsample->need_context_rows) {
- if (cinfo->min_DCT_scaled_size < 2) /* unsupported, see comments above */
- ERREXIT(cinfo, JERR_NOTIMPL);
- alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
- ngroups = cinfo->min_DCT_scaled_size + 2;
- } else {
- ngroups = cinfo->min_DCT_scaled_size;
- }
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
- cinfo->min_DCT_scaled_size; /* height of a row group of component */
- main->buffer[ci] = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- compptr->width_in_blocks * compptr->DCT_scaled_size,
- (JDIMENSION) (rgroup * ngroups));
- }
-}
+/*
+ * jdmainct.c
+ *
+ * Copyright (C) 1994-1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the main buffer controller for decompression.
+ * The main buffer lies between the JPEG decompressor proper and the
+ * post-processor; it holds downsampled data in the JPEG colorspace.
+ *
+ * Note that this code is bypassed in raw-data mode, since the application
+ * supplies the equivalent of the main buffer in that case.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * In the current system design, the main buffer need never be a full-image
+ * buffer; any full-height buffers will be found inside the coefficient or
+ * postprocessing controllers. Nonetheless, the main controller is not
+ * trivial. Its responsibility is to provide context rows for upsampling/
+ * rescaling, and doing this in an efficient fashion is a bit tricky.
+ *
+ * Postprocessor input data is counted in "row groups". A row group
+ * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
+ * sample rows of each component. (We require DCT_scaled_size values to be
+ * chosen such that these numbers are integers. In practice DCT_scaled_size
+ * values will likely be powers of two, so we actually have the stronger
+ * condition that DCT_scaled_size / min_DCT_scaled_size is an integer.)
+ * Upsampling will typically produce max_v_samp_factor pixel rows from each
+ * row group (times any additional scale factor that the upsampler is
+ * applying).
+ *
+ * The coefficient controller will deliver data to us one iMCU row at a time;
+ * each iMCU row contains v_samp_factor * DCT_scaled_size sample rows, or
+ * exactly min_DCT_scaled_size row groups. (This amount of data corresponds
+ * to one row of MCUs when the image is fully interleaved.) Note that the
+ * number of sample rows varies across components, but the number of row
+ * groups does not. Some garbage sample rows may be included in the last iMCU
+ * row at the bottom of the image.
+ *
+ * Depending on the vertical scaling algorithm used, the upsampler may need
+ * access to the sample row(s) above and below its current input row group.
+ * The upsampler is required to set need_context_rows TRUE at global selection
+ * time if so. When need_context_rows is FALSE, this controller can simply
+ * obtain one iMCU row at a time from the coefficient controller and dole it
+ * out as row groups to the postprocessor.
+ *
+ * When need_context_rows is TRUE, this controller guarantees that the buffer
+ * passed to postprocessing contains at least one row group's worth of samples
+ * above and below the row group(s) being processed. Note that the context
+ * rows "above" the first passed row group appear at negative row offsets in
+ * the passed buffer. At the top and bottom of the image, the required
+ * context rows are manufactured by duplicating the first or last real sample
+ * row; this avoids having special cases in the upsampling inner loops.
+ *
+ * The amount of context is fixed at one row group just because that's a
+ * convenient number for this controller to work with. The existing
+ * upsamplers really only need one sample row of context. An upsampler
+ * supporting arbitrary output rescaling might wish for more than one row
+ * group of context when shrinking the image; tough, we don't handle that.
+ * (This is justified by the assumption that downsizing will be handled mostly
+ * by adjusting the DCT_scaled_size values, so that the actual scale factor at
+ * the upsample step needn't be much less than one.)
+ *
+ * To provide the desired context, we have to retain the last two row groups
+ * of one iMCU row while reading in the next iMCU row. (The last row group
+ * can't be processed until we have another row group for its below-context,
+ * and so we have to save the next-to-last group too for its above-context.)
+ * We could do this most simply by copying data around in our buffer, but
+ * that'd be very slow. We can avoid copying any data by creating a rather
+ * strange pointer structure. Here's how it works. We allocate a workspace
+ * consisting of M+2 row groups (where M = min_DCT_scaled_size is the number
+ * of row groups per iMCU row). We create two sets of redundant pointers to
+ * the workspace. Labeling the physical row groups 0 to M+1, the synthesized
+ * pointer lists look like this:
+ * M+1 M-1
+ * master pointer --> 0 master pointer --> 0
+ * 1 1
+ * ... ...
+ * M-3 M-3
+ * M-2 M
+ * M-1 M+1
+ * M M-2
+ * M+1 M-1
+ * 0 0
+ * We read alternate iMCU rows using each master pointer; thus the last two
+ * row groups of the previous iMCU row remain un-overwritten in the workspace.
+ * The pointer lists are set up so that the required context rows appear to
+ * be adjacent to the proper places when we pass the pointer lists to the
+ * upsampler.
+ *
+ * The above pictures describe the normal state of the pointer lists.
+ * At top and bottom of the image, we diddle the pointer lists to duplicate
+ * the first or last sample row as necessary (this is cheaper than copying
+ * sample rows around).
+ *
+ * This scheme breaks down if M < 2, ie, min_DCT_scaled_size is 1. In that
+ * situation each iMCU row provides only one row group so the buffering logic
+ * must be different (eg, we must read two iMCU rows before we can emit the
+ * first row group). For now, we simply do not support providing context
+ * rows when min_DCT_scaled_size is 1. That combination seems unlikely to
+ * be worth providing --- if someone wants a 1/8th-size preview, they probably
+ * want it quick and dirty, so a context-free upsampler is sufficient.
+ */
+
+
+/* Private buffer controller object */
+
+typedef struct {
+ struct jpeg_d_main_controller pub; /* public fields */
+
+ /* Pointer to allocated workspace (M or M+2 row groups). */
+ JSAMPARRAY buffer[MAX_COMPONENTS];
+
+ boolean buffer_full; /* Have we gotten an iMCU row from decoder? */
+ JDIMENSION rowgroup_ctr; /* counts row groups output to postprocessor */
+
+ /* Remaining fields are only used in the context case. */
+
+ /* These are the master pointers to the funny-order pointer lists. */
+ JSAMPIMAGE xbuffer[2]; /* pointers to weird pointer lists */
+
+ int whichptr; /* indicates which pointer set is now in use */
+ int context_state; /* process_data state machine status */
+ JDIMENSION rowgroups_avail; /* row groups available to postprocessor */
+ JDIMENSION iMCU_row_ctr; /* counts iMCU rows to detect image top/bot */
+} my_main_controller;
+
+typedef my_main_controller * my_main_ptr;
+
+/* context_state values: */
+#define CTX_PREPARE_FOR_IMCU 0 /* need to prepare for MCU row */
+#define CTX_PROCESS_IMCU 1 /* feeding iMCU to postprocessor */
+#define CTX_POSTPONED_ROW 2 /* feeding postponed row group */
+
+
+/* Forward declarations */
+METHODDEF void process_data_simple_main
+ JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
+ JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
+METHODDEF void process_data_context_main
+ JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
+ JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
+#ifdef QUANT_2PASS_SUPPORTED
+METHODDEF void process_data_crank_post
+ JPP((j_decompress_ptr cinfo, JSAMPARRAY output_buf,
+ JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail));
+#endif
+
+
+LOCAL void
+alloc_funny_pointers (j_decompress_ptr cinfo)
+/* Allocate space for the funny pointer lists.
+ * This is done only once, not once per pass.
+ */
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+ int ci, rgroup;
+ int M = cinfo->min_DCT_scaled_size;
+ jpeg_component_info *compptr;
+ JSAMPARRAY xbuf;
+
+ /* Get top-level space for component array pointers.
+ * We alloc both arrays with one call to save a few cycles.
+ */
+ main->xbuffer[0] = (JSAMPIMAGE)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ cinfo->num_components * 2 * SIZEOF(JSAMPARRAY));
+ main->xbuffer[1] = main->xbuffer[0] + cinfo->num_components;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
+ cinfo->min_DCT_scaled_size; /* height of a row group of component */
+ /* Get space for pointer lists --- M+4 row groups in each list.
+ * We alloc both pointer lists with one call to save a few cycles.
+ */
+ xbuf = (JSAMPARRAY)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ 2 * (rgroup * (M + 4)) * SIZEOF(JSAMPROW));
+ xbuf += rgroup; /* want one row group at negative offsets */
+ main->xbuffer[0][ci] = xbuf;
+ xbuf += rgroup * (M + 4);
+ main->xbuffer[1][ci] = xbuf;
+ }
+}
+
+
+LOCAL void
+make_funny_pointers (j_decompress_ptr cinfo)
+/* Create the funny pointer lists discussed in the comments above.
+ * The actual workspace is already allocated (in main->buffer),
+ * and the space for the pointer lists is allocated too.
+ * This routine just fills in the curiously ordered lists.
+ * This will be repeated at the beginning of each pass.
+ */
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+ int ci, i, rgroup;
+ int M = cinfo->min_DCT_scaled_size;
+ jpeg_component_info *compptr;
+ JSAMPARRAY buf, xbuf0, xbuf1;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
+ cinfo->min_DCT_scaled_size; /* height of a row group of component */
+ xbuf0 = main->xbuffer[0][ci];
+ xbuf1 = main->xbuffer[1][ci];
+ /* First copy the workspace pointers as-is */
+ buf = main->buffer[ci];
+ for (i = 0; i < rgroup * (M + 2); i++) {
+ xbuf0[i] = xbuf1[i] = buf[i];
+ }
+ /* In the second list, put the last four row groups in swapped order */
+ for (i = 0; i < rgroup * 2; i++) {
+ xbuf1[rgroup*(M-2) + i] = buf[rgroup*M + i];
+ xbuf1[rgroup*M + i] = buf[rgroup*(M-2) + i];
+ }
+ /* The wraparound pointers at top and bottom will be filled later
+ * (see set_wraparound_pointers, below). Initially we want the "above"
+ * pointers to duplicate the first actual data line. This only needs
+ * to happen in xbuffer[0].
+ */
+ for (i = 0; i < rgroup; i++) {
+ xbuf0[i - rgroup] = xbuf0[0];
+ }
+ }
+}
+
+
+LOCAL void
+set_wraparound_pointers (j_decompress_ptr cinfo)
+/* Set up the "wraparound" pointers at top and bottom of the pointer lists.
+ * This changes the pointer list state from top-of-image to the normal state.
+ */
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+ int ci, i, rgroup;
+ int M = cinfo->min_DCT_scaled_size;
+ jpeg_component_info *compptr;
+ JSAMPARRAY xbuf0, xbuf1;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
+ cinfo->min_DCT_scaled_size; /* height of a row group of component */
+ xbuf0 = main->xbuffer[0][ci];
+ xbuf1 = main->xbuffer[1][ci];
+ for (i = 0; i < rgroup; i++) {
+ xbuf0[i - rgroup] = xbuf0[rgroup*(M+1) + i];
+ xbuf1[i - rgroup] = xbuf1[rgroup*(M+1) + i];
+ xbuf0[rgroup*(M+2) + i] = xbuf0[i];
+ xbuf1[rgroup*(M+2) + i] = xbuf1[i];
+ }
+ }
+}
+
+
+LOCAL void
+set_bottom_pointers (j_decompress_ptr cinfo)
+/* Change the pointer lists to duplicate the last sample row at the bottom
+ * of the image. whichptr indicates which xbuffer holds the final iMCU row.
+ * Also sets rowgroups_avail to indicate number of nondummy row groups in row.
+ */
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+ int ci, i, rgroup, iMCUheight, rows_left;
+ jpeg_component_info *compptr;
+ JSAMPARRAY xbuf;
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Count sample rows in one iMCU row and in one row group */
+ iMCUheight = compptr->v_samp_factor * compptr->DCT_scaled_size;
+ rgroup = iMCUheight / cinfo->min_DCT_scaled_size;
+ /* Count nondummy sample rows remaining for this component */
+ rows_left = (int) (compptr->downsampled_height % (JDIMENSION) iMCUheight);
+ if (rows_left == 0) rows_left = iMCUheight;
+ /* Count nondummy row groups. Should get same answer for each component,
+ * so we need only do it once.
+ */
+ if (ci == 0) {
+ main->rowgroups_avail = (JDIMENSION) ((rows_left-1) / rgroup + 1);
+ }
+ /* Duplicate the last real sample row rgroup*2 times; this pads out the
+ * last partial rowgroup and ensures at least one full rowgroup of context.
+ */
+ xbuf = main->xbuffer[main->whichptr][ci];
+ for (i = 0; i < rgroup * 2; i++) {
+ xbuf[rows_left + i] = xbuf[rows_left-1];
+ }
+ }
+}
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF void
+start_pass_main (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+
+ switch (pass_mode) {
+ case JBUF_PASS_THRU:
+ if (cinfo->upsample->need_context_rows) {
+ main->pub.process_data = process_data_context_main;
+ make_funny_pointers(cinfo); /* Create the xbuffer[] lists */
+ main->whichptr = 0; /* Read first iMCU row into xbuffer[0] */
+ main->context_state = CTX_PREPARE_FOR_IMCU;
+ main->iMCU_row_ctr = 0;
+ } else {
+ /* Simple case with no context needed */
+ main->pub.process_data = process_data_simple_main;
+ }
+ main->buffer_full = FALSE; /* Mark buffer empty */
+ main->rowgroup_ctr = 0;
+ break;
+#ifdef QUANT_2PASS_SUPPORTED
+ case JBUF_CRANK_DEST:
+ /* For last pass of 2-pass quantization, just crank the postprocessor */
+ main->pub.process_data = process_data_crank_post;
+ break;
+#endif
+ default:
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ break;
+ }
+}
+
+
+/*
+ * Process some data.
+ * This handles the simple case where no context is required.
+ */
+
+METHODDEF void
+process_data_simple_main (j_decompress_ptr cinfo,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+ JDIMENSION rowgroups_avail;
+
+ /* Read input data if we haven't filled the main buffer yet */
+ if (! main->buffer_full) {
+ if (! (*cinfo->coef->decompress_data) (cinfo, main->buffer))
+ return; /* suspension forced, can do nothing more */
+ main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
+ }
+
+ /* There are always min_DCT_scaled_size row groups in an iMCU row. */
+ rowgroups_avail = (JDIMENSION) cinfo->min_DCT_scaled_size;
+ /* Note: at the bottom of the image, we may pass extra garbage row groups
+ * to the postprocessor. The postprocessor has to check for bottom
+ * of image anyway (at row resolution), so no point in us doing it too.
+ */
+
+ /* Feed the postprocessor */
+ (*cinfo->post->post_process_data) (cinfo, main->buffer,
+ &main->rowgroup_ctr, rowgroups_avail,
+ output_buf, out_row_ctr, out_rows_avail);
+
+ /* Has postprocessor consumed all the data yet? If so, mark buffer empty */
+ if (main->rowgroup_ctr >= rowgroups_avail) {
+ main->buffer_full = FALSE;
+ main->rowgroup_ctr = 0;
+ }
+}
+
+
+/*
+ * Process some data.
+ * This handles the case where context rows must be provided.
+ */
+
+METHODDEF void
+process_data_context_main (j_decompress_ptr cinfo,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ my_main_ptr main = (my_main_ptr) cinfo->main;
+
+ /* Read input data if we haven't filled the main buffer yet */
+ if (! main->buffer_full) {
+ if (! (*cinfo->coef->decompress_data) (cinfo,
+ main->xbuffer[main->whichptr]))
+ return; /* suspension forced, can do nothing more */
+ main->buffer_full = TRUE; /* OK, we have an iMCU row to work with */
+ main->iMCU_row_ctr++; /* count rows received */
+ }
+
+ /* Postprocessor typically will not swallow all the input data it is handed
+ * in one call (due to filling the output buffer first). Must be prepared
+ * to exit and restart. This switch lets us keep track of how far we got.
+ * Note that each case falls through to the next on successful completion.
+ */
+ switch (main->context_state) {
+ case CTX_POSTPONED_ROW:
+ /* Call postprocessor using previously set pointers for postponed row */
+ (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
+ &main->rowgroup_ctr, main->rowgroups_avail,
+ output_buf, out_row_ctr, out_rows_avail);
+ if (main->rowgroup_ctr < main->rowgroups_avail)
+ return; /* Need to suspend */
+ main->context_state = CTX_PREPARE_FOR_IMCU;
+ if (*out_row_ctr >= out_rows_avail)
+ return; /* Postprocessor exactly filled output buf */
+ /*FALLTHROUGH*/
+ case CTX_PREPARE_FOR_IMCU:
+ /* Prepare to process first M-1 row groups of this iMCU row */
+ main->rowgroup_ctr = 0;
+ main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size - 1);
+ /* Check for bottom of image: if so, tweak pointers to "duplicate"
+ * the last sample row, and adjust rowgroups_avail to ignore padding rows.
+ */
+ if (main->iMCU_row_ctr == cinfo->total_iMCU_rows)
+ set_bottom_pointers(cinfo);
+ main->context_state = CTX_PROCESS_IMCU;
+ /*FALLTHROUGH*/
+ case CTX_PROCESS_IMCU:
+ /* Call postprocessor using previously set pointers */
+ (*cinfo->post->post_process_data) (cinfo, main->xbuffer[main->whichptr],
+ &main->rowgroup_ctr, main->rowgroups_avail,
+ output_buf, out_row_ctr, out_rows_avail);
+ if (main->rowgroup_ctr < main->rowgroups_avail)
+ return; /* Need to suspend */
+ /* After the first iMCU, change wraparound pointers to normal state */
+ if (main->iMCU_row_ctr == 1)
+ set_wraparound_pointers(cinfo);
+ /* Prepare to load new iMCU row using other xbuffer list */
+ main->whichptr ^= 1; /* 0=>1 or 1=>0 */
+ main->buffer_full = FALSE;
+ /* Still need to process last row group of this iMCU row, */
+ /* which is saved at index M+1 of the other xbuffer */
+ main->rowgroup_ctr = (JDIMENSION) (cinfo->min_DCT_scaled_size + 1);
+ main->rowgroups_avail = (JDIMENSION) (cinfo->min_DCT_scaled_size + 2);
+ main->context_state = CTX_POSTPONED_ROW;
+ }
+}
+
+
+/*
+ * Process some data.
+ * Final pass of two-pass quantization: just call the postprocessor.
+ * Source data will be the postprocessor controller's internal buffer.
+ */
+
+#ifdef QUANT_2PASS_SUPPORTED
+
+METHODDEF void
+process_data_crank_post (j_decompress_ptr cinfo,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ (*cinfo->post->post_process_data) (cinfo, (JSAMPIMAGE) NULL,
+ (JDIMENSION *) NULL, (JDIMENSION) 0,
+ output_buf, out_row_ctr, out_rows_avail);
+}
+
+#endif /* QUANT_2PASS_SUPPORTED */
+
+
+/*
+ * Initialize main buffer controller.
+ */
+
+GLOBAL void
+jinit_d_main_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
+{
+ my_main_ptr main;
+ int ci, rgroup, ngroups;
+ jpeg_component_info *compptr;
+
+ main = (my_main_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_main_controller));
+ cinfo->main = (struct jpeg_d_main_controller *) main;
+ main->pub.start_pass = start_pass_main;
+
+ if (need_full_buffer) /* shouldn't happen */
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+
+ /* Allocate the workspace.
+ * ngroups is the number of row groups we need.
+ */
+ if (cinfo->upsample->need_context_rows) {
+ if (cinfo->min_DCT_scaled_size < 2) /* unsupported, see comments above */
+ ERREXIT(cinfo, JERR_NOTIMPL);
+ alloc_funny_pointers(cinfo); /* Alloc space for xbuffer[] lists */
+ ngroups = cinfo->min_DCT_scaled_size + 2;
+ } else {
+ ngroups = cinfo->min_DCT_scaled_size;
+ }
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ rgroup = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
+ cinfo->min_DCT_scaled_size; /* height of a row group of component */
+ main->buffer[ci] = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ compptr->width_in_blocks * compptr->DCT_scaled_size,
+ (JDIMENSION) (rgroup * ngroups));
+ }
+}
diff --git a/libs/jpeg6/jdmarker.cpp b/libs/jpeg6/jdmarker.cpp
index 6c3c519..80e5f78 100755
--- a/libs/jpeg6/jdmarker.cpp
+++ b/libs/jpeg6/jdmarker.cpp
@@ -1,1052 +1,1052 @@
-/*
- * jdmarker.c
- *
- * Copyright (C) 1991-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains routines to decode JPEG datastream markers.
- * Most of the complexity arises from our desire to support input
- * suspension: if not all of the data for a marker is available,
- * we must exit back to the application. On resumption, we reprocess
- * the marker.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-typedef enum { /* JPEG marker codes */
- M_SOF0 = 0xc0,
- M_SOF1 = 0xc1,
- M_SOF2 = 0xc2,
- M_SOF3 = 0xc3,
-
- M_SOF5 = 0xc5,
- M_SOF6 = 0xc6,
- M_SOF7 = 0xc7,
-
- M_JPG = 0xc8,
- M_SOF9 = 0xc9,
- M_SOF10 = 0xca,
- M_SOF11 = 0xcb,
-
- M_SOF13 = 0xcd,
- M_SOF14 = 0xce,
- M_SOF15 = 0xcf,
-
- M_DHT = 0xc4,
-
- M_DAC = 0xcc,
-
- M_RST0 = 0xd0,
- M_RST1 = 0xd1,
- M_RST2 = 0xd2,
- M_RST3 = 0xd3,
- M_RST4 = 0xd4,
- M_RST5 = 0xd5,
- M_RST6 = 0xd6,
- M_RST7 = 0xd7,
-
- M_SOI = 0xd8,
- M_EOI = 0xd9,
- M_SOS = 0xda,
- M_DQT = 0xdb,
- M_DNL = 0xdc,
- M_DRI = 0xdd,
- M_DHP = 0xde,
- M_EXP = 0xdf,
-
- M_APP0 = 0xe0,
- M_APP1 = 0xe1,
- M_APP2 = 0xe2,
- M_APP3 = 0xe3,
- M_APP4 = 0xe4,
- M_APP5 = 0xe5,
- M_APP6 = 0xe6,
- M_APP7 = 0xe7,
- M_APP8 = 0xe8,
- M_APP9 = 0xe9,
- M_APP10 = 0xea,
- M_APP11 = 0xeb,
- M_APP12 = 0xec,
- M_APP13 = 0xed,
- M_APP14 = 0xee,
- M_APP15 = 0xef,
-
- M_JPG0 = 0xf0,
- M_JPG13 = 0xfd,
- M_COM = 0xfe,
-
- M_TEM = 0x01,
-
- M_ERROR = 0x100
-} JPEG_MARKER;
-
-
-/*
- * Macros for fetching data from the data source module.
- *
- * At all times, cinfo->src->next_input_byte and ->bytes_in_buffer reflect
- * the current restart point; we update them only when we have reached a
- * suitable place to restart if a suspension occurs.
- */
-
-/* Declare and initialize local copies of input pointer/count */
-#define INPUT_VARS(cinfo) \
- struct jpeg_source_mgr * datasrc = (cinfo)->src; \
- const JOCTET * next_input_byte = datasrc->next_input_byte; \
- size_t bytes_in_buffer = datasrc->bytes_in_buffer
-
-/* Unload the local copies --- do this only at a restart boundary */
-#define INPUT_SYNC(cinfo) \
- ( datasrc->next_input_byte = next_input_byte, \
- datasrc->bytes_in_buffer = bytes_in_buffer )
-
-/* Reload the local copies --- seldom used except in MAKE_BYTE_AVAIL */
-#define INPUT_RELOAD(cinfo) \
- ( next_input_byte = datasrc->next_input_byte, \
- bytes_in_buffer = datasrc->bytes_in_buffer )
-
-/* Internal macro for INPUT_BYTE and INPUT_2BYTES: make a byte available.
- * Note we do *not* do INPUT_SYNC before calling fill_input_buffer,
- * but we must reload the local copies after a successful fill.
- */
-#define MAKE_BYTE_AVAIL(cinfo,action) \
- if (bytes_in_buffer == 0) { \
- if (! (*datasrc->fill_input_buffer) (cinfo)) \
- { action; } \
- INPUT_RELOAD(cinfo); \
- } \
- bytes_in_buffer--
-
-/* Read a byte into variable V.
- * If must suspend, take the specified action (typically "return FALSE").
- */
-#define INPUT_BYTE(cinfo,V,action) \
- MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \
- V = GETJOCTET(*next_input_byte++); )
-
-/* As above, but read two bytes interpreted as an unsigned 16-bit integer.
- * V should be declared unsigned int or perhaps INT32.
- */
-#define INPUT_2BYTES(cinfo,V,action) \
- MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \
- V = ((unsigned int) GETJOCTET(*next_input_byte++)) << 8; \
- MAKE_BYTE_AVAIL(cinfo,action); \
- V += GETJOCTET(*next_input_byte++); )
-
-
-/*
- * Routines to process JPEG markers.
- *
- * Entry condition: JPEG marker itself has been read and its code saved
- * in cinfo->unread_marker; input restart point is just after the marker.
- *
- * Exit: if return TRUE, have read and processed any parameters, and have
- * updated the restart point to point after the parameters.
- * If return FALSE, was forced to suspend before reaching end of
- * marker parameters; restart point has not been moved. Same routine
- * will be called again after application supplies more input data.
- *
- * This approach to suspension assumes that all of a marker's parameters can
- * fit into a single input bufferload. This should hold for "normal"
- * markers. Some COM/APPn markers might have large parameter segments,
- * but we use skip_input_data to get past those, and thereby put the problem
- * on the source manager's shoulders.
- *
- * Note that we don't bother to avoid duplicate trace messages if a
- * suspension occurs within marker parameters. Other side effects
- * require more care.
- */
-
-
-LOCAL boolean
-get_soi (j_decompress_ptr cinfo)
-/* Process an SOI marker */
-{
- int i;
-
- TRACEMS(cinfo, 1, JTRC_SOI);
-
- if (cinfo->marker->saw_SOI)
- ERREXIT(cinfo, JERR_SOI_DUPLICATE);
-
- /* Reset all parameters that are defined to be reset by SOI */
-
- for (i = 0; i < NUM_ARITH_TBLS; i++) {
- cinfo->arith_dc_L[i] = 0;
- cinfo->arith_dc_U[i] = 1;
- cinfo->arith_ac_K[i] = 5;
- }
- cinfo->restart_interval = 0;
-
- /* Set initial assumptions for colorspace etc */
-
- cinfo->jpeg_color_space = JCS_UNKNOWN;
- cinfo->CCIR601_sampling = FALSE; /* Assume non-CCIR sampling??? */
-
- cinfo->saw_JFIF_marker = FALSE;
- cinfo->density_unit = 0; /* set default JFIF APP0 values */
- cinfo->X_density = 1;
- cinfo->Y_density = 1;
- cinfo->saw_Adobe_marker = FALSE;
- cinfo->Adobe_transform = 0;
-
- cinfo->marker->saw_SOI = TRUE;
-
- return TRUE;
-}
-
-
-LOCAL boolean
-get_sof (j_decompress_ptr cinfo, boolean is_prog, boolean is_arith)
-/* Process a SOFn marker */
-{
- INT32 length;
- int c, ci;
- jpeg_component_info * compptr;
- INPUT_VARS(cinfo);
-
- cinfo->progressive_mode = is_prog;
- cinfo->arith_code = is_arith;
-
- INPUT_2BYTES(cinfo, length, return FALSE);
-
- INPUT_BYTE(cinfo, cinfo->data_precision, return FALSE);
- INPUT_2BYTES(cinfo, cinfo->image_height, return FALSE);
- INPUT_2BYTES(cinfo, cinfo->image_width, return FALSE);
- INPUT_BYTE(cinfo, cinfo->num_components, return FALSE);
-
- length -= 8;
-
- TRACEMS4(cinfo, 1, JTRC_SOF, cinfo->unread_marker,
- (int) cinfo->image_width, (int) cinfo->image_height,
- cinfo->num_components);
-
- if (cinfo->marker->saw_SOF)
- ERREXIT(cinfo, JERR_SOF_DUPLICATE);
-
- /* We don't support files in which the image height is initially specified */
- /* as 0 and is later redefined by DNL. As long as we have to check that, */
- /* might as well have a general sanity check. */
- if (cinfo->image_height <= 0 || cinfo->image_width <= 0
- || cinfo->num_components <= 0)
- ERREXIT(cinfo, JERR_EMPTY_IMAGE);
-
- if (length != (cinfo->num_components * 3))
- ERREXIT(cinfo, JERR_BAD_LENGTH);
-
- if (cinfo->comp_info == NULL) /* do only once, even if suspend */
- cinfo->comp_info = (jpeg_component_info *) (*cinfo->mem->alloc_small)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- cinfo->num_components * SIZEOF(jpeg_component_info));
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- compptr->component_index = ci;
- INPUT_BYTE(cinfo, compptr->component_id, return FALSE);
- INPUT_BYTE(cinfo, c, return FALSE);
- compptr->h_samp_factor = (c >> 4) & 15;
- compptr->v_samp_factor = (c ) & 15;
- INPUT_BYTE(cinfo, compptr->quant_tbl_no, return FALSE);
-
- TRACEMS4(cinfo, 1, JTRC_SOF_COMPONENT,
- compptr->component_id, compptr->h_samp_factor,
- compptr->v_samp_factor, compptr->quant_tbl_no);
- }
-
- cinfo->marker->saw_SOF = TRUE;
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-LOCAL boolean
-get_sos (j_decompress_ptr cinfo)
-/* Process a SOS marker */
-{
- INT32 length;
- int i, ci, n, c, cc;
- jpeg_component_info * compptr;
- INPUT_VARS(cinfo);
-
- if (! cinfo->marker->saw_SOF)
- ERREXIT(cinfo, JERR_SOS_NO_SOF);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
-
- INPUT_BYTE(cinfo, n, return FALSE); /* Number of components */
-
- if (length != (n * 2 + 6) || n < 1 || n > MAX_COMPS_IN_SCAN)
- ERREXIT(cinfo, JERR_BAD_LENGTH);
-
- TRACEMS1(cinfo, 1, JTRC_SOS, n);
-
- cinfo->comps_in_scan = n;
-
- /* Collect the component-spec parameters */
-
- for (i = 0; i < n; i++) {
- INPUT_BYTE(cinfo, cc, return FALSE);
- INPUT_BYTE(cinfo, c, return FALSE);
-
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- if (cc == compptr->component_id)
- goto id_found;
- }
-
- ERREXIT1(cinfo, JERR_BAD_COMPONENT_ID, cc);
-
- id_found:
-
- cinfo->cur_comp_info[i] = compptr;
- compptr->dc_tbl_no = (c >> 4) & 15;
- compptr->ac_tbl_no = (c ) & 15;
-
- TRACEMS3(cinfo, 1, JTRC_SOS_COMPONENT, cc,
- compptr->dc_tbl_no, compptr->ac_tbl_no);
- }
-
- /* Collect the additional scan parameters Ss, Se, Ah/Al. */
- INPUT_BYTE(cinfo, c, return FALSE);
- cinfo->Ss = c;
- INPUT_BYTE(cinfo, c, return FALSE);
- cinfo->Se = c;
- INPUT_BYTE(cinfo, c, return FALSE);
- cinfo->Ah = (c >> 4) & 15;
- cinfo->Al = (c ) & 15;
-
- TRACEMS4(cinfo, 1, JTRC_SOS_PARAMS, cinfo->Ss, cinfo->Se,
- cinfo->Ah, cinfo->Al);
-
- /* Prepare to scan data & restart markers */
- cinfo->marker->next_restart_num = 0;
-
- /* Count another SOS marker */
- cinfo->input_scan_number++;
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-METHODDEF boolean
-get_app0 (j_decompress_ptr cinfo)
-/* Process an APP0 marker */
-{
-#define JFIF_LEN 14
- INT32 length;
- UINT8 b[JFIF_LEN];
- int buffp;
- INPUT_VARS(cinfo);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
- length -= 2;
-
- /* See if a JFIF APP0 marker is present */
-
- if (length >= JFIF_LEN) {
- for (buffp = 0; buffp < JFIF_LEN; buffp++)
- INPUT_BYTE(cinfo, b[buffp], return FALSE);
- length -= JFIF_LEN;
-
- if (b[0]==0x4A && b[1]==0x46 && b[2]==0x49 && b[3]==0x46 && b[4]==0) {
- /* Found JFIF APP0 marker: check version */
- /* Major version must be 1, anything else signals an incompatible change.
- * We used to treat this as an error, but now it's a nonfatal warning,
- * because some bozo at Hijaak couldn't read the spec.
- * Minor version should be 0..2, but process anyway if newer.
- */
- if (b[5] != 1)
- WARNMS2(cinfo, JWRN_JFIF_MAJOR, b[5], b[6]);
- else if (b[6] > 2)
- TRACEMS2(cinfo, 1, JTRC_JFIF_MINOR, b[5], b[6]);
- /* Save info */
- cinfo->saw_JFIF_marker = TRUE;
- cinfo->density_unit = b[7];
- cinfo->X_density = (b[8] << 8) + b[9];
- cinfo->Y_density = (b[10] << 8) + b[11];
- TRACEMS3(cinfo, 1, JTRC_JFIF,
- cinfo->X_density, cinfo->Y_density, cinfo->density_unit);
- if (b[12] | b[13])
- TRACEMS2(cinfo, 1, JTRC_JFIF_THUMBNAIL, b[12], b[13]);
- if (length != ((INT32) b[12] * (INT32) b[13] * (INT32) 3))
- TRACEMS1(cinfo, 1, JTRC_JFIF_BADTHUMBNAILSIZE, (int) length);
- } else {
- /* Start of APP0 does not match "JFIF" */
- TRACEMS1(cinfo, 1, JTRC_APP0, (int) length + JFIF_LEN);
- }
- } else {
- /* Too short to be JFIF marker */
- TRACEMS1(cinfo, 1, JTRC_APP0, (int) length);
- }
-
- INPUT_SYNC(cinfo);
- if (length > 0) /* skip any remaining data -- could be lots */
- (*cinfo->src->skip_input_data) (cinfo, (long) length);
-
- return TRUE;
-}
-
-
-METHODDEF boolean
-get_app14 (j_decompress_ptr cinfo)
-/* Process an APP14 marker */
-{
-#define ADOBE_LEN 12
- INT32 length;
- UINT8 b[ADOBE_LEN];
- int buffp;
- unsigned int version, flags0, flags1, transform;
- INPUT_VARS(cinfo);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
- length -= 2;
-
- /* See if an Adobe APP14 marker is present */
-
- if (length >= ADOBE_LEN) {
- for (buffp = 0; buffp < ADOBE_LEN; buffp++)
- INPUT_BYTE(cinfo, b[buffp], return FALSE);
- length -= ADOBE_LEN;
-
- if (b[0]==0x41 && b[1]==0x64 && b[2]==0x6F && b[3]==0x62 && b[4]==0x65) {
- /* Found Adobe APP14 marker */
- version = (b[5] << 8) + b[6];
- flags0 = (b[7] << 8) + b[8];
- flags1 = (b[9] << 8) + b[10];
- transform = b[11];
- TRACEMS4(cinfo, 1, JTRC_ADOBE, version, flags0, flags1, transform);
- cinfo->saw_Adobe_marker = TRUE;
- cinfo->Adobe_transform = (UINT8) transform;
- } else {
- /* Start of APP14 does not match "Adobe" */
- TRACEMS1(cinfo, 1, JTRC_APP14, (int) length + ADOBE_LEN);
- }
- } else {
- /* Too short to be Adobe marker */
- TRACEMS1(cinfo, 1, JTRC_APP14, (int) length);
- }
-
- INPUT_SYNC(cinfo);
- if (length > 0) /* skip any remaining data -- could be lots */
- (*cinfo->src->skip_input_data) (cinfo, (long) length);
-
- return TRUE;
-}
-
-
-LOCAL boolean
-get_dac (j_decompress_ptr cinfo)
-/* Process a DAC marker */
-{
- INT32 length;
- int index, val;
- INPUT_VARS(cinfo);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
- length -= 2;
-
- while (length > 0) {
- INPUT_BYTE(cinfo, index, return FALSE);
- INPUT_BYTE(cinfo, val, return FALSE);
-
- length -= 2;
-
- TRACEMS2(cinfo, 1, JTRC_DAC, index, val);
-
- if (index < 0 || index >= (2*NUM_ARITH_TBLS))
- ERREXIT1(cinfo, JERR_DAC_INDEX, index);
-
- if (index >= NUM_ARITH_TBLS) { /* define AC table */
- cinfo->arith_ac_K[index-NUM_ARITH_TBLS] = (UINT8) val;
- } else { /* define DC table */
- cinfo->arith_dc_L[index] = (UINT8) (val & 0x0F);
- cinfo->arith_dc_U[index] = (UINT8) (val >> 4);
- if (cinfo->arith_dc_L[index] > cinfo->arith_dc_U[index])
- ERREXIT1(cinfo, JERR_DAC_VALUE, val);
- }
- }
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-LOCAL boolean
-get_dht (j_decompress_ptr cinfo)
-/* Process a DHT marker */
-{
- INT32 length;
- UINT8 bits[17];
- UINT8 huffval[256];
- int i, index, count;
- JHUFF_TBL **htblptr;
- INPUT_VARS(cinfo);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
- length -= 2;
-
- while (length > 0) {
- INPUT_BYTE(cinfo, index, return FALSE);
-
- TRACEMS1(cinfo, 1, JTRC_DHT, index);
-
- bits[0] = 0;
- count = 0;
- for (i = 1; i <= 16; i++) {
- INPUT_BYTE(cinfo, bits[i], return FALSE);
- count += bits[i];
- }
-
- length -= 1 + 16;
-
- TRACEMS8(cinfo, 2, JTRC_HUFFBITS,
- bits[1], bits[2], bits[3], bits[4],
- bits[5], bits[6], bits[7], bits[8]);
- TRACEMS8(cinfo, 2, JTRC_HUFFBITS,
- bits[9], bits[10], bits[11], bits[12],
- bits[13], bits[14], bits[15], bits[16]);
-
- if (count > 256 || ((INT32) count) > length)
- ERREXIT(cinfo, JERR_DHT_COUNTS);
-
- for (i = 0; i < count; i++)
- INPUT_BYTE(cinfo, huffval[i], return FALSE);
-
- length -= count;
-
- if (index & 0x10) { /* AC table definition */
- index -= 0x10;
- htblptr = &cinfo->ac_huff_tbl_ptrs[index];
- } else { /* DC table definition */
- htblptr = &cinfo->dc_huff_tbl_ptrs[index];
- }
-
- if (index < 0 || index >= NUM_HUFF_TBLS)
- ERREXIT1(cinfo, JERR_DHT_INDEX, index);
-
- if (*htblptr == NULL)
- *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
-
- MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
- MEMCOPY((*htblptr)->huffval, huffval, SIZEOF((*htblptr)->huffval));
- }
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-LOCAL boolean
-get_dqt (j_decompress_ptr cinfo)
-/* Process a DQT marker */
-{
- INT32 length;
- int n, i, prec;
- unsigned int tmp;
- JQUANT_TBL *quant_ptr;
- INPUT_VARS(cinfo);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
- length -= 2;
-
- while (length > 0) {
- INPUT_BYTE(cinfo, n, return FALSE);
- prec = n >> 4;
- n &= 0x0F;
-
- TRACEMS2(cinfo, 1, JTRC_DQT, n, prec);
-
- if (n >= NUM_QUANT_TBLS)
- ERREXIT1(cinfo, JERR_DQT_INDEX, n);
-
- if (cinfo->quant_tbl_ptrs[n] == NULL)
- cinfo->quant_tbl_ptrs[n] = jpeg_alloc_quant_table((j_common_ptr) cinfo);
- quant_ptr = cinfo->quant_tbl_ptrs[n];
-
- for (i = 0; i < DCTSIZE2; i++) {
- if (prec)
- INPUT_2BYTES(cinfo, tmp, return FALSE);
- else
- INPUT_BYTE(cinfo, tmp, return FALSE);
- quant_ptr->quantval[i] = (UINT16) tmp;
- }
-
- for (i = 0; i < DCTSIZE2; i += 8) {
- TRACEMS8(cinfo, 2, JTRC_QUANTVALS,
- quant_ptr->quantval[i ], quant_ptr->quantval[i+1],
- quant_ptr->quantval[i+2], quant_ptr->quantval[i+3],
- quant_ptr->quantval[i+4], quant_ptr->quantval[i+5],
- quant_ptr->quantval[i+6], quant_ptr->quantval[i+7]);
- }
-
- length -= DCTSIZE2+1;
- if (prec) length -= DCTSIZE2;
- }
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-LOCAL boolean
-get_dri (j_decompress_ptr cinfo)
-/* Process a DRI marker */
-{
- INT32 length;
- unsigned int tmp;
- INPUT_VARS(cinfo);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
-
- if (length != 4)
- ERREXIT(cinfo, JERR_BAD_LENGTH);
-
- INPUT_2BYTES(cinfo, tmp, return FALSE);
-
- TRACEMS1(cinfo, 1, JTRC_DRI, tmp);
-
- cinfo->restart_interval = tmp;
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-METHODDEF boolean
-skip_variable (j_decompress_ptr cinfo)
-/* Skip over an unknown or uninteresting variable-length marker */
-{
- INT32 length;
- INPUT_VARS(cinfo);
-
- INPUT_2BYTES(cinfo, length, return FALSE);
-
- TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker, (int) length);
-
- INPUT_SYNC(cinfo); /* do before skip_input_data */
- (*cinfo->src->skip_input_data) (cinfo, (long) length - 2L);
-
- return TRUE;
-}
-
-
-/*
- * Find the next JPEG marker, save it in cinfo->unread_marker.
- * Returns FALSE if had to suspend before reaching a marker;
- * in that case cinfo->unread_marker is unchanged.
- *
- * Note that the result might not be a valid marker code,
- * but it will never be 0 or FF.
- */
-
-LOCAL boolean
-next_marker (j_decompress_ptr cinfo)
-{
- int c;
- INPUT_VARS(cinfo);
-
- for (;;) {
- INPUT_BYTE(cinfo, c, return FALSE);
- /* Skip any non-FF bytes.
- * This may look a bit inefficient, but it will not occur in a valid file.
- * We sync after each discarded byte so that a suspending data source
- * can discard the byte from its buffer.
- */
- while (c != 0xFF) {
- cinfo->marker->discarded_bytes++;
- INPUT_SYNC(cinfo);
- INPUT_BYTE(cinfo, c, return FALSE);
- }
- /* This loop swallows any duplicate FF bytes. Extra FFs are legal as
- * pad bytes, so don't count them in discarded_bytes. We assume there
- * will not be so many consecutive FF bytes as to overflow a suspending
- * data source's input buffer.
- */
- do {
- INPUT_BYTE(cinfo, c, return FALSE);
- } while (c == 0xFF);
- if (c != 0)
- break; /* found a valid marker, exit loop */
- /* Reach here if we found a stuffed-zero data sequence (FF/00).
- * Discard it and loop back to try again.
- */
- cinfo->marker->discarded_bytes += 2;
- INPUT_SYNC(cinfo);
- }
-
- if (cinfo->marker->discarded_bytes != 0) {
- WARNMS2(cinfo, JWRN_EXTRANEOUS_DATA, cinfo->marker->discarded_bytes, c);
- cinfo->marker->discarded_bytes = 0;
- }
-
- cinfo->unread_marker = c;
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-LOCAL boolean
-first_marker (j_decompress_ptr cinfo)
-/* Like next_marker, but used to obtain the initial SOI marker. */
-/* For this marker, we do not allow preceding garbage or fill; otherwise,
- * we might well scan an entire input file before realizing it ain't JPEG.
- * If an application wants to process non-JFIF files, it must seek to the
- * SOI before calling the JPEG library.
- */
-{
- int c, c2;
- INPUT_VARS(cinfo);
-
- INPUT_BYTE(cinfo, c, return FALSE);
- INPUT_BYTE(cinfo, c2, return FALSE);
- if (c != 0xFF || c2 != (int) M_SOI)
- ERREXIT2(cinfo, JERR_NO_SOI, c, c2);
-
- cinfo->unread_marker = c2;
-
- INPUT_SYNC(cinfo);
- return TRUE;
-}
-
-
-/*
- * Read markers until SOS or EOI.
- *
- * Returns same codes as are defined for jpeg_consume_input:
- * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
- */
-
-METHODDEF int
-read_markers (j_decompress_ptr cinfo)
-{
- /* Outer loop repeats once for each marker. */
- for (;;) {
- /* Collect the marker proper, unless we already did. */
- /* NB: first_marker() enforces the requirement that SOI appear first. */
- if (cinfo->unread_marker == 0) {
- if (! cinfo->marker->saw_SOI) {
- if (! first_marker(cinfo))
- return JPEG_SUSPENDED;
- } else {
- if (! next_marker(cinfo))
- return JPEG_SUSPENDED;
- }
- }
- /* At this point cinfo->unread_marker contains the marker code and the
- * input point is just past the marker proper, but before any parameters.
- * A suspension will cause us to return with this state still true.
- */
- switch (cinfo->unread_marker) {
- case M_SOI:
- if (! get_soi(cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_SOF0: /* Baseline */
- case M_SOF1: /* Extended sequential, Huffman */
- if (! get_sof(cinfo, FALSE, FALSE))
- return JPEG_SUSPENDED;
- break;
-
- case M_SOF2: /* Progressive, Huffman */
- if (! get_sof(cinfo, TRUE, FALSE))
- return JPEG_SUSPENDED;
- break;
-
- case M_SOF9: /* Extended sequential, arithmetic */
- if (! get_sof(cinfo, FALSE, TRUE))
- return JPEG_SUSPENDED;
- break;
-
- case M_SOF10: /* Progressive, arithmetic */
- if (! get_sof(cinfo, TRUE, TRUE))
- return JPEG_SUSPENDED;
- break;
-
- /* Currently unsupported SOFn types */
- case M_SOF3: /* Lossless, Huffman */
- case M_SOF5: /* Differential sequential, Huffman */
- case M_SOF6: /* Differential progressive, Huffman */
- case M_SOF7: /* Differential lossless, Huffman */
- case M_JPG: /* Reserved for JPEG extensions */
- case M_SOF11: /* Lossless, arithmetic */
- case M_SOF13: /* Differential sequential, arithmetic */
- case M_SOF14: /* Differential progressive, arithmetic */
- case M_SOF15: /* Differential lossless, arithmetic */
- ERREXIT1(cinfo, JERR_SOF_UNSUPPORTED, cinfo->unread_marker);
- break;
-
- case M_SOS:
- if (! get_sos(cinfo))
- return JPEG_SUSPENDED;
- cinfo->unread_marker = 0; /* processed the marker */
- return JPEG_REACHED_SOS;
-
- case M_EOI:
- TRACEMS(cinfo, 1, JTRC_EOI);
- cinfo->unread_marker = 0; /* processed the marker */
- return JPEG_REACHED_EOI;
-
- case M_DAC:
- if (! get_dac(cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_DHT:
- if (! get_dht(cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_DQT:
- if (! get_dqt(cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_DRI:
- if (! get_dri(cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_APP0:
- case M_APP1:
- case M_APP2:
- case M_APP3:
- case M_APP4:
- case M_APP5:
- case M_APP6:
- case M_APP7:
- case M_APP8:
- case M_APP9:
- case M_APP10:
- case M_APP11:
- case M_APP12:
- case M_APP13:
- case M_APP14:
- case M_APP15:
- if (! (*cinfo->marker->process_APPn[cinfo->unread_marker - (int) M_APP0]) (cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_COM:
- if (! (*cinfo->marker->process_COM) (cinfo))
- return JPEG_SUSPENDED;
- break;
-
- case M_RST0: /* these are all parameterless */
- case M_RST1:
- case M_RST2:
- case M_RST3:
- case M_RST4:
- case M_RST5:
- case M_RST6:
- case M_RST7:
- case M_TEM:
- TRACEMS1(cinfo, 1, JTRC_PARMLESS_MARKER, cinfo->unread_marker);
- break;
-
- case M_DNL: /* Ignore DNL ... perhaps the wrong thing */
- if (! skip_variable(cinfo))
- return JPEG_SUSPENDED;
- break;
-
- default: /* must be DHP, EXP, JPGn, or RESn */
- /* For now, we treat the reserved markers as fatal errors since they are
- * likely to be used to signal incompatible JPEG Part 3 extensions.
- * Once the JPEG 3 version-number marker is well defined, this code
- * ought to change!
- */
- ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker);
- break;
- }
- /* Successfully processed marker, so reset state variable */
- cinfo->unread_marker = 0;
- } /* end loop */
-}
-
-
-/*
- * Read a restart marker, which is expected to appear next in the datastream;
- * if the marker is not there, take appropriate recovery action.
- * Returns FALSE if suspension is required.
- *
- * This is called by the entropy decoder after it has read an appropriate
- * number of MCUs. cinfo->unread_marker may be nonzero if the entropy decoder
- * has already read a marker from the data source. Under normal conditions
- * cinfo->unread_marker will be reset to 0 before returning; if not reset,
- * it holds a marker which the decoder will be unable to read past.
- */
-
-METHODDEF boolean
-read_restart_marker (j_decompress_ptr cinfo)
-{
- /* Obtain a marker unless we already did. */
- /* Note that next_marker will complain if it skips any data. */
- if (cinfo->unread_marker == 0) {
- if (! next_marker(cinfo))
- return FALSE;
- }
-
- if (cinfo->unread_marker ==
- ((int) M_RST0 + cinfo->marker->next_restart_num)) {
- /* Normal case --- swallow the marker and let entropy decoder continue */
- TRACEMS1(cinfo, 2, JTRC_RST, cinfo->marker->next_restart_num);
- cinfo->unread_marker = 0;
- } else {
- /* Uh-oh, the restart markers have been messed up. */
- /* Let the data source manager determine how to resync. */
- if (! (*cinfo->src->resync_to_restart) (cinfo,
- cinfo->marker->next_restart_num))
- return FALSE;
- }
-
- /* Update next-restart state */
- cinfo->marker->next_restart_num = (cinfo->marker->next_restart_num + 1) & 7;
-
- return TRUE;
-}
-
-
-/*
- * This is the default resync_to_restart method for data source managers
- * to use if they don't have any better approach. Some data source managers
- * may be able to back up, or may have additional knowledge about the data
- * which permits a more intelligent recovery strategy; such managers would
- * presumably supply their own resync method.
- *
- * read_restart_marker calls resync_to_restart if it finds a marker other than
- * the restart marker it was expecting. (This code is *not* used unless
- * a nonzero restart interval has been declared.) cinfo->unread_marker is
- * the marker code actually found (might be anything, except 0 or FF).
- * The desired restart marker number (0..7) is passed as a parameter.
- * This routine is supposed to apply whatever error recovery strategy seems
- * appropriate in order to position the input stream to the next data segment.
- * Note that cinfo->unread_marker is treated as a marker appearing before
- * the current data-source input point; usually it should be reset to zero
- * before returning.
- * Returns FALSE if suspension is required.
- *
- * This implementation is substantially constrained by wanting to treat the
- * input as a data stream; this means we can't back up. Therefore, we have
- * only the following actions to work with:
- * 1. Simply discard the marker and let the entropy decoder resume at next
- * byte of file.
- * 2. Read forward until we find another marker, discarding intervening
- * data. (In theory we could look ahead within the current bufferload,
- * without having to discard data if we don't find the desired marker.
- * This idea is not implemented here, in part because it makes behavior
- * dependent on buffer size and chance buffer-boundary positions.)
- * 3. Leave the marker unread (by failing to zero cinfo->unread_marker).
- * This will cause the entropy decoder to process an empty data segment,
- * inserting dummy zeroes, and then we will reprocess the marker.
- *
- * #2 is appropriate if we think the desired marker lies ahead, while #3 is
- * appropriate if the found marker is a future restart marker (indicating
- * that we have missed the desired restart marker, probably because it got
- * corrupted).
- * We apply #2 or #3 if the found marker is a restart marker no more than
- * two counts behind or ahead of the expected one. We also apply #2 if the
- * found marker is not a legal JPEG marker code (it's certainly bogus data).
- * If the found marker is a restart marker more than 2 counts away, we do #1
- * (too much risk that the marker is erroneous; with luck we will be able to
- * resync at some future point).
- * For any valid non-restart JPEG marker, we apply #3. This keeps us from
- * overrunning the end of a scan. An implementation limited to single-scan
- * files might find it better to apply #2 for markers other than EOI, since
- * any other marker would have to be bogus data in that case.
- */
-
-GLOBAL boolean
-jpeg_resync_to_restart (j_decompress_ptr cinfo, int desired)
-{
- int marker = cinfo->unread_marker;
- int action = 1;
-
- /* Always put up a warning. */
- WARNMS2(cinfo, JWRN_MUST_RESYNC, marker, desired);
-
- /* Outer loop handles repeated decision after scanning forward. */
- for (;;) {
- if (marker < (int) M_SOF0)
- action = 2; /* invalid marker */
- else if (marker < (int) M_RST0 || marker > (int) M_RST7)
- action = 3; /* valid non-restart marker */
- else {
- if (marker == ((int) M_RST0 + ((desired+1) & 7)) ||
- marker == ((int) M_RST0 + ((desired+2) & 7)))
- action = 3; /* one of the next two expected restarts */
- else if (marker == ((int) M_RST0 + ((desired-1) & 7)) ||
- marker == ((int) M_RST0 + ((desired-2) & 7)))
- action = 2; /* a prior restart, so advance */
- else
- action = 1; /* desired restart or too far away */
- }
- TRACEMS2(cinfo, 4, JTRC_RECOVERY_ACTION, marker, action);
- switch (action) {
- case 1:
- /* Discard marker and let entropy decoder resume processing. */
- cinfo->unread_marker = 0;
- return TRUE;
- case 2:
- /* Scan to the next marker, and repeat the decision loop. */
- if (! next_marker(cinfo))
- return FALSE;
- marker = cinfo->unread_marker;
- break;
- case 3:
- /* Return without advancing past this marker. */
- /* Entropy decoder will be forced to process an empty segment. */
- return TRUE;
- }
- } /* end loop */
-}
-
-
-/*
- * Reset marker processing state to begin a fresh datastream.
- */
-
-METHODDEF void
-reset_marker_reader (j_decompress_ptr cinfo)
-{
- cinfo->comp_info = NULL; /* until allocated by get_sof */
- cinfo->input_scan_number = 0; /* no SOS seen yet */
- cinfo->unread_marker = 0; /* no pending marker */
- cinfo->marker->saw_SOI = FALSE; /* set internal state too */
- cinfo->marker->saw_SOF = FALSE;
- cinfo->marker->discarded_bytes = 0;
-}
-
-
-/*
- * Initialize the marker reader module.
- * This is called only once, when the decompression object is created.
- */
-
-GLOBAL void
-jinit_marker_reader (j_decompress_ptr cinfo)
-{
- int i;
-
- /* Create subobject in permanent pool */
- cinfo->marker = (struct jpeg_marker_reader *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
- SIZEOF(struct jpeg_marker_reader));
- /* Initialize method pointers */
- cinfo->marker->reset_marker_reader = reset_marker_reader;
- cinfo->marker->read_markers = read_markers;
- cinfo->marker->read_restart_marker = read_restart_marker;
- cinfo->marker->process_COM = skip_variable;
- for (i = 0; i < 16; i++)
- cinfo->marker->process_APPn[i] = skip_variable;
- cinfo->marker->process_APPn[0] = get_app0;
- cinfo->marker->process_APPn[14] = get_app14;
- /* Reset marker processing state */
- reset_marker_reader(cinfo);
-}
+/*
+ * jdmarker.c
+ *
+ * Copyright (C) 1991-1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains routines to decode JPEG datastream markers.
+ * Most of the complexity arises from our desire to support input
+ * suspension: if not all of the data for a marker is available,
+ * we must exit back to the application. On resumption, we reprocess
+ * the marker.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+typedef enum { /* JPEG marker codes */
+ M_SOF0 = 0xc0,
+ M_SOF1 = 0xc1,
+ M_SOF2 = 0xc2,
+ M_SOF3 = 0xc3,
+
+ M_SOF5 = 0xc5,
+ M_SOF6 = 0xc6,
+ M_SOF7 = 0xc7,
+
+ M_JPG = 0xc8,
+ M_SOF9 = 0xc9,
+ M_SOF10 = 0xca,
+ M_SOF11 = 0xcb,
+
+ M_SOF13 = 0xcd,
+ M_SOF14 = 0xce,
+ M_SOF15 = 0xcf,
+
+ M_DHT = 0xc4,
+
+ M_DAC = 0xcc,
+
+ M_RST0 = 0xd0,
+ M_RST1 = 0xd1,
+ M_RST2 = 0xd2,
+ M_RST3 = 0xd3,
+ M_RST4 = 0xd4,
+ M_RST5 = 0xd5,
+ M_RST6 = 0xd6,
+ M_RST7 = 0xd7,
+
+ M_SOI = 0xd8,
+ M_EOI = 0xd9,
+ M_SOS = 0xda,
+ M_DQT = 0xdb,
+ M_DNL = 0xdc,
+ M_DRI = 0xdd,
+ M_DHP = 0xde,
+ M_EXP = 0xdf,
+
+ M_APP0 = 0xe0,
+ M_APP1 = 0xe1,
+ M_APP2 = 0xe2,
+ M_APP3 = 0xe3,
+ M_APP4 = 0xe4,
+ M_APP5 = 0xe5,
+ M_APP6 = 0xe6,
+ M_APP7 = 0xe7,
+ M_APP8 = 0xe8,
+ M_APP9 = 0xe9,
+ M_APP10 = 0xea,
+ M_APP11 = 0xeb,
+ M_APP12 = 0xec,
+ M_APP13 = 0xed,
+ M_APP14 = 0xee,
+ M_APP15 = 0xef,
+
+ M_JPG0 = 0xf0,
+ M_JPG13 = 0xfd,
+ M_COM = 0xfe,
+
+ M_TEM = 0x01,
+
+ M_ERROR = 0x100
+} JPEG_MARKER;
+
+
+/*
+ * Macros for fetching data from the data source module.
+ *
+ * At all times, cinfo->src->next_input_byte and ->bytes_in_buffer reflect
+ * the current restart point; we update them only when we have reached a
+ * suitable place to restart if a suspension occurs.
+ */
+
+/* Declare and initialize local copies of input pointer/count */
+#define INPUT_VARS(cinfo) \
+ struct jpeg_source_mgr * datasrc = (cinfo)->src; \
+ const JOCTET * next_input_byte = datasrc->next_input_byte; \
+ size_t bytes_in_buffer = datasrc->bytes_in_buffer
+
+/* Unload the local copies --- do this only at a restart boundary */
+#define INPUT_SYNC(cinfo) \
+ ( datasrc->next_input_byte = next_input_byte, \
+ datasrc->bytes_in_buffer = bytes_in_buffer )
+
+/* Reload the local copies --- seldom used except in MAKE_BYTE_AVAIL */
+#define INPUT_RELOAD(cinfo) \
+ ( next_input_byte = datasrc->next_input_byte, \
+ bytes_in_buffer = datasrc->bytes_in_buffer )
+
+/* Internal macro for INPUT_BYTE and INPUT_2BYTES: make a byte available.
+ * Note we do *not* do INPUT_SYNC before calling fill_input_buffer,
+ * but we must reload the local copies after a successful fill.
+ */
+#define MAKE_BYTE_AVAIL(cinfo,action) \
+ if (bytes_in_buffer == 0) { \
+ if (! (*datasrc->fill_input_buffer) (cinfo)) \
+ { action; } \
+ INPUT_RELOAD(cinfo); \
+ } \
+ bytes_in_buffer--
+
+/* Read a byte into variable V.
+ * If must suspend, take the specified action (typically "return FALSE").
+ */
+#define INPUT_BYTE(cinfo,V,action) \
+ MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \
+ V = GETJOCTET(*next_input_byte++); )
+
+/* As above, but read two bytes interpreted as an unsigned 16-bit integer.
+ * V should be declared unsigned int or perhaps INT32.
+ */
+#define INPUT_2BYTES(cinfo,V,action) \
+ MAKESTMT( MAKE_BYTE_AVAIL(cinfo,action); \
+ V = ((unsigned int) GETJOCTET(*next_input_byte++)) << 8; \
+ MAKE_BYTE_AVAIL(cinfo,action); \
+ V += GETJOCTET(*next_input_byte++); )
+
+
+/*
+ * Routines to process JPEG markers.
+ *
+ * Entry condition: JPEG marker itself has been read and its code saved
+ * in cinfo->unread_marker; input restart point is just after the marker.
+ *
+ * Exit: if return TRUE, have read and processed any parameters, and have
+ * updated the restart point to point after the parameters.
+ * If return FALSE, was forced to suspend before reaching end of
+ * marker parameters; restart point has not been moved. Same routine
+ * will be called again after application supplies more input data.
+ *
+ * This approach to suspension assumes that all of a marker's parameters can
+ * fit into a single input bufferload. This should hold for "normal"
+ * markers. Some COM/APPn markers might have large parameter segments,
+ * but we use skip_input_data to get past those, and thereby put the problem
+ * on the source manager's shoulders.
+ *
+ * Note that we don't bother to avoid duplicate trace messages if a
+ * suspension occurs within marker parameters. Other side effects
+ * require more care.
+ */
+
+
+LOCAL boolean
+get_soi (j_decompress_ptr cinfo)
+/* Process an SOI marker */
+{
+ int i;
+
+ TRACEMS(cinfo, 1, JTRC_SOI);
+
+ if (cinfo->marker->saw_SOI)
+ ERREXIT(cinfo, JERR_SOI_DUPLICATE);
+
+ /* Reset all parameters that are defined to be reset by SOI */
+
+ for (i = 0; i < NUM_ARITH_TBLS; i++) {
+ cinfo->arith_dc_L[i] = 0;
+ cinfo->arith_dc_U[i] = 1;
+ cinfo->arith_ac_K[i] = 5;
+ }
+ cinfo->restart_interval = 0;
+
+ /* Set initial assumptions for colorspace etc */
+
+ cinfo->jpeg_color_space = JCS_UNKNOWN;
+ cinfo->CCIR601_sampling = FALSE; /* Assume non-CCIR sampling??? */
+
+ cinfo->saw_JFIF_marker = FALSE;
+ cinfo->density_unit = 0; /* set default JFIF APP0 values */
+ cinfo->X_density = 1;
+ cinfo->Y_density = 1;
+ cinfo->saw_Adobe_marker = FALSE;
+ cinfo->Adobe_transform = 0;
+
+ cinfo->marker->saw_SOI = TRUE;
+
+ return TRUE;
+}
+
+
+LOCAL boolean
+get_sof (j_decompress_ptr cinfo, boolean is_prog, boolean is_arith)
+/* Process a SOFn marker */
+{
+ INT32 length;
+ int c, ci;
+ jpeg_component_info * compptr;
+ INPUT_VARS(cinfo);
+
+ cinfo->progressive_mode = is_prog;
+ cinfo->arith_code = is_arith;
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+
+ INPUT_BYTE(cinfo, cinfo->data_precision, return FALSE);
+ INPUT_2BYTES(cinfo, cinfo->image_height, return FALSE);
+ INPUT_2BYTES(cinfo, cinfo->image_width, return FALSE);
+ INPUT_BYTE(cinfo, cinfo->num_components, return FALSE);
+
+ length -= 8;
+
+ TRACEMS4(cinfo, 1, JTRC_SOF, cinfo->unread_marker,
+ (int) cinfo->image_width, (int) cinfo->image_height,
+ cinfo->num_components);
+
+ if (cinfo->marker->saw_SOF)
+ ERREXIT(cinfo, JERR_SOF_DUPLICATE);
+
+ /* We don't support files in which the image height is initially specified */
+ /* as 0 and is later redefined by DNL. As long as we have to check that, */
+ /* might as well have a general sanity check. */
+ if (cinfo->image_height <= 0 || cinfo->image_width <= 0
+ || cinfo->num_components <= 0)
+ ERREXIT(cinfo, JERR_EMPTY_IMAGE);
+
+ if (length != (cinfo->num_components * 3))
+ ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+ if (cinfo->comp_info == NULL) /* do only once, even if suspend */
+ cinfo->comp_info = (jpeg_component_info *) (*cinfo->mem->alloc_small)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ cinfo->num_components * SIZEOF(jpeg_component_info));
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ compptr->component_index = ci;
+ INPUT_BYTE(cinfo, compptr->component_id, return FALSE);
+ INPUT_BYTE(cinfo, c, return FALSE);
+ compptr->h_samp_factor = (c >> 4) & 15;
+ compptr->v_samp_factor = (c ) & 15;
+ INPUT_BYTE(cinfo, compptr->quant_tbl_no, return FALSE);
+
+ TRACEMS4(cinfo, 1, JTRC_SOF_COMPONENT,
+ compptr->component_id, compptr->h_samp_factor,
+ compptr->v_samp_factor, compptr->quant_tbl_no);
+ }
+
+ cinfo->marker->saw_SOF = TRUE;
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+LOCAL boolean
+get_sos (j_decompress_ptr cinfo)
+/* Process a SOS marker */
+{
+ INT32 length;
+ int i, ci, n, c, cc;
+ jpeg_component_info * compptr;
+ INPUT_VARS(cinfo);
+
+ if (! cinfo->marker->saw_SOF)
+ ERREXIT(cinfo, JERR_SOS_NO_SOF);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+
+ INPUT_BYTE(cinfo, n, return FALSE); /* Number of components */
+
+ if (length != (n * 2 + 6) || n < 1 || n > MAX_COMPS_IN_SCAN)
+ ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+ TRACEMS1(cinfo, 1, JTRC_SOS, n);
+
+ cinfo->comps_in_scan = n;
+
+ /* Collect the component-spec parameters */
+
+ for (i = 0; i < n; i++) {
+ INPUT_BYTE(cinfo, cc, return FALSE);
+ INPUT_BYTE(cinfo, c, return FALSE);
+
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ if (cc == compptr->component_id)
+ goto id_found;
+ }
+
+ ERREXIT1(cinfo, JERR_BAD_COMPONENT_ID, cc);
+
+ id_found:
+
+ cinfo->cur_comp_info[i] = compptr;
+ compptr->dc_tbl_no = (c >> 4) & 15;
+ compptr->ac_tbl_no = (c ) & 15;
+
+ TRACEMS3(cinfo, 1, JTRC_SOS_COMPONENT, cc,
+ compptr->dc_tbl_no, compptr->ac_tbl_no);
+ }
+
+ /* Collect the additional scan parameters Ss, Se, Ah/Al. */
+ INPUT_BYTE(cinfo, c, return FALSE);
+ cinfo->Ss = c;
+ INPUT_BYTE(cinfo, c, return FALSE);
+ cinfo->Se = c;
+ INPUT_BYTE(cinfo, c, return FALSE);
+ cinfo->Ah = (c >> 4) & 15;
+ cinfo->Al = (c ) & 15;
+
+ TRACEMS4(cinfo, 1, JTRC_SOS_PARAMS, cinfo->Ss, cinfo->Se,
+ cinfo->Ah, cinfo->Al);
+
+ /* Prepare to scan data & restart markers */
+ cinfo->marker->next_restart_num = 0;
+
+ /* Count another SOS marker */
+ cinfo->input_scan_number++;
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+METHODDEF boolean
+get_app0 (j_decompress_ptr cinfo)
+/* Process an APP0 marker */
+{
+#define JFIF_LEN 14
+ INT32 length;
+ UINT8 b[JFIF_LEN];
+ int buffp;
+ INPUT_VARS(cinfo);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+ length -= 2;
+
+ /* See if a JFIF APP0 marker is present */
+
+ if (length >= JFIF_LEN) {
+ for (buffp = 0; buffp < JFIF_LEN; buffp++)
+ INPUT_BYTE(cinfo, b[buffp], return FALSE);
+ length -= JFIF_LEN;
+
+ if (b[0]==0x4A && b[1]==0x46 && b[2]==0x49 && b[3]==0x46 && b[4]==0) {
+ /* Found JFIF APP0 marker: check version */
+ /* Major version must be 1, anything else signals an incompatible change.
+ * We used to treat this as an error, but now it's a nonfatal warning,
+ * because some bozo at Hijaak couldn't read the spec.
+ * Minor version should be 0..2, but process anyway if newer.
+ */
+ if (b[5] != 1)
+ WARNMS2(cinfo, JWRN_JFIF_MAJOR, b[5], b[6]);
+ else if (b[6] > 2)
+ TRACEMS2(cinfo, 1, JTRC_JFIF_MINOR, b[5], b[6]);
+ /* Save info */
+ cinfo->saw_JFIF_marker = TRUE;
+ cinfo->density_unit = b[7];
+ cinfo->X_density = (b[8] << 8) + b[9];
+ cinfo->Y_density = (b[10] << 8) + b[11];
+ TRACEMS3(cinfo, 1, JTRC_JFIF,
+ cinfo->X_density, cinfo->Y_density, cinfo->density_unit);
+ if (b[12] | b[13])
+ TRACEMS2(cinfo, 1, JTRC_JFIF_THUMBNAIL, b[12], b[13]);
+ if (length != ((INT32) b[12] * (INT32) b[13] * (INT32) 3))
+ TRACEMS1(cinfo, 1, JTRC_JFIF_BADTHUMBNAILSIZE, (int) length);
+ } else {
+ /* Start of APP0 does not match "JFIF" */
+ TRACEMS1(cinfo, 1, JTRC_APP0, (int) length + JFIF_LEN);
+ }
+ } else {
+ /* Too short to be JFIF marker */
+ TRACEMS1(cinfo, 1, JTRC_APP0, (int) length);
+ }
+
+ INPUT_SYNC(cinfo);
+ if (length > 0) /* skip any remaining data -- could be lots */
+ (*cinfo->src->skip_input_data) (cinfo, (long) length);
+
+ return TRUE;
+}
+
+
+METHODDEF boolean
+get_app14 (j_decompress_ptr cinfo)
+/* Process an APP14 marker */
+{
+#define ADOBE_LEN 12
+ INT32 length;
+ UINT8 b[ADOBE_LEN];
+ int buffp;
+ unsigned int version, flags0, flags1, transform;
+ INPUT_VARS(cinfo);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+ length -= 2;
+
+ /* See if an Adobe APP14 marker is present */
+
+ if (length >= ADOBE_LEN) {
+ for (buffp = 0; buffp < ADOBE_LEN; buffp++)
+ INPUT_BYTE(cinfo, b[buffp], return FALSE);
+ length -= ADOBE_LEN;
+
+ if (b[0]==0x41 && b[1]==0x64 && b[2]==0x6F && b[3]==0x62 && b[4]==0x65) {
+ /* Found Adobe APP14 marker */
+ version = (b[5] << 8) + b[6];
+ flags0 = (b[7] << 8) + b[8];
+ flags1 = (b[9] << 8) + b[10];
+ transform = b[11];
+ TRACEMS4(cinfo, 1, JTRC_ADOBE, version, flags0, flags1, transform);
+ cinfo->saw_Adobe_marker = TRUE;
+ cinfo->Adobe_transform = (UINT8) transform;
+ } else {
+ /* Start of APP14 does not match "Adobe" */
+ TRACEMS1(cinfo, 1, JTRC_APP14, (int) length + ADOBE_LEN);
+ }
+ } else {
+ /* Too short to be Adobe marker */
+ TRACEMS1(cinfo, 1, JTRC_APP14, (int) length);
+ }
+
+ INPUT_SYNC(cinfo);
+ if (length > 0) /* skip any remaining data -- could be lots */
+ (*cinfo->src->skip_input_data) (cinfo, (long) length);
+
+ return TRUE;
+}
+
+
+LOCAL boolean
+get_dac (j_decompress_ptr cinfo)
+/* Process a DAC marker */
+{
+ INT32 length;
+ int index, val;
+ INPUT_VARS(cinfo);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+ length -= 2;
+
+ while (length > 0) {
+ INPUT_BYTE(cinfo, index, return FALSE);
+ INPUT_BYTE(cinfo, val, return FALSE);
+
+ length -= 2;
+
+ TRACEMS2(cinfo, 1, JTRC_DAC, index, val);
+
+ if (index < 0 || index >= (2*NUM_ARITH_TBLS))
+ ERREXIT1(cinfo, JERR_DAC_INDEX, index);
+
+ if (index >= NUM_ARITH_TBLS) { /* define AC table */
+ cinfo->arith_ac_K[index-NUM_ARITH_TBLS] = (UINT8) val;
+ } else { /* define DC table */
+ cinfo->arith_dc_L[index] = (UINT8) (val & 0x0F);
+ cinfo->arith_dc_U[index] = (UINT8) (val >> 4);
+ if (cinfo->arith_dc_L[index] > cinfo->arith_dc_U[index])
+ ERREXIT1(cinfo, JERR_DAC_VALUE, val);
+ }
+ }
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+LOCAL boolean
+get_dht (j_decompress_ptr cinfo)
+/* Process a DHT marker */
+{
+ INT32 length;
+ UINT8 bits[17];
+ UINT8 huffval[256];
+ int i, index, count;
+ JHUFF_TBL **htblptr;
+ INPUT_VARS(cinfo);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+ length -= 2;
+
+ while (length > 0) {
+ INPUT_BYTE(cinfo, index, return FALSE);
+
+ TRACEMS1(cinfo, 1, JTRC_DHT, index);
+
+ bits[0] = 0;
+ count = 0;
+ for (i = 1; i <= 16; i++) {
+ INPUT_BYTE(cinfo, bits[i], return FALSE);
+ count += bits[i];
+ }
+
+ length -= 1 + 16;
+
+ TRACEMS8(cinfo, 2, JTRC_HUFFBITS,
+ bits[1], bits[2], bits[3], bits[4],
+ bits[5], bits[6], bits[7], bits[8]);
+ TRACEMS8(cinfo, 2, JTRC_HUFFBITS,
+ bits[9], bits[10], bits[11], bits[12],
+ bits[13], bits[14], bits[15], bits[16]);
+
+ if (count > 256 || ((INT32) count) > length)
+ ERREXIT(cinfo, JERR_DHT_COUNTS);
+
+ for (i = 0; i < count; i++)
+ INPUT_BYTE(cinfo, huffval[i], return FALSE);
+
+ length -= count;
+
+ if (index & 0x10) { /* AC table definition */
+ index -= 0x10;
+ htblptr = &cinfo->ac_huff_tbl_ptrs[index];
+ } else { /* DC table definition */
+ htblptr = &cinfo->dc_huff_tbl_ptrs[index];
+ }
+
+ if (index < 0 || index >= NUM_HUFF_TBLS)
+ ERREXIT1(cinfo, JERR_DHT_INDEX, index);
+
+ if (*htblptr == NULL)
+ *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo);
+
+ MEMCOPY((*htblptr)->bits, bits, SIZEOF((*htblptr)->bits));
+ MEMCOPY((*htblptr)->huffval, huffval, SIZEOF((*htblptr)->huffval));
+ }
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+LOCAL boolean
+get_dqt (j_decompress_ptr cinfo)
+/* Process a DQT marker */
+{
+ INT32 length;
+ int n, i, prec;
+ unsigned int tmp;
+ JQUANT_TBL *quant_ptr;
+ INPUT_VARS(cinfo);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+ length -= 2;
+
+ while (length > 0) {
+ INPUT_BYTE(cinfo, n, return FALSE);
+ prec = n >> 4;
+ n &= 0x0F;
+
+ TRACEMS2(cinfo, 1, JTRC_DQT, n, prec);
+
+ if (n >= NUM_QUANT_TBLS)
+ ERREXIT1(cinfo, JERR_DQT_INDEX, n);
+
+ if (cinfo->quant_tbl_ptrs[n] == NULL)
+ cinfo->quant_tbl_ptrs[n] = jpeg_alloc_quant_table((j_common_ptr) cinfo);
+ quant_ptr = cinfo->quant_tbl_ptrs[n];
+
+ for (i = 0; i < DCTSIZE2; i++) {
+ if (prec)
+ INPUT_2BYTES(cinfo, tmp, return FALSE);
+ else
+ INPUT_BYTE(cinfo, tmp, return FALSE);
+ quant_ptr->quantval[i] = (UINT16) tmp;
+ }
+
+ for (i = 0; i < DCTSIZE2; i += 8) {
+ TRACEMS8(cinfo, 2, JTRC_QUANTVALS,
+ quant_ptr->quantval[i ], quant_ptr->quantval[i+1],
+ quant_ptr->quantval[i+2], quant_ptr->quantval[i+3],
+ quant_ptr->quantval[i+4], quant_ptr->quantval[i+5],
+ quant_ptr->quantval[i+6], quant_ptr->quantval[i+7]);
+ }
+
+ length -= DCTSIZE2+1;
+ if (prec) length -= DCTSIZE2;
+ }
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+LOCAL boolean
+get_dri (j_decompress_ptr cinfo)
+/* Process a DRI marker */
+{
+ INT32 length;
+ unsigned int tmp;
+ INPUT_VARS(cinfo);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+
+ if (length != 4)
+ ERREXIT(cinfo, JERR_BAD_LENGTH);
+
+ INPUT_2BYTES(cinfo, tmp, return FALSE);
+
+ TRACEMS1(cinfo, 1, JTRC_DRI, tmp);
+
+ cinfo->restart_interval = tmp;
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+METHODDEF boolean
+skip_variable (j_decompress_ptr cinfo)
+/* Skip over an unknown or uninteresting variable-length marker */
+{
+ INT32 length;
+ INPUT_VARS(cinfo);
+
+ INPUT_2BYTES(cinfo, length, return FALSE);
+
+ TRACEMS2(cinfo, 1, JTRC_MISC_MARKER, cinfo->unread_marker, (int) length);
+
+ INPUT_SYNC(cinfo); /* do before skip_input_data */
+ (*cinfo->src->skip_input_data) (cinfo, (long) length - 2L);
+
+ return TRUE;
+}
+
+
+/*
+ * Find the next JPEG marker, save it in cinfo->unread_marker.
+ * Returns FALSE if had to suspend before reaching a marker;
+ * in that case cinfo->unread_marker is unchanged.
+ *
+ * Note that the result might not be a valid marker code,
+ * but it will never be 0 or FF.
+ */
+
+LOCAL boolean
+next_marker (j_decompress_ptr cinfo)
+{
+ int c;
+ INPUT_VARS(cinfo);
+
+ for (;;) {
+ INPUT_BYTE(cinfo, c, return FALSE);
+ /* Skip any non-FF bytes.
+ * This may look a bit inefficient, but it will not occur in a valid file.
+ * We sync after each discarded byte so that a suspending data source
+ * can discard the byte from its buffer.
+ */
+ while (c != 0xFF) {
+ cinfo->marker->discarded_bytes++;
+ INPUT_SYNC(cinfo);
+ INPUT_BYTE(cinfo, c, return FALSE);
+ }
+ /* This loop swallows any duplicate FF bytes. Extra FFs are legal as
+ * pad bytes, so don't count them in discarded_bytes. We assume there
+ * will not be so many consecutive FF bytes as to overflow a suspending
+ * data source's input buffer.
+ */
+ do {
+ INPUT_BYTE(cinfo, c, return FALSE);
+ } while (c == 0xFF);
+ if (c != 0)
+ break; /* found a valid marker, exit loop */
+ /* Reach here if we found a stuffed-zero data sequence (FF/00).
+ * Discard it and loop back to try again.
+ */
+ cinfo->marker->discarded_bytes += 2;
+ INPUT_SYNC(cinfo);
+ }
+
+ if (cinfo->marker->discarded_bytes != 0) {
+ WARNMS2(cinfo, JWRN_EXTRANEOUS_DATA, cinfo->marker->discarded_bytes, c);
+ cinfo->marker->discarded_bytes = 0;
+ }
+
+ cinfo->unread_marker = c;
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+LOCAL boolean
+first_marker (j_decompress_ptr cinfo)
+/* Like next_marker, but used to obtain the initial SOI marker. */
+/* For this marker, we do not allow preceding garbage or fill; otherwise,
+ * we might well scan an entire input file before realizing it ain't JPEG.
+ * If an application wants to process non-JFIF files, it must seek to the
+ * SOI before calling the JPEG library.
+ */
+{
+ int c, c2;
+ INPUT_VARS(cinfo);
+
+ INPUT_BYTE(cinfo, c, return FALSE);
+ INPUT_BYTE(cinfo, c2, return FALSE);
+ if (c != 0xFF || c2 != (int) M_SOI)
+ ERREXIT2(cinfo, JERR_NO_SOI, c, c2);
+
+ cinfo->unread_marker = c2;
+
+ INPUT_SYNC(cinfo);
+ return TRUE;
+}
+
+
+/*
+ * Read markers until SOS or EOI.
+ *
+ * Returns same codes as are defined for jpeg_consume_input:
+ * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
+ */
+
+METHODDEF int
+read_markers (j_decompress_ptr cinfo)
+{
+ /* Outer loop repeats once for each marker. */
+ for (;;) {
+ /* Collect the marker proper, unless we already did. */
+ /* NB: first_marker() enforces the requirement that SOI appear first. */
+ if (cinfo->unread_marker == 0) {
+ if (! cinfo->marker->saw_SOI) {
+ if (! first_marker(cinfo))
+ return JPEG_SUSPENDED;
+ } else {
+ if (! next_marker(cinfo))
+ return JPEG_SUSPENDED;
+ }
+ }
+ /* At this point cinfo->unread_marker contains the marker code and the
+ * input point is just past the marker proper, but before any parameters.
+ * A suspension will cause us to return with this state still true.
+ */
+ switch (cinfo->unread_marker) {
+ case M_SOI:
+ if (! get_soi(cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_SOF0: /* Baseline */
+ case M_SOF1: /* Extended sequential, Huffman */
+ if (! get_sof(cinfo, FALSE, FALSE))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_SOF2: /* Progressive, Huffman */
+ if (! get_sof(cinfo, TRUE, FALSE))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_SOF9: /* Extended sequential, arithmetic */
+ if (! get_sof(cinfo, FALSE, TRUE))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_SOF10: /* Progressive, arithmetic */
+ if (! get_sof(cinfo, TRUE, TRUE))
+ return JPEG_SUSPENDED;
+ break;
+
+ /* Currently unsupported SOFn types */
+ case M_SOF3: /* Lossless, Huffman */
+ case M_SOF5: /* Differential sequential, Huffman */
+ case M_SOF6: /* Differential progressive, Huffman */
+ case M_SOF7: /* Differential lossless, Huffman */
+ case M_JPG: /* Reserved for JPEG extensions */
+ case M_SOF11: /* Lossless, arithmetic */
+ case M_SOF13: /* Differential sequential, arithmetic */
+ case M_SOF14: /* Differential progressive, arithmetic */
+ case M_SOF15: /* Differential lossless, arithmetic */
+ ERREXIT1(cinfo, JERR_SOF_UNSUPPORTED, cinfo->unread_marker);
+ break;
+
+ case M_SOS:
+ if (! get_sos(cinfo))
+ return JPEG_SUSPENDED;
+ cinfo->unread_marker = 0; /* processed the marker */
+ return JPEG_REACHED_SOS;
+
+ case M_EOI:
+ TRACEMS(cinfo, 1, JTRC_EOI);
+ cinfo->unread_marker = 0; /* processed the marker */
+ return JPEG_REACHED_EOI;
+
+ case M_DAC:
+ if (! get_dac(cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_DHT:
+ if (! get_dht(cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_DQT:
+ if (! get_dqt(cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_DRI:
+ if (! get_dri(cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_APP0:
+ case M_APP1:
+ case M_APP2:
+ case M_APP3:
+ case M_APP4:
+ case M_APP5:
+ case M_APP6:
+ case M_APP7:
+ case M_APP8:
+ case M_APP9:
+ case M_APP10:
+ case M_APP11:
+ case M_APP12:
+ case M_APP13:
+ case M_APP14:
+ case M_APP15:
+ if (! (*cinfo->marker->process_APPn[cinfo->unread_marker - (int) M_APP0]) (cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_COM:
+ if (! (*cinfo->marker->process_COM) (cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ case M_RST0: /* these are all parameterless */
+ case M_RST1:
+ case M_RST2:
+ case M_RST3:
+ case M_RST4:
+ case M_RST5:
+ case M_RST6:
+ case M_RST7:
+ case M_TEM:
+ TRACEMS1(cinfo, 1, JTRC_PARMLESS_MARKER, cinfo->unread_marker);
+ break;
+
+ case M_DNL: /* Ignore DNL ... perhaps the wrong thing */
+ if (! skip_variable(cinfo))
+ return JPEG_SUSPENDED;
+ break;
+
+ default: /* must be DHP, EXP, JPGn, or RESn */
+ /* For now, we treat the reserved markers as fatal errors since they are
+ * likely to be used to signal incompatible JPEG Part 3 extensions.
+ * Once the JPEG 3 version-number marker is well defined, this code
+ * ought to change!
+ */
+ ERREXIT1(cinfo, JERR_UNKNOWN_MARKER, cinfo->unread_marker);
+ break;
+ }
+ /* Successfully processed marker, so reset state variable */
+ cinfo->unread_marker = 0;
+ } /* end loop */
+}
+
+
+/*
+ * Read a restart marker, which is expected to appear next in the datastream;
+ * if the marker is not there, take appropriate recovery action.
+ * Returns FALSE if suspension is required.
+ *
+ * This is called by the entropy decoder after it has read an appropriate
+ * number of MCUs. cinfo->unread_marker may be nonzero if the entropy decoder
+ * has already read a marker from the data source. Under normal conditions
+ * cinfo->unread_marker will be reset to 0 before returning; if not reset,
+ * it holds a marker which the decoder will be unable to read past.
+ */
+
+METHODDEF boolean
+read_restart_marker (j_decompress_ptr cinfo)
+{
+ /* Obtain a marker unless we already did. */
+ /* Note that next_marker will complain if it skips any data. */
+ if (cinfo->unread_marker == 0) {
+ if (! next_marker(cinfo))
+ return FALSE;
+ }
+
+ if (cinfo->unread_marker ==
+ ((int) M_RST0 + cinfo->marker->next_restart_num)) {
+ /* Normal case --- swallow the marker and let entropy decoder continue */
+ TRACEMS1(cinfo, 2, JTRC_RST, cinfo->marker->next_restart_num);
+ cinfo->unread_marker = 0;
+ } else {
+ /* Uh-oh, the restart markers have been messed up. */
+ /* Let the data source manager determine how to resync. */
+ if (! (*cinfo->src->resync_to_restart) (cinfo,
+ cinfo->marker->next_restart_num))
+ return FALSE;
+ }
+
+ /* Update next-restart state */
+ cinfo->marker->next_restart_num = (cinfo->marker->next_restart_num + 1) & 7;
+
+ return TRUE;
+}
+
+
+/*
+ * This is the default resync_to_restart method for data source managers
+ * to use if they don't have any better approach. Some data source managers
+ * may be able to back up, or may have additional knowledge about the data
+ * which permits a more intelligent recovery strategy; such managers would
+ * presumably supply their own resync method.
+ *
+ * read_restart_marker calls resync_to_restart if it finds a marker other than
+ * the restart marker it was expecting. (This code is *not* used unless
+ * a nonzero restart interval has been declared.) cinfo->unread_marker is
+ * the marker code actually found (might be anything, except 0 or FF).
+ * The desired restart marker number (0..7) is passed as a parameter.
+ * This routine is supposed to apply whatever error recovery strategy seems
+ * appropriate in order to position the input stream to the next data segment.
+ * Note that cinfo->unread_marker is treated as a marker appearing before
+ * the current data-source input point; usually it should be reset to zero
+ * before returning.
+ * Returns FALSE if suspension is required.
+ *
+ * This implementation is substantially constrained by wanting to treat the
+ * input as a data stream; this means we can't back up. Therefore, we have
+ * only the following actions to work with:
+ * 1. Simply discard the marker and let the entropy decoder resume at next
+ * byte of file.
+ * 2. Read forward until we find another marker, discarding intervening
+ * data. (In theory we could look ahead within the current bufferload,
+ * without having to discard data if we don't find the desired marker.
+ * This idea is not implemented here, in part because it makes behavior
+ * dependent on buffer size and chance buffer-boundary positions.)
+ * 3. Leave the marker unread (by failing to zero cinfo->unread_marker).
+ * This will cause the entropy decoder to process an empty data segment,
+ * inserting dummy zeroes, and then we will reprocess the marker.
+ *
+ * #2 is appropriate if we think the desired marker lies ahead, while #3 is
+ * appropriate if the found marker is a future restart marker (indicating
+ * that we have missed the desired restart marker, probably because it got
+ * corrupted).
+ * We apply #2 or #3 if the found marker is a restart marker no more than
+ * two counts behind or ahead of the expected one. We also apply #2 if the
+ * found marker is not a legal JPEG marker code (it's certainly bogus data).
+ * If the found marker is a restart marker more than 2 counts away, we do #1
+ * (too much risk that the marker is erroneous; with luck we will be able to
+ * resync at some future point).
+ * For any valid non-restart JPEG marker, we apply #3. This keeps us from
+ * overrunning the end of a scan. An implementation limited to single-scan
+ * files might find it better to apply #2 for markers other than EOI, since
+ * any other marker would have to be bogus data in that case.
+ */
+
+GLOBAL boolean
+jpeg_resync_to_restart (j_decompress_ptr cinfo, int desired)
+{
+ int marker = cinfo->unread_marker;
+ int action = 1;
+
+ /* Always put up a warning. */
+ WARNMS2(cinfo, JWRN_MUST_RESYNC, marker, desired);
+
+ /* Outer loop handles repeated decision after scanning forward. */
+ for (;;) {
+ if (marker < (int) M_SOF0)
+ action = 2; /* invalid marker */
+ else if (marker < (int) M_RST0 || marker > (int) M_RST7)
+ action = 3; /* valid non-restart marker */
+ else {
+ if (marker == ((int) M_RST0 + ((desired+1) & 7)) ||
+ marker == ((int) M_RST0 + ((desired+2) & 7)))
+ action = 3; /* one of the next two expected restarts */
+ else if (marker == ((int) M_RST0 + ((desired-1) & 7)) ||
+ marker == ((int) M_RST0 + ((desired-2) & 7)))
+ action = 2; /* a prior restart, so advance */
+ else
+ action = 1; /* desired restart or too far away */
+ }
+ TRACEMS2(cinfo, 4, JTRC_RECOVERY_ACTION, marker, action);
+ switch (action) {
+ case 1:
+ /* Discard marker and let entropy decoder resume processing. */
+ cinfo->unread_marker = 0;
+ return TRUE;
+ case 2:
+ /* Scan to the next marker, and repeat the decision loop. */
+ if (! next_marker(cinfo))
+ return FALSE;
+ marker = cinfo->unread_marker;
+ break;
+ case 3:
+ /* Return without advancing past this marker. */
+ /* Entropy decoder will be forced to process an empty segment. */
+ return TRUE;
+ }
+ } /* end loop */
+}
+
+
+/*
+ * Reset marker processing state to begin a fresh datastream.
+ */
+
+METHODDEF void
+reset_marker_reader (j_decompress_ptr cinfo)
+{
+ cinfo->comp_info = NULL; /* until allocated by get_sof */
+ cinfo->input_scan_number = 0; /* no SOS seen yet */
+ cinfo->unread_marker = 0; /* no pending marker */
+ cinfo->marker->saw_SOI = FALSE; /* set internal state too */
+ cinfo->marker->saw_SOF = FALSE;
+ cinfo->marker->discarded_bytes = 0;
+}
+
+
+/*
+ * Initialize the marker reader module.
+ * This is called only once, when the decompression object is created.
+ */
+
+GLOBAL void
+jinit_marker_reader (j_decompress_ptr cinfo)
+{
+ int i;
+
+ /* Create subobject in permanent pool */
+ cinfo->marker = (struct jpeg_marker_reader *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_PERMANENT,
+ SIZEOF(struct jpeg_marker_reader));
+ /* Initialize method pointers */
+ cinfo->marker->reset_marker_reader = reset_marker_reader;
+ cinfo->marker->read_markers = read_markers;
+ cinfo->marker->read_restart_marker = read_restart_marker;
+ cinfo->marker->process_COM = skip_variable;
+ for (i = 0; i < 16; i++)
+ cinfo->marker->process_APPn[i] = skip_variable;
+ cinfo->marker->process_APPn[0] = get_app0;
+ cinfo->marker->process_APPn[14] = get_app14;
+ /* Reset marker processing state */
+ reset_marker_reader(cinfo);
+}
diff --git a/libs/jpeg6/jdmaster.cpp b/libs/jpeg6/jdmaster.cpp
index 64f730f..18e0880 100755
--- a/libs/jpeg6/jdmaster.cpp
+++ b/libs/jpeg6/jdmaster.cpp
@@ -1,557 +1,557 @@
-/*
- * jdmaster.c
- *
- * Copyright (C) 1991-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains master control logic for the JPEG decompressor.
- * These routines are concerned with selecting the modules to be executed
- * and with determining the number of passes and the work to be done in each
- * pass.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private state */
-
-typedef struct {
- struct jpeg_decomp_master pub; /* public fields */
-
- int pass_number; /* # of passes completed */
-
- boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */
-
- /* Saved references to initialized quantizer modules,
- * in case we need to switch modes.
- */
- struct jpeg_color_quantizer * quantizer_1pass;
- struct jpeg_color_quantizer * quantizer_2pass;
-} my_decomp_master;
-
-typedef my_decomp_master * my_master_ptr;
-
-
-/*
- * Determine whether merged upsample/color conversion should be used.
- * CRUCIAL: this must match the actual capabilities of jdmerge.c!
- */
-
-LOCAL boolean
-use_merged_upsample (j_decompress_ptr cinfo)
-{
-#ifdef UPSAMPLE_MERGING_SUPPORTED
- /* Merging is the equivalent of plain box-filter upsampling */
- if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling)
- return FALSE;
- /* jdmerge.c only supports YCC=>RGB color conversion */
- if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 ||
- cinfo->out_color_space != JCS_RGB ||
- cinfo->out_color_components != RGB_PIXELSIZE)
- return FALSE;
- /* and it only handles 2h1v or 2h2v sampling ratios */
- if (cinfo->comp_info[0].h_samp_factor != 2 ||
- cinfo->comp_info[1].h_samp_factor != 1 ||
- cinfo->comp_info[2].h_samp_factor != 1 ||
- cinfo->comp_info[0].v_samp_factor > 2 ||
- cinfo->comp_info[1].v_samp_factor != 1 ||
- cinfo->comp_info[2].v_samp_factor != 1)
- return FALSE;
- /* furthermore, it doesn't work if we've scaled the IDCTs differently */
- if (cinfo->comp_info[0].DCT_scaled_size != cinfo->min_DCT_scaled_size ||
- cinfo->comp_info[1].DCT_scaled_size != cinfo->min_DCT_scaled_size ||
- cinfo->comp_info[2].DCT_scaled_size != cinfo->min_DCT_scaled_size)
- return FALSE;
- /* ??? also need to test for upsample-time rescaling, when & if supported */
- return TRUE; /* by golly, it'll work... */
-#else
- return FALSE;
-#endif
-}
-
-
-/*
- * Compute output image dimensions and related values.
- * NOTE: this is exported for possible use by application.
- * Hence it mustn't do anything that can't be done twice.
- * Also note that it may be called before the master module is initialized!
- */
-
-GLOBAL void
-jpeg_calc_output_dimensions (j_decompress_ptr cinfo)
-/* Do computations that are needed before master selection phase */
-{
-#if 0 // JDC: commented out to remove warning
- int ci;
- jpeg_component_info *compptr;
-#endif
-
- /* Prevent application from calling me at wrong times */
- if (cinfo->global_state != DSTATE_READY)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
-#ifdef IDCT_SCALING_SUPPORTED
-
- /* Compute actual output image dimensions and DCT scaling choices. */
- if (cinfo->scale_num * 8 <= cinfo->scale_denom) {
- /* Provide 1/8 scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width, 8L);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height, 8L);
- cinfo->min_DCT_scaled_size = 1;
- } else if (cinfo->scale_num * 4 <= cinfo->scale_denom) {
- /* Provide 1/4 scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width, 4L);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height, 4L);
- cinfo->min_DCT_scaled_size = 2;
- } else if (cinfo->scale_num * 2 <= cinfo->scale_denom) {
- /* Provide 1/2 scaling */
- cinfo->output_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width, 2L);
- cinfo->output_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height, 2L);
- cinfo->min_DCT_scaled_size = 4;
- } else {
- /* Provide 1/1 scaling */
- cinfo->output_width = cinfo->image_width;
- cinfo->output_height = cinfo->image_height;
- cinfo->min_DCT_scaled_size = DCTSIZE;
- }
- /* In selecting the actual DCT scaling for each component, we try to
- * scale up the chroma components via IDCT scaling rather than upsampling.
- * This saves time if the upsampler gets to use 1:1 scaling.
- * Note this code assumes that the supported DCT scalings are powers of 2.
- */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- int ssize = cinfo->min_DCT_scaled_size;
- while (ssize < DCTSIZE &&
- (compptr->h_samp_factor * ssize * 2 <=
- cinfo->max_h_samp_factor * cinfo->min_DCT_scaled_size) &&
- (compptr->v_samp_factor * ssize * 2 <=
- cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size)) {
- ssize = ssize * 2;
- }
- compptr->DCT_scaled_size = ssize;
- }
-
- /* Recompute downsampled dimensions of components;
- * application needs to know these if using raw downsampled data.
- */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Size in samples, after IDCT scaling */
- compptr->downsampled_width = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_width *
- (long) (compptr->h_samp_factor * compptr->DCT_scaled_size),
- (long) (cinfo->max_h_samp_factor * DCTSIZE));
- compptr->downsampled_height = (JDIMENSION)
- jdiv_round_up((long) cinfo->image_height *
- (long) (compptr->v_samp_factor * compptr->DCT_scaled_size),
- (long) (cinfo->max_v_samp_factor * DCTSIZE));
- }
-
-#else /* !IDCT_SCALING_SUPPORTED */
-
- /* Hardwire it to "no scaling" */
- cinfo->output_width = cinfo->image_width;
- cinfo->output_height = cinfo->image_height;
- /* jdinput.c has already initialized DCT_scaled_size to DCTSIZE,
- * and has computed unscaled downsampled_width and downsampled_height.
- */
-
-#endif /* IDCT_SCALING_SUPPORTED */
-
- /* Report number of components in selected colorspace. */
- /* Probably this should be in the color conversion module... */
- switch (cinfo->out_color_space) {
- case JCS_GRAYSCALE:
- cinfo->out_color_components = 1;
- break;
- case JCS_RGB:
-#if RGB_PIXELSIZE != 3
- cinfo->out_color_components = RGB_PIXELSIZE;
- break;
-#endif /* else share code with YCbCr */
- case JCS_YCbCr:
- cinfo->out_color_components = 3;
- break;
- case JCS_CMYK:
- case JCS_YCCK:
- cinfo->out_color_components = 4;
- break;
- default: /* else must be same colorspace as in file */
- cinfo->out_color_components = cinfo->num_components;
- break;
- }
- cinfo->output_components = (cinfo->quantize_colors ? 1 :
- cinfo->out_color_components);
-
- /* See if upsampler will want to emit more than one row at a time */
- if (use_merged_upsample(cinfo))
- cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
- else
- cinfo->rec_outbuf_height = 1;
-}
-
-
-/*
- * Several decompression processes need to range-limit values to the range
- * 0..MAXJSAMPLE; the input value may fall somewhat outside this range
- * due to noise introduced by quantization, roundoff error, etc. These
- * processes are inner loops and need to be as fast as possible. On most
- * machines, particularly CPUs with pipelines or instruction prefetch,
- * a (subscript-check-less) C table lookup
- * x = sample_range_limit[x];
- * is faster than explicit tests
- * if (x < 0) x = 0;
- * else if (x > MAXJSAMPLE) x = MAXJSAMPLE;
- * These processes all use a common table prepared by the routine below.
- *
- * For most steps we can mathematically guarantee that the initial value
- * of x is within MAXJSAMPLE+1 of the legal range, so a table running from
- * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial
- * limiting step (just after the IDCT), a wildly out-of-range value is
- * possible if the input data is corrupt. To avoid any chance of indexing
- * off the end of memory and getting a bad-pointer trap, we perform the
- * post-IDCT limiting thus:
- * x = range_limit[x & MASK];
- * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
- * samples. Under normal circumstances this is more than enough range and
- * a correct output will be generated; with bogus input data the mask will
- * cause wraparound, and we will safely generate a bogus-but-in-range output.
- * For the post-IDCT step, we want to convert the data from signed to unsigned
- * representation by adding CENTERJSAMPLE at the same time that we limit it.
- * So the post-IDCT limiting table ends up looking like this:
- * CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE,
- * MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
- * 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
- * 0,1,...,CENTERJSAMPLE-1
- * Negative inputs select values from the upper half of the table after
- * masking.
- *
- * We can save some space by overlapping the start of the post-IDCT table
- * with the simpler range limiting table. The post-IDCT table begins at
- * sample_range_limit + CENTERJSAMPLE.
- *
- * Note that the table is allocated in near data space on PCs; it's small
- * enough and used often enough to justify this.
- */
-
-LOCAL void
-prepare_range_limit_table (j_decompress_ptr cinfo)
-/* Allocate and fill in the sample_range_limit table */
-{
- JSAMPLE * table;
- int i;
-
- table = (JSAMPLE *)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE));
- table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */
- cinfo->sample_range_limit = table;
- /* First segment of "simple" table: limit[x] = 0 for x < 0 */
- MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
- /* Main part of "simple" table: limit[x] = x */
- for (i = 0; i <= MAXJSAMPLE; i++)
- table[i] = (JSAMPLE) i;
- table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */
- /* End of simple table, rest of first half of post-IDCT table */
- for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++)
- table[i] = MAXJSAMPLE;
- /* Second half of post-IDCT table */
- MEMZERO(table + (2 * (MAXJSAMPLE+1)),
- (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE));
- MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE),
- cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE));
-}
-
-
-/*
- * Master selection of decompression modules.
- * This is done once at jpeg_start_decompress time. We determine
- * which modules will be used and give them appropriate initialization calls.
- * We also initialize the decompressor input side to begin consuming data.
- *
- * Since jpeg_read_header has finished, we know what is in the SOF
- * and (first) SOS markers. We also have all the application parameter
- * settings.
- */
-
-LOCAL void
-master_selection (j_decompress_ptr cinfo)
-{
- my_master_ptr master = (my_master_ptr) cinfo->master;
- boolean use_c_buffer;
- long samplesperrow;
- JDIMENSION jd_samplesperrow;
-
- /* Initialize dimensions and other stuff */
- jpeg_calc_output_dimensions(cinfo);
- prepare_range_limit_table(cinfo);
-
- /* Width of an output scanline must be representable as JDIMENSION. */
- samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components;
- jd_samplesperrow = (JDIMENSION) samplesperrow;
- if ((long) jd_samplesperrow != samplesperrow)
- ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
-
- /* Initialize my private state */
- master->pass_number = 0;
- master->using_merged_upsample = use_merged_upsample(cinfo);
-
- /* Color quantizer selection */
- master->quantizer_1pass = NULL;
- master->quantizer_2pass = NULL;
- /* No mode changes if not using buffered-image mode. */
- if (! cinfo->quantize_colors || ! cinfo->buffered_image) {
- cinfo->enable_1pass_quant = FALSE;
- cinfo->enable_external_quant = FALSE;
- cinfo->enable_2pass_quant = FALSE;
- }
- if (cinfo->quantize_colors) {
- if (cinfo->raw_data_out)
- ERREXIT(cinfo, JERR_NOTIMPL);
- /* 2-pass quantizer only works in 3-component color space. */
- if (cinfo->out_color_components != 3) {
- cinfo->enable_1pass_quant = TRUE;
- cinfo->enable_external_quant = FALSE;
- cinfo->enable_2pass_quant = FALSE;
- cinfo->colormap = NULL;
- } else if (cinfo->colormap != NULL) {
- cinfo->enable_external_quant = TRUE;
- } else if (cinfo->two_pass_quantize) {
- cinfo->enable_2pass_quant = TRUE;
- } else {
- cinfo->enable_1pass_quant = TRUE;
- }
-
- if (cinfo->enable_1pass_quant) {
-#ifdef QUANT_1PASS_SUPPORTED
- jinit_1pass_quantizer(cinfo);
- master->quantizer_1pass = cinfo->cquantize;
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- }
-
- /* We use the 2-pass code to map to external colormaps. */
- if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) {
-#ifdef QUANT_2PASS_SUPPORTED
- jinit_2pass_quantizer(cinfo);
- master->quantizer_2pass = cinfo->cquantize;
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- }
- /* If both quantizers are initialized, the 2-pass one is left active;
- * this is necessary for starting with quantization to an external map.
- */
- }
-
- /* Post-processing: in particular, color conversion first */
- if (! cinfo->raw_data_out) {
- if (master->using_merged_upsample) {
-#ifdef UPSAMPLE_MERGING_SUPPORTED
- jinit_merged_upsampler(cinfo); /* does color conversion too */
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- } else {
- jinit_color_deconverter(cinfo);
- jinit_upsampler(cinfo);
- }
- jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant);
- }
- /* Inverse DCT */
- jinit_inverse_dct(cinfo);
- /* Entropy decoding: either Huffman or arithmetic coding. */
- if (cinfo->arith_code) {
- ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
- } else {
- if (cinfo->progressive_mode) {
-#ifdef D_PROGRESSIVE_SUPPORTED
- jinit_phuff_decoder(cinfo);
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- } else
- jinit_huff_decoder(cinfo);
- }
-
- /* Initialize principal buffer controllers. */
- use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image;
- jinit_d_coef_controller(cinfo, use_c_buffer);
-
- if (! cinfo->raw_data_out)
- jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);
-
- /* We can now tell the memory manager to allocate virtual arrays. */
- (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
-
- /* Initialize input side of decompressor to consume first scan. */
- (*cinfo->inputctl->start_input_pass) (cinfo);
-
-#ifdef D_MULTISCAN_FILES_SUPPORTED
- /* If jpeg_start_decompress will read the whole file, initialize
- * progress monitoring appropriately. The input step is counted
- * as one pass.
- */
- if (cinfo->progress != NULL && ! cinfo->buffered_image &&
- cinfo->inputctl->has_multiple_scans) {
- int nscans;
- /* Estimate number of scans to set pass_limit. */
- if (cinfo->progressive_mode) {
- /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
- nscans = 2 + 3 * cinfo->num_components;
- } else {
- /* For a nonprogressive multiscan file, estimate 1 scan per component. */
- nscans = cinfo->num_components;
- }
- cinfo->progress->pass_counter = 0L;
- cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
- cinfo->progress->completed_passes = 0;
- cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2);
- /* Count the input pass as done */
- master->pass_number++;
- }
-#endif /* D_MULTISCAN_FILES_SUPPORTED */
-}
-
-
-/*
- * Per-pass setup.
- * This is called at the beginning of each output pass. We determine which
- * modules will be active during this pass and give them appropriate
- * start_pass calls. We also set is_dummy_pass to indicate whether this
- * is a "real" output pass or a dummy pass for color quantization.
- * (In the latter case, jdapi.c will crank the pass to completion.)
- */
-
-METHODDEF void
-prepare_for_output_pass (j_decompress_ptr cinfo)
-{
- my_master_ptr master = (my_master_ptr) cinfo->master;
-
- if (master->pub.is_dummy_pass) {
-#ifdef QUANT_2PASS_SUPPORTED
- /* Final pass of 2-pass quantization */
- master->pub.is_dummy_pass = FALSE;
- (*cinfo->cquantize->start_pass) (cinfo, FALSE);
- (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
- (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif /* QUANT_2PASS_SUPPORTED */
- } else {
- if (cinfo->quantize_colors && cinfo->colormap == NULL) {
- /* Select new quantization method */
- if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) {
- cinfo->cquantize = master->quantizer_2pass;
- master->pub.is_dummy_pass = TRUE;
- } else if (cinfo->enable_1pass_quant) {
- cinfo->cquantize = master->quantizer_1pass;
- } else {
- ERREXIT(cinfo, JERR_MODE_CHANGE);
- }
- }
- (*cinfo->idct->start_pass) (cinfo);
- (*cinfo->coef->start_output_pass) (cinfo);
- if (! cinfo->raw_data_out) {
- if (! master->using_merged_upsample)
- (*cinfo->cconvert->start_pass) (cinfo);
- (*cinfo->upsample->start_pass) (cinfo);
- if (cinfo->quantize_colors)
- (*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass);
- (*cinfo->post->start_pass) (cinfo,
- (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
- (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
- }
- }
-
- /* Set up progress monitor's pass info if present */
- if (cinfo->progress != NULL) {
- cinfo->progress->completed_passes = master->pass_number;
- cinfo->progress->total_passes = master->pass_number +
- (master->pub.is_dummy_pass ? 2 : 1);
- /* In buffered-image mode, we assume one more output pass if EOI not
- * yet reached, but no more passes if EOI has been reached.
- */
- if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) {
- cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1);
- }
- }
-}
-
-
-/*
- * Finish up at end of an output pass.
- */
-
-METHODDEF void
-finish_output_pass (j_decompress_ptr cinfo)
-{
- my_master_ptr master = (my_master_ptr) cinfo->master;
-
- if (cinfo->quantize_colors)
- (*cinfo->cquantize->finish_pass) (cinfo);
- master->pass_number++;
-}
-
-
-#ifdef D_MULTISCAN_FILES_SUPPORTED
-
-/*
- * Switch to a new external colormap between output passes.
- */
-
-GLOBAL void
-jpeg_new_colormap (j_decompress_ptr cinfo)
-{
- my_master_ptr master = (my_master_ptr) cinfo->master;
-
- /* Prevent application from calling me at wrong times */
- if (cinfo->global_state != DSTATE_BUFIMAGE)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
-
- if (cinfo->quantize_colors && cinfo->enable_external_quant &&
- cinfo->colormap != NULL) {
- /* Select 2-pass quantizer for external colormap use */
- cinfo->cquantize = master->quantizer_2pass;
- /* Notify quantizer of colormap change */
- (*cinfo->cquantize->new_color_map) (cinfo);
- master->pub.is_dummy_pass = FALSE; /* just in case */
- } else
- ERREXIT(cinfo, JERR_MODE_CHANGE);
-}
-
-#endif /* D_MULTISCAN_FILES_SUPPORTED */
-
-
-/*
- * Initialize master decompression control and select active modules.
- * This is performed at the start of jpeg_start_decompress.
- */
-
-GLOBAL void
-jinit_master_decompress (j_decompress_ptr cinfo)
-{
- my_master_ptr master;
-
- master = (my_master_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_decomp_master));
- cinfo->master = (struct jpeg_decomp_master *) master;
- master->pub.prepare_for_output_pass = prepare_for_output_pass;
- master->pub.finish_output_pass = finish_output_pass;
-
- master->pub.is_dummy_pass = FALSE;
-
- master_selection(cinfo);
-}
+/*
+ * jdmaster.c
+ *
+ * Copyright (C) 1991-1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains master control logic for the JPEG decompressor.
+ * These routines are concerned with selecting the modules to be executed
+ * and with determining the number of passes and the work to be done in each
+ * pass.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Private state */
+
+typedef struct {
+ struct jpeg_decomp_master pub; /* public fields */
+
+ int pass_number; /* # of passes completed */
+
+ boolean using_merged_upsample; /* TRUE if using merged upsample/cconvert */
+
+ /* Saved references to initialized quantizer modules,
+ * in case we need to switch modes.
+ */
+ struct jpeg_color_quantizer * quantizer_1pass;
+ struct jpeg_color_quantizer * quantizer_2pass;
+} my_decomp_master;
+
+typedef my_decomp_master * my_master_ptr;
+
+
+/*
+ * Determine whether merged upsample/color conversion should be used.
+ * CRUCIAL: this must match the actual capabilities of jdmerge.c!
+ */
+
+LOCAL boolean
+use_merged_upsample (j_decompress_ptr cinfo)
+{
+#ifdef UPSAMPLE_MERGING_SUPPORTED
+ /* Merging is the equivalent of plain box-filter upsampling */
+ if (cinfo->do_fancy_upsampling || cinfo->CCIR601_sampling)
+ return FALSE;
+ /* jdmerge.c only supports YCC=>RGB color conversion */
+ if (cinfo->jpeg_color_space != JCS_YCbCr || cinfo->num_components != 3 ||
+ cinfo->out_color_space != JCS_RGB ||
+ cinfo->out_color_components != RGB_PIXELSIZE)
+ return FALSE;
+ /* and it only handles 2h1v or 2h2v sampling ratios */
+ if (cinfo->comp_info[0].h_samp_factor != 2 ||
+ cinfo->comp_info[1].h_samp_factor != 1 ||
+ cinfo->comp_info[2].h_samp_factor != 1 ||
+ cinfo->comp_info[0].v_samp_factor > 2 ||
+ cinfo->comp_info[1].v_samp_factor != 1 ||
+ cinfo->comp_info[2].v_samp_factor != 1)
+ return FALSE;
+ /* furthermore, it doesn't work if we've scaled the IDCTs differently */
+ if (cinfo->comp_info[0].DCT_scaled_size != cinfo->min_DCT_scaled_size ||
+ cinfo->comp_info[1].DCT_scaled_size != cinfo->min_DCT_scaled_size ||
+ cinfo->comp_info[2].DCT_scaled_size != cinfo->min_DCT_scaled_size)
+ return FALSE;
+ /* ??? also need to test for upsample-time rescaling, when & if supported */
+ return TRUE; /* by golly, it'll work... */
+#else
+ return FALSE;
+#endif
+}
+
+
+/*
+ * Compute output image dimensions and related values.
+ * NOTE: this is exported for possible use by application.
+ * Hence it mustn't do anything that can't be done twice.
+ * Also note that it may be called before the master module is initialized!
+ */
+
+GLOBAL void
+jpeg_calc_output_dimensions (j_decompress_ptr cinfo)
+/* Do computations that are needed before master selection phase */
+{
+#if 0 // JDC: commented out to remove warning
+ int ci;
+ jpeg_component_info *compptr;
+#endif
+
+ /* Prevent application from calling me at wrong times */
+ if (cinfo->global_state != DSTATE_READY)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+#ifdef IDCT_SCALING_SUPPORTED
+
+ /* Compute actual output image dimensions and DCT scaling choices. */
+ if (cinfo->scale_num * 8 <= cinfo->scale_denom) {
+ /* Provide 1/8 scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width, 8L);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height, 8L);
+ cinfo->min_DCT_scaled_size = 1;
+ } else if (cinfo->scale_num * 4 <= cinfo->scale_denom) {
+ /* Provide 1/4 scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width, 4L);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height, 4L);
+ cinfo->min_DCT_scaled_size = 2;
+ } else if (cinfo->scale_num * 2 <= cinfo->scale_denom) {
+ /* Provide 1/2 scaling */
+ cinfo->output_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width, 2L);
+ cinfo->output_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height, 2L);
+ cinfo->min_DCT_scaled_size = 4;
+ } else {
+ /* Provide 1/1 scaling */
+ cinfo->output_width = cinfo->image_width;
+ cinfo->output_height = cinfo->image_height;
+ cinfo->min_DCT_scaled_size = DCTSIZE;
+ }
+ /* In selecting the actual DCT scaling for each component, we try to
+ * scale up the chroma components via IDCT scaling rather than upsampling.
+ * This saves time if the upsampler gets to use 1:1 scaling.
+ * Note this code assumes that the supported DCT scalings are powers of 2.
+ */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ int ssize = cinfo->min_DCT_scaled_size;
+ while (ssize < DCTSIZE &&
+ (compptr->h_samp_factor * ssize * 2 <=
+ cinfo->max_h_samp_factor * cinfo->min_DCT_scaled_size) &&
+ (compptr->v_samp_factor * ssize * 2 <=
+ cinfo->max_v_samp_factor * cinfo->min_DCT_scaled_size)) {
+ ssize = ssize * 2;
+ }
+ compptr->DCT_scaled_size = ssize;
+ }
+
+ /* Recompute downsampled dimensions of components;
+ * application needs to know these if using raw downsampled data.
+ */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Size in samples, after IDCT scaling */
+ compptr->downsampled_width = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_width *
+ (long) (compptr->h_samp_factor * compptr->DCT_scaled_size),
+ (long) (cinfo->max_h_samp_factor * DCTSIZE));
+ compptr->downsampled_height = (JDIMENSION)
+ jdiv_round_up((long) cinfo->image_height *
+ (long) (compptr->v_samp_factor * compptr->DCT_scaled_size),
+ (long) (cinfo->max_v_samp_factor * DCTSIZE));
+ }
+
+#else /* !IDCT_SCALING_SUPPORTED */
+
+ /* Hardwire it to "no scaling" */
+ cinfo->output_width = cinfo->image_width;
+ cinfo->output_height = cinfo->image_height;
+ /* jdinput.c has already initialized DCT_scaled_size to DCTSIZE,
+ * and has computed unscaled downsampled_width and downsampled_height.
+ */
+
+#endif /* IDCT_SCALING_SUPPORTED */
+
+ /* Report number of components in selected colorspace. */
+ /* Probably this should be in the color conversion module... */
+ switch (cinfo->out_color_space) {
+ case JCS_GRAYSCALE:
+ cinfo->out_color_components = 1;
+ break;
+ case JCS_RGB:
+#if RGB_PIXELSIZE != 3
+ cinfo->out_color_components = RGB_PIXELSIZE;
+ break;
+#endif /* else share code with YCbCr */
+ case JCS_YCbCr:
+ cinfo->out_color_components = 3;
+ break;
+ case JCS_CMYK:
+ case JCS_YCCK:
+ cinfo->out_color_components = 4;
+ break;
+ default: /* else must be same colorspace as in file */
+ cinfo->out_color_components = cinfo->num_components;
+ break;
+ }
+ cinfo->output_components = (cinfo->quantize_colors ? 1 :
+ cinfo->out_color_components);
+
+ /* See if upsampler will want to emit more than one row at a time */
+ if (use_merged_upsample(cinfo))
+ cinfo->rec_outbuf_height = cinfo->max_v_samp_factor;
+ else
+ cinfo->rec_outbuf_height = 1;
+}
+
+
+/*
+ * Several decompression processes need to range-limit values to the range
+ * 0..MAXJSAMPLE; the input value may fall somewhat outside this range
+ * due to noise introduced by quantization, roundoff error, etc. These
+ * processes are inner loops and need to be as fast as possible. On most
+ * machines, particularly CPUs with pipelines or instruction prefetch,
+ * a (subscript-check-less) C table lookup
+ * x = sample_range_limit[x];
+ * is faster than explicit tests
+ * if (x < 0) x = 0;
+ * else if (x > MAXJSAMPLE) x = MAXJSAMPLE;
+ * These processes all use a common table prepared by the routine below.
+ *
+ * For most steps we can mathematically guarantee that the initial value
+ * of x is within MAXJSAMPLE+1 of the legal range, so a table running from
+ * -(MAXJSAMPLE+1) to 2*MAXJSAMPLE+1 is sufficient. But for the initial
+ * limiting step (just after the IDCT), a wildly out-of-range value is
+ * possible if the input data is corrupt. To avoid any chance of indexing
+ * off the end of memory and getting a bad-pointer trap, we perform the
+ * post-IDCT limiting thus:
+ * x = range_limit[x & MASK];
+ * where MASK is 2 bits wider than legal sample data, ie 10 bits for 8-bit
+ * samples. Under normal circumstances this is more than enough range and
+ * a correct output will be generated; with bogus input data the mask will
+ * cause wraparound, and we will safely generate a bogus-but-in-range output.
+ * For the post-IDCT step, we want to convert the data from signed to unsigned
+ * representation by adding CENTERJSAMPLE at the same time that we limit it.
+ * So the post-IDCT limiting table ends up looking like this:
+ * CENTERJSAMPLE,CENTERJSAMPLE+1,...,MAXJSAMPLE,
+ * MAXJSAMPLE (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
+ * 0 (repeat 2*(MAXJSAMPLE+1)-CENTERJSAMPLE times),
+ * 0,1,...,CENTERJSAMPLE-1
+ * Negative inputs select values from the upper half of the table after
+ * masking.
+ *
+ * We can save some space by overlapping the start of the post-IDCT table
+ * with the simpler range limiting table. The post-IDCT table begins at
+ * sample_range_limit + CENTERJSAMPLE.
+ *
+ * Note that the table is allocated in near data space on PCs; it's small
+ * enough and used often enough to justify this.
+ */
+
+LOCAL void
+prepare_range_limit_table (j_decompress_ptr cinfo)
+/* Allocate and fill in the sample_range_limit table */
+{
+ JSAMPLE * table;
+ int i;
+
+ table = (JSAMPLE *)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (5 * (MAXJSAMPLE+1) + CENTERJSAMPLE) * SIZEOF(JSAMPLE));
+ table += (MAXJSAMPLE+1); /* allow negative subscripts of simple table */
+ cinfo->sample_range_limit = table;
+ /* First segment of "simple" table: limit[x] = 0 for x < 0 */
+ MEMZERO(table - (MAXJSAMPLE+1), (MAXJSAMPLE+1) * SIZEOF(JSAMPLE));
+ /* Main part of "simple" table: limit[x] = x */
+ for (i = 0; i <= MAXJSAMPLE; i++)
+ table[i] = (JSAMPLE) i;
+ table += CENTERJSAMPLE; /* Point to where post-IDCT table starts */
+ /* End of simple table, rest of first half of post-IDCT table */
+ for (i = CENTERJSAMPLE; i < 2*(MAXJSAMPLE+1); i++)
+ table[i] = MAXJSAMPLE;
+ /* Second half of post-IDCT table */
+ MEMZERO(table + (2 * (MAXJSAMPLE+1)),
+ (2 * (MAXJSAMPLE+1) - CENTERJSAMPLE) * SIZEOF(JSAMPLE));
+ MEMCOPY(table + (4 * (MAXJSAMPLE+1) - CENTERJSAMPLE),
+ cinfo->sample_range_limit, CENTERJSAMPLE * SIZEOF(JSAMPLE));
+}
+
+
+/*
+ * Master selection of decompression modules.
+ * This is done once at jpeg_start_decompress time. We determine
+ * which modules will be used and give them appropriate initialization calls.
+ * We also initialize the decompressor input side to begin consuming data.
+ *
+ * Since jpeg_read_header has finished, we know what is in the SOF
+ * and (first) SOS markers. We also have all the application parameter
+ * settings.
+ */
+
+LOCAL void
+master_selection (j_decompress_ptr cinfo)
+{
+ my_master_ptr master = (my_master_ptr) cinfo->master;
+ boolean use_c_buffer;
+ long samplesperrow;
+ JDIMENSION jd_samplesperrow;
+
+ /* Initialize dimensions and other stuff */
+ jpeg_calc_output_dimensions(cinfo);
+ prepare_range_limit_table(cinfo);
+
+ /* Width of an output scanline must be representable as JDIMENSION. */
+ samplesperrow = (long) cinfo->output_width * (long) cinfo->out_color_components;
+ jd_samplesperrow = (JDIMENSION) samplesperrow;
+ if ((long) jd_samplesperrow != samplesperrow)
+ ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+
+ /* Initialize my private state */
+ master->pass_number = 0;
+ master->using_merged_upsample = use_merged_upsample(cinfo);
+
+ /* Color quantizer selection */
+ master->quantizer_1pass = NULL;
+ master->quantizer_2pass = NULL;
+ /* No mode changes if not using buffered-image mode. */
+ if (! cinfo->quantize_colors || ! cinfo->buffered_image) {
+ cinfo->enable_1pass_quant = FALSE;
+ cinfo->enable_external_quant = FALSE;
+ cinfo->enable_2pass_quant = FALSE;
+ }
+ if (cinfo->quantize_colors) {
+ if (cinfo->raw_data_out)
+ ERREXIT(cinfo, JERR_NOTIMPL);
+ /* 2-pass quantizer only works in 3-component color space. */
+ if (cinfo->out_color_components != 3) {
+ cinfo->enable_1pass_quant = TRUE;
+ cinfo->enable_external_quant = FALSE;
+ cinfo->enable_2pass_quant = FALSE;
+ cinfo->colormap = NULL;
+ } else if (cinfo->colormap != NULL) {
+ cinfo->enable_external_quant = TRUE;
+ } else if (cinfo->two_pass_quantize) {
+ cinfo->enable_2pass_quant = TRUE;
+ } else {
+ cinfo->enable_1pass_quant = TRUE;
+ }
+
+ if (cinfo->enable_1pass_quant) {
+#ifdef QUANT_1PASS_SUPPORTED
+ jinit_1pass_quantizer(cinfo);
+ master->quantizer_1pass = cinfo->cquantize;
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ }
+
+ /* We use the 2-pass code to map to external colormaps. */
+ if (cinfo->enable_2pass_quant || cinfo->enable_external_quant) {
+#ifdef QUANT_2PASS_SUPPORTED
+ jinit_2pass_quantizer(cinfo);
+ master->quantizer_2pass = cinfo->cquantize;
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ }
+ /* If both quantizers are initialized, the 2-pass one is left active;
+ * this is necessary for starting with quantization to an external map.
+ */
+ }
+
+ /* Post-processing: in particular, color conversion first */
+ if (! cinfo->raw_data_out) {
+ if (master->using_merged_upsample) {
+#ifdef UPSAMPLE_MERGING_SUPPORTED
+ jinit_merged_upsampler(cinfo); /* does color conversion too */
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ } else {
+ jinit_color_deconverter(cinfo);
+ jinit_upsampler(cinfo);
+ }
+ jinit_d_post_controller(cinfo, cinfo->enable_2pass_quant);
+ }
+ /* Inverse DCT */
+ jinit_inverse_dct(cinfo);
+ /* Entropy decoding: either Huffman or arithmetic coding. */
+ if (cinfo->arith_code) {
+ ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
+ } else {
+ if (cinfo->progressive_mode) {
+#ifdef D_PROGRESSIVE_SUPPORTED
+ jinit_phuff_decoder(cinfo);
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ } else
+ jinit_huff_decoder(cinfo);
+ }
+
+ /* Initialize principal buffer controllers. */
+ use_c_buffer = cinfo->inputctl->has_multiple_scans || cinfo->buffered_image;
+ jinit_d_coef_controller(cinfo, use_c_buffer);
+
+ if (! cinfo->raw_data_out)
+ jinit_d_main_controller(cinfo, FALSE /* never need full buffer here */);
+
+ /* We can now tell the memory manager to allocate virtual arrays. */
+ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
+
+ /* Initialize input side of decompressor to consume first scan. */
+ (*cinfo->inputctl->start_input_pass) (cinfo);
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+ /* If jpeg_start_decompress will read the whole file, initialize
+ * progress monitoring appropriately. The input step is counted
+ * as one pass.
+ */
+ if (cinfo->progress != NULL && ! cinfo->buffered_image &&
+ cinfo->inputctl->has_multiple_scans) {
+ int nscans;
+ /* Estimate number of scans to set pass_limit. */
+ if (cinfo->progressive_mode) {
+ /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
+ nscans = 2 + 3 * cinfo->num_components;
+ } else {
+ /* For a nonprogressive multiscan file, estimate 1 scan per component. */
+ nscans = cinfo->num_components;
+ }
+ cinfo->progress->pass_counter = 0L;
+ cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
+ cinfo->progress->completed_passes = 0;
+ cinfo->progress->total_passes = (cinfo->enable_2pass_quant ? 3 : 2);
+ /* Count the input pass as done */
+ master->pass_number++;
+ }
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
+}
+
+
+/*
+ * Per-pass setup.
+ * This is called at the beginning of each output pass. We determine which
+ * modules will be active during this pass and give them appropriate
+ * start_pass calls. We also set is_dummy_pass to indicate whether this
+ * is a "real" output pass or a dummy pass for color quantization.
+ * (In the latter case, jdapi.c will crank the pass to completion.)
+ */
+
+METHODDEF void
+prepare_for_output_pass (j_decompress_ptr cinfo)
+{
+ my_master_ptr master = (my_master_ptr) cinfo->master;
+
+ if (master->pub.is_dummy_pass) {
+#ifdef QUANT_2PASS_SUPPORTED
+ /* Final pass of 2-pass quantization */
+ master->pub.is_dummy_pass = FALSE;
+ (*cinfo->cquantize->start_pass) (cinfo, FALSE);
+ (*cinfo->post->start_pass) (cinfo, JBUF_CRANK_DEST);
+ (*cinfo->main->start_pass) (cinfo, JBUF_CRANK_DEST);
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif /* QUANT_2PASS_SUPPORTED */
+ } else {
+ if (cinfo->quantize_colors && cinfo->colormap == NULL) {
+ /* Select new quantization method */
+ if (cinfo->two_pass_quantize && cinfo->enable_2pass_quant) {
+ cinfo->cquantize = master->quantizer_2pass;
+ master->pub.is_dummy_pass = TRUE;
+ } else if (cinfo->enable_1pass_quant) {
+ cinfo->cquantize = master->quantizer_1pass;
+ } else {
+ ERREXIT(cinfo, JERR_MODE_CHANGE);
+ }
+ }
+ (*cinfo->idct->start_pass) (cinfo);
+ (*cinfo->coef->start_output_pass) (cinfo);
+ if (! cinfo->raw_data_out) {
+ if (! master->using_merged_upsample)
+ (*cinfo->cconvert->start_pass) (cinfo);
+ (*cinfo->upsample->start_pass) (cinfo);
+ if (cinfo->quantize_colors)
+ (*cinfo->cquantize->start_pass) (cinfo, master->pub.is_dummy_pass);
+ (*cinfo->post->start_pass) (cinfo,
+ (master->pub.is_dummy_pass ? JBUF_SAVE_AND_PASS : JBUF_PASS_THRU));
+ (*cinfo->main->start_pass) (cinfo, JBUF_PASS_THRU);
+ }
+ }
+
+ /* Set up progress monitor's pass info if present */
+ if (cinfo->progress != NULL) {
+ cinfo->progress->completed_passes = master->pass_number;
+ cinfo->progress->total_passes = master->pass_number +
+ (master->pub.is_dummy_pass ? 2 : 1);
+ /* In buffered-image mode, we assume one more output pass if EOI not
+ * yet reached, but no more passes if EOI has been reached.
+ */
+ if (cinfo->buffered_image && ! cinfo->inputctl->eoi_reached) {
+ cinfo->progress->total_passes += (cinfo->enable_2pass_quant ? 2 : 1);
+ }
+ }
+}
+
+
+/*
+ * Finish up at end of an output pass.
+ */
+
+METHODDEF void
+finish_output_pass (j_decompress_ptr cinfo)
+{
+ my_master_ptr master = (my_master_ptr) cinfo->master;
+
+ if (cinfo->quantize_colors)
+ (*cinfo->cquantize->finish_pass) (cinfo);
+ master->pass_number++;
+}
+
+
+#ifdef D_MULTISCAN_FILES_SUPPORTED
+
+/*
+ * Switch to a new external colormap between output passes.
+ */
+
+GLOBAL void
+jpeg_new_colormap (j_decompress_ptr cinfo)
+{
+ my_master_ptr master = (my_master_ptr) cinfo->master;
+
+ /* Prevent application from calling me at wrong times */
+ if (cinfo->global_state != DSTATE_BUFIMAGE)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+
+ if (cinfo->quantize_colors && cinfo->enable_external_quant &&
+ cinfo->colormap != NULL) {
+ /* Select 2-pass quantizer for external colormap use */
+ cinfo->cquantize = master->quantizer_2pass;
+ /* Notify quantizer of colormap change */
+ (*cinfo->cquantize->new_color_map) (cinfo);
+ master->pub.is_dummy_pass = FALSE; /* just in case */
+ } else
+ ERREXIT(cinfo, JERR_MODE_CHANGE);
+}
+
+#endif /* D_MULTISCAN_FILES_SUPPORTED */
+
+
+/*
+ * Initialize master decompression control and select active modules.
+ * This is performed at the start of jpeg_start_decompress.
+ */
+
+GLOBAL void
+jinit_master_decompress (j_decompress_ptr cinfo)
+{
+ my_master_ptr master;
+
+ master = (my_master_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_decomp_master));
+ cinfo->master = (struct jpeg_decomp_master *) master;
+ master->pub.prepare_for_output_pass = prepare_for_output_pass;
+ master->pub.finish_output_pass = finish_output_pass;
+
+ master->pub.is_dummy_pass = FALSE;
+
+ master_selection(cinfo);
+}
diff --git a/libs/jpeg6/jdpostct.cpp b/libs/jpeg6/jdpostct.cpp
index e3283b0..f612002 100755
--- a/libs/jpeg6/jdpostct.cpp
+++ b/libs/jpeg6/jdpostct.cpp
@@ -1,290 +1,290 @@
-/*
- * jdpostct.c
- *
- * Copyright (C) 1994-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the decompression postprocessing controller.
- * This controller manages the upsampling, color conversion, and color
- * quantization/reduction steps; specifically, it controls the buffering
- * between upsample/color conversion and color quantization/reduction.
- *
- * If no color quantization/reduction is required, then this module has no
- * work to do, and it just hands off to the upsample/color conversion code.
- * An integrated upsample/convert/quantize process would replace this module
- * entirely.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Private buffer controller object */
-
-typedef struct {
- struct jpeg_d_post_controller pub; /* public fields */
-
- /* Color quantization source buffer: this holds output data from
- * the upsample/color conversion step to be passed to the quantizer.
- * For two-pass color quantization, we need a full-image buffer;
- * for one-pass operation, a strip buffer is sufficient.
- */
- jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */
- JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */
- JDIMENSION strip_height; /* buffer size in rows */
- /* for two-pass mode only: */
- JDIMENSION starting_row; /* row # of first row in current strip */
- JDIMENSION next_row; /* index of next row to fill/empty in strip */
-} my_post_controller;
-
-typedef my_post_controller * my_post_ptr;
-
-
-/* Forward declarations */
-METHODDEF void post_process_1pass
- JPP((j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail));
-#ifdef QUANT_2PASS_SUPPORTED
-METHODDEF void post_process_prepass
- JPP((j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail));
-METHODDEF void post_process_2pass
- JPP((j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail));
-#endif
-
-
-/*
- * Initialize for a processing pass.
- */
-
-METHODDEF void
-start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
-{
- my_post_ptr post = (my_post_ptr) cinfo->post;
-
- switch (pass_mode) {
- case JBUF_PASS_THRU:
- if (cinfo->quantize_colors) {
- /* Single-pass processing with color quantization. */
- post->pub.post_process_data = post_process_1pass;
- /* We could be doing buffered-image output before starting a 2-pass
- * color quantization; in that case, jinit_d_post_controller did not
- * allocate a strip buffer. Use the virtual-array buffer as workspace.
- */
- if (post->buffer == NULL) {
- post->buffer = (*cinfo->mem->access_virt_sarray)
- ((j_common_ptr) cinfo, post->whole_image,
- (JDIMENSION) 0, post->strip_height, TRUE);
- }
- } else {
- /* For single-pass processing without color quantization,
- * I have no work to do; just call the upsampler directly.
- */
- post->pub.post_process_data = cinfo->upsample->upsample;
- }
- break;
-#ifdef QUANT_2PASS_SUPPORTED
- case JBUF_SAVE_AND_PASS:
- /* First pass of 2-pass quantization */
- if (post->whole_image == NULL)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- post->pub.post_process_data = post_process_prepass;
- break;
- case JBUF_CRANK_DEST:
- /* Second pass of 2-pass quantization */
- if (post->whole_image == NULL)
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- post->pub.post_process_data = post_process_2pass;
- break;
-#endif /* QUANT_2PASS_SUPPORTED */
- default:
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
- break;
- }
- post->starting_row = post->next_row = 0;
-}
-
-
-/*
- * Process some data in the one-pass (strip buffer) case.
- * This is used for color precision reduction as well as one-pass quantization.
- */
-
-METHODDEF void
-post_process_1pass (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- my_post_ptr post = (my_post_ptr) cinfo->post;
- JDIMENSION num_rows, max_rows;
-
- /* Fill the buffer, but not more than what we can dump out in one go. */
- /* Note we rely on the upsampler to detect bottom of image. */
- max_rows = out_rows_avail - *out_row_ctr;
- if (max_rows > post->strip_height)
- max_rows = post->strip_height;
- num_rows = 0;
- (*cinfo->upsample->upsample) (cinfo,
- input_buf, in_row_group_ctr, in_row_groups_avail,
- post->buffer, &num_rows, max_rows);
- /* Quantize and emit data. */
- (*cinfo->cquantize->color_quantize) (cinfo,
- post->buffer, output_buf + *out_row_ctr, (int) num_rows);
- *out_row_ctr += num_rows;
-}
-
-
-#ifdef QUANT_2PASS_SUPPORTED
-
-/*
- * Process some data in the first pass of 2-pass quantization.
- */
-
-METHODDEF void
-post_process_prepass (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- my_post_ptr post = (my_post_ptr) cinfo->post;
- JDIMENSION old_next_row, num_rows;
-
- /* Reposition virtual buffer if at start of strip. */
- if (post->next_row == 0) {
- post->buffer = (*cinfo->mem->access_virt_sarray)
- ((j_common_ptr) cinfo, post->whole_image,
- post->starting_row, post->strip_height, TRUE);
- }
-
- /* Upsample some data (up to a strip height's worth). */
- old_next_row = post->next_row;
- (*cinfo->upsample->upsample) (cinfo,
- input_buf, in_row_group_ctr, in_row_groups_avail,
- post->buffer, &post->next_row, post->strip_height);
-
- /* Allow quantizer to scan new data. No data is emitted, */
- /* but we advance out_row_ctr so outer loop can tell when we're done. */
- if (post->next_row > old_next_row) {
- num_rows = post->next_row - old_next_row;
- (*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row,
- (JSAMPARRAY) NULL, (int) num_rows);
- *out_row_ctr += num_rows;
- }
-
- /* Advance if we filled the strip. */
- if (post->next_row >= post->strip_height) {
- post->starting_row += post->strip_height;
- post->next_row = 0;
- }
-}
-
-
-/*
- * Process some data in the second pass of 2-pass quantization.
- */
-
-METHODDEF void
-post_process_2pass (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- my_post_ptr post = (my_post_ptr) cinfo->post;
- JDIMENSION num_rows, max_rows;
-
- /* Reposition virtual buffer if at start of strip. */
- if (post->next_row == 0) {
- post->buffer = (*cinfo->mem->access_virt_sarray)
- ((j_common_ptr) cinfo, post->whole_image,
- post->starting_row, post->strip_height, FALSE);
- }
-
- /* Determine number of rows to emit. */
- num_rows = post->strip_height - post->next_row; /* available in strip */
- max_rows = out_rows_avail - *out_row_ctr; /* available in output area */
- if (num_rows > max_rows)
- num_rows = max_rows;
- /* We have to check bottom of image here, can't depend on upsampler. */
- max_rows = cinfo->output_height - post->starting_row;
- if (num_rows > max_rows)
- num_rows = max_rows;
-
- /* Quantize and emit data. */
- (*cinfo->cquantize->color_quantize) (cinfo,
- post->buffer + post->next_row, output_buf + *out_row_ctr,
- (int) num_rows);
- *out_row_ctr += num_rows;
-
- /* Advance if we filled the strip. */
- post->next_row += num_rows;
- if (post->next_row >= post->strip_height) {
- post->starting_row += post->strip_height;
- post->next_row = 0;
- }
-}
-
-#endif /* QUANT_2PASS_SUPPORTED */
-
-
-/*
- * Initialize postprocessing controller.
- */
-
-GLOBAL void
-jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
-{
- my_post_ptr post;
-
- post = (my_post_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_post_controller));
- cinfo->post = (struct jpeg_d_post_controller *) post;
- post->pub.start_pass = start_pass_dpost;
- post->whole_image = NULL; /* flag for no virtual arrays */
- post->buffer = NULL; /* flag for no strip buffer */
-
- /* Create the quantization buffer, if needed */
- if (cinfo->quantize_colors) {
- /* The buffer strip height is max_v_samp_factor, which is typically
- * an efficient number of rows for upsampling to return.
- * (In the presence of output rescaling, we might want to be smarter?)
- */
- post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor;
- if (need_full_buffer) {
- /* Two-pass color quantization: need full-image storage. */
- /* We round up the number of rows to a multiple of the strip height. */
-#ifdef QUANT_2PASS_SUPPORTED
- post->whole_image = (*cinfo->mem->request_virt_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
- cinfo->output_width * cinfo->out_color_components,
- (JDIMENSION) jround_up((long) cinfo->output_height,
- (long) post->strip_height),
- post->strip_height);
-#else
- ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
-#endif /* QUANT_2PASS_SUPPORTED */
- } else {
- /* One-pass color quantization: just make a strip buffer. */
- post->buffer = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- cinfo->output_width * cinfo->out_color_components,
- post->strip_height);
- }
- }
-}
+/*
+ * jdpostct.c
+ *
+ * Copyright (C) 1994-1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the decompression postprocessing controller.
+ * This controller manages the upsampling, color conversion, and color
+ * quantization/reduction steps; specifically, it controls the buffering
+ * between upsample/color conversion and color quantization/reduction.
+ *
+ * If no color quantization/reduction is required, then this module has no
+ * work to do, and it just hands off to the upsample/color conversion code.
+ * An integrated upsample/convert/quantize process would replace this module
+ * entirely.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Private buffer controller object */
+
+typedef struct {
+ struct jpeg_d_post_controller pub; /* public fields */
+
+ /* Color quantization source buffer: this holds output data from
+ * the upsample/color conversion step to be passed to the quantizer.
+ * For two-pass color quantization, we need a full-image buffer;
+ * for one-pass operation, a strip buffer is sufficient.
+ */
+ jvirt_sarray_ptr whole_image; /* virtual array, or NULL if one-pass */
+ JSAMPARRAY buffer; /* strip buffer, or current strip of virtual */
+ JDIMENSION strip_height; /* buffer size in rows */
+ /* for two-pass mode only: */
+ JDIMENSION starting_row; /* row # of first row in current strip */
+ JDIMENSION next_row; /* index of next row to fill/empty in strip */
+} my_post_controller;
+
+typedef my_post_controller * my_post_ptr;
+
+
+/* Forward declarations */
+METHODDEF void post_process_1pass
+ JPP((j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+#ifdef QUANT_2PASS_SUPPORTED
+METHODDEF void post_process_prepass
+ JPP((j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+METHODDEF void post_process_2pass
+ JPP((j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+#endif
+
+
+/*
+ * Initialize for a processing pass.
+ */
+
+METHODDEF void
+start_pass_dpost (j_decompress_ptr cinfo, J_BUF_MODE pass_mode)
+{
+ my_post_ptr post = (my_post_ptr) cinfo->post;
+
+ switch (pass_mode) {
+ case JBUF_PASS_THRU:
+ if (cinfo->quantize_colors) {
+ /* Single-pass processing with color quantization. */
+ post->pub.post_process_data = post_process_1pass;
+ /* We could be doing buffered-image output before starting a 2-pass
+ * color quantization; in that case, jinit_d_post_controller did not
+ * allocate a strip buffer. Use the virtual-array buffer as workspace.
+ */
+ if (post->buffer == NULL) {
+ post->buffer = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, post->whole_image,
+ (JDIMENSION) 0, post->strip_height, TRUE);
+ }
+ } else {
+ /* For single-pass processing without color quantization,
+ * I have no work to do; just call the upsampler directly.
+ */
+ post->pub.post_process_data = cinfo->upsample->upsample;
+ }
+ break;
+#ifdef QUANT_2PASS_SUPPORTED
+ case JBUF_SAVE_AND_PASS:
+ /* First pass of 2-pass quantization */
+ if (post->whole_image == NULL)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ post->pub.post_process_data = post_process_prepass;
+ break;
+ case JBUF_CRANK_DEST:
+ /* Second pass of 2-pass quantization */
+ if (post->whole_image == NULL)
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ post->pub.post_process_data = post_process_2pass;
+ break;
+#endif /* QUANT_2PASS_SUPPORTED */
+ default:
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+ break;
+ }
+ post->starting_row = post->next_row = 0;
+}
+
+
+/*
+ * Process some data in the one-pass (strip buffer) case.
+ * This is used for color precision reduction as well as one-pass quantization.
+ */
+
+METHODDEF void
+post_process_1pass (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ my_post_ptr post = (my_post_ptr) cinfo->post;
+ JDIMENSION num_rows, max_rows;
+
+ /* Fill the buffer, but not more than what we can dump out in one go. */
+ /* Note we rely on the upsampler to detect bottom of image. */
+ max_rows = out_rows_avail - *out_row_ctr;
+ if (max_rows > post->strip_height)
+ max_rows = post->strip_height;
+ num_rows = 0;
+ (*cinfo->upsample->upsample) (cinfo,
+ input_buf, in_row_group_ctr, in_row_groups_avail,
+ post->buffer, &num_rows, max_rows);
+ /* Quantize and emit data. */
+ (*cinfo->cquantize->color_quantize) (cinfo,
+ post->buffer, output_buf + *out_row_ctr, (int) num_rows);
+ *out_row_ctr += num_rows;
+}
+
+
+#ifdef QUANT_2PASS_SUPPORTED
+
+/*
+ * Process some data in the first pass of 2-pass quantization.
+ */
+
+METHODDEF void
+post_process_prepass (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ my_post_ptr post = (my_post_ptr) cinfo->post;
+ JDIMENSION old_next_row, num_rows;
+
+ /* Reposition virtual buffer if at start of strip. */
+ if (post->next_row == 0) {
+ post->buffer = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, post->whole_image,
+ post->starting_row, post->strip_height, TRUE);
+ }
+
+ /* Upsample some data (up to a strip height's worth). */
+ old_next_row = post->next_row;
+ (*cinfo->upsample->upsample) (cinfo,
+ input_buf, in_row_group_ctr, in_row_groups_avail,
+ post->buffer, &post->next_row, post->strip_height);
+
+ /* Allow quantizer to scan new data. No data is emitted, */
+ /* but we advance out_row_ctr so outer loop can tell when we're done. */
+ if (post->next_row > old_next_row) {
+ num_rows = post->next_row - old_next_row;
+ (*cinfo->cquantize->color_quantize) (cinfo, post->buffer + old_next_row,
+ (JSAMPARRAY) NULL, (int) num_rows);
+ *out_row_ctr += num_rows;
+ }
+
+ /* Advance if we filled the strip. */
+ if (post->next_row >= post->strip_height) {
+ post->starting_row += post->strip_height;
+ post->next_row = 0;
+ }
+}
+
+
+/*
+ * Process some data in the second pass of 2-pass quantization.
+ */
+
+METHODDEF void
+post_process_2pass (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ my_post_ptr post = (my_post_ptr) cinfo->post;
+ JDIMENSION num_rows, max_rows;
+
+ /* Reposition virtual buffer if at start of strip. */
+ if (post->next_row == 0) {
+ post->buffer = (*cinfo->mem->access_virt_sarray)
+ ((j_common_ptr) cinfo, post->whole_image,
+ post->starting_row, post->strip_height, FALSE);
+ }
+
+ /* Determine number of rows to emit. */
+ num_rows = post->strip_height - post->next_row; /* available in strip */
+ max_rows = out_rows_avail - *out_row_ctr; /* available in output area */
+ if (num_rows > max_rows)
+ num_rows = max_rows;
+ /* We have to check bottom of image here, can't depend on upsampler. */
+ max_rows = cinfo->output_height - post->starting_row;
+ if (num_rows > max_rows)
+ num_rows = max_rows;
+
+ /* Quantize and emit data. */
+ (*cinfo->cquantize->color_quantize) (cinfo,
+ post->buffer + post->next_row, output_buf + *out_row_ctr,
+ (int) num_rows);
+ *out_row_ctr += num_rows;
+
+ /* Advance if we filled the strip. */
+ post->next_row += num_rows;
+ if (post->next_row >= post->strip_height) {
+ post->starting_row += post->strip_height;
+ post->next_row = 0;
+ }
+}
+
+#endif /* QUANT_2PASS_SUPPORTED */
+
+
+/*
+ * Initialize postprocessing controller.
+ */
+
+GLOBAL void
+jinit_d_post_controller (j_decompress_ptr cinfo, boolean need_full_buffer)
+{
+ my_post_ptr post;
+
+ post = (my_post_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_post_controller));
+ cinfo->post = (struct jpeg_d_post_controller *) post;
+ post->pub.start_pass = start_pass_dpost;
+ post->whole_image = NULL; /* flag for no virtual arrays */
+ post->buffer = NULL; /* flag for no strip buffer */
+
+ /* Create the quantization buffer, if needed */
+ if (cinfo->quantize_colors) {
+ /* The buffer strip height is max_v_samp_factor, which is typically
+ * an efficient number of rows for upsampling to return.
+ * (In the presence of output rescaling, we might want to be smarter?)
+ */
+ post->strip_height = (JDIMENSION) cinfo->max_v_samp_factor;
+ if (need_full_buffer) {
+ /* Two-pass color quantization: need full-image storage. */
+ /* We round up the number of rows to a multiple of the strip height. */
+#ifdef QUANT_2PASS_SUPPORTED
+ post->whole_image = (*cinfo->mem->request_virt_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE, FALSE,
+ cinfo->output_width * cinfo->out_color_components,
+ (JDIMENSION) jround_up((long) cinfo->output_height,
+ (long) post->strip_height),
+ post->strip_height);
+#else
+ ERREXIT(cinfo, JERR_BAD_BUFFER_MODE);
+#endif /* QUANT_2PASS_SUPPORTED */
+ } else {
+ /* One-pass color quantization: just make a strip buffer. */
+ post->buffer = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ cinfo->output_width * cinfo->out_color_components,
+ post->strip_height);
+ }
+ }
+}
diff --git a/libs/jpeg6/jdsample.cpp b/libs/jpeg6/jdsample.cpp
index bc171f4..661e198 100755
--- a/libs/jpeg6/jdsample.cpp
+++ b/libs/jpeg6/jdsample.cpp
@@ -1,478 +1,478 @@
-/*
- * jdsample.c
- *
- * Copyright (C) 1991-1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains upsampling routines.
- *
- * Upsampling input data is counted in "row groups". A row group
- * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
- * sample rows of each component. Upsampling will normally produce
- * max_v_samp_factor pixel rows from each row group (but this could vary
- * if the upsampler is applying a scale factor of its own).
- *
- * An excellent reference for image resampling is
- * Digital Image Warping, George Wolberg, 1990.
- * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Pointer to routine to upsample a single component */
-typedef JMETHOD(void, upsample1_ptr,
- (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
-
-/* Private subobject */
-
-typedef struct {
- struct jpeg_upsampler pub; /* public fields */
-
- /* Color conversion buffer. When using separate upsampling and color
- * conversion steps, this buffer holds one upsampled row group until it
- * has been color converted and output.
- * Note: we do not allocate any storage for component(s) which are full-size,
- * ie do not need rescaling. The corresponding entry of color_buf[] is
- * simply set to point to the input data array, thereby avoiding copying.
- */
- JSAMPARRAY color_buf[MAX_COMPONENTS];
-
- /* Per-component upsampling method pointers */
- upsample1_ptr methods[MAX_COMPONENTS];
-
- int next_row_out; /* counts rows emitted from color_buf */
- JDIMENSION rows_to_go; /* counts rows remaining in image */
-
- /* Height of an input row group for each component. */
- int rowgroup_height[MAX_COMPONENTS];
-
- /* These arrays save pixel expansion factors so that int_expand need not
- * recompute them each time. They are unused for other upsampling methods.
- */
- UINT8 h_expand[MAX_COMPONENTS];
- UINT8 v_expand[MAX_COMPONENTS];
-} my_upsampler;
-
-typedef my_upsampler * my_upsample_ptr;
-
-
-/*
- * Initialize for an upsampling pass.
- */
-
-METHODDEF void
-start_pass_upsample (j_decompress_ptr cinfo)
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
-
- /* Mark the conversion buffer empty */
- upsample->next_row_out = cinfo->max_v_samp_factor;
- /* Initialize total-height counter for detecting bottom of image */
- upsample->rows_to_go = cinfo->output_height;
-}
-
-
-/*
- * Control routine to do upsampling (and color conversion).
- *
- * In this version we upsample each component independently.
- * We upsample one row group into the conversion buffer, then apply
- * color conversion a row at a time.
- */
-
-METHODDEF void
-sep_upsample (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail)
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
- int ci;
- jpeg_component_info * compptr;
- JDIMENSION num_rows;
-
- /* Fill the conversion buffer, if it's empty */
- if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Invoke per-component upsample method. Notice we pass a POINTER
- * to color_buf[ci], so that fullsize_upsample can change it.
- */
- (*upsample->methods[ci]) (cinfo, compptr,
- input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
- upsample->color_buf + ci);
- }
- upsample->next_row_out = 0;
- }
-
- /* Color-convert and emit rows */
-
- /* How many we have in the buffer: */
- num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
- /* Not more than the distance to the end of the image. Need this test
- * in case the image height is not a multiple of max_v_samp_factor:
- */
- if (num_rows > upsample->rows_to_go)
- num_rows = upsample->rows_to_go;
- /* And not more than what the client can accept: */
- out_rows_avail -= *out_row_ctr;
- if (num_rows > out_rows_avail)
- num_rows = out_rows_avail;
-
- (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
- (JDIMENSION) upsample->next_row_out,
- output_buf + *out_row_ctr,
- (int) num_rows);
-
- /* Adjust counts */
- *out_row_ctr += num_rows;
- upsample->rows_to_go -= num_rows;
- upsample->next_row_out += num_rows;
- /* When the buffer is emptied, declare this input row group consumed */
- if (upsample->next_row_out >= cinfo->max_v_samp_factor)
- (*in_row_group_ctr)++;
-}
-
-
-/*
- * These are the routines invoked by sep_upsample to upsample pixel values
- * of a single component. One row group is processed per call.
- */
-
-
-/*
- * For full-size components, we just make color_buf[ci] point at the
- * input buffer, and thus avoid copying any data. Note that this is
- * safe only because sep_upsample doesn't declare the input row group
- * "consumed" until we are done color converting and emitting it.
- */
-
-METHODDEF void
-fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
- *output_data_ptr = input_data;
-}
-
-
-/*
- * This is a no-op version used for "uninteresting" components.
- * These components will not be referenced by color conversion.
- */
-
-METHODDEF void
-noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
- *output_data_ptr = NULL; /* safety check */
-}
-
-
-/*
- * This version handles any integral sampling ratios.
- * This is not used for typical JPEG files, so it need not be fast.
- * Nor, for that matter, is it particularly accurate: the algorithm is
- * simple replication of the input pixel onto the corresponding output
- * pixels. The hi-falutin sampling literature refers to this as a
- * "box filter". A box filter tends to introduce visible artifacts,
- * so if you are actually going to use 3:1 or 4:1 sampling ratios
- * you would be well advised to improve this code.
- */
-
-METHODDEF void
-int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
- my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
- JSAMPARRAY output_data = *output_data_ptr;
- register JSAMPROW inptr, outptr;
- register JSAMPLE invalue;
- register int h;
- JSAMPROW outend;
- int h_expand, v_expand;
- int inrow, outrow;
-
- h_expand = upsample->h_expand[compptr->component_index];
- v_expand = upsample->v_expand[compptr->component_index];
-
- inrow = outrow = 0;
- while (outrow < cinfo->max_v_samp_factor) {
- /* Generate one output row with proper horizontal expansion */
- inptr = input_data[inrow];
- outptr = output_data[outrow];
- outend = outptr + cinfo->output_width;
- while (outptr < outend) {
- invalue = *inptr++; /* don't need GETJSAMPLE() here */
- for (h = h_expand; h > 0; h--) {
- *outptr++ = invalue;
- }
- }
- /* Generate any additional output rows by duplicating the first one */
- if (v_expand > 1) {
- jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
- v_expand-1, cinfo->output_width);
- }
- inrow++;
- outrow += v_expand;
- }
-}
-
-
-/*
- * Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
- * It's still a box filter.
- */
-
-METHODDEF void
-h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
- JSAMPARRAY output_data = *output_data_ptr;
- register JSAMPROW inptr, outptr;
- register JSAMPLE invalue;
- JSAMPROW outend;
- int inrow;
-
- for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
- inptr = input_data[inrow];
- outptr = output_data[inrow];
- outend = outptr + cinfo->output_width;
- while (outptr < outend) {
- invalue = *inptr++; /* don't need GETJSAMPLE() here */
- *outptr++ = invalue;
- *outptr++ = invalue;
- }
- }
-}
-
-
-/*
- * Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
- * It's still a box filter.
- */
-
-METHODDEF void
-h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
- JSAMPARRAY output_data = *output_data_ptr;
- register JSAMPROW inptr, outptr;
- register JSAMPLE invalue;
- JSAMPROW outend;
- int inrow, outrow;
-
- inrow = outrow = 0;
- while (outrow < cinfo->max_v_samp_factor) {
- inptr = input_data[inrow];
- outptr = output_data[outrow];
- outend = outptr + cinfo->output_width;
- while (outptr < outend) {
- invalue = *inptr++; /* don't need GETJSAMPLE() here */
- *outptr++ = invalue;
- *outptr++ = invalue;
- }
- jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
- 1, cinfo->output_width);
- inrow++;
- outrow += 2;
- }
-}
-
-
-/*
- * Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
- *
- * The upsampling algorithm is linear interpolation between pixel centers,
- * also known as a "triangle filter". This is a good compromise between
- * speed and visual quality. The centers of the output pixels are 1/4 and 3/4
- * of the way between input pixel centers.
- *
- * A note about the "bias" calculations: when rounding fractional values to
- * integer, we do not want to always round 0.5 up to the next integer.
- * If we did that, we'd introduce a noticeable bias towards larger values.
- * Instead, this code is arranged so that 0.5 will be rounded up or down at
- * alternate pixel locations (a simple ordered dither pattern).
- */
-
-METHODDEF void
-h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
- JSAMPARRAY output_data = *output_data_ptr;
- register JSAMPROW inptr, outptr;
- register int invalue;
- register JDIMENSION colctr;
- int inrow;
-
- for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
- inptr = input_data[inrow];
- outptr = output_data[inrow];
- /* Special case for first column */
- invalue = GETJSAMPLE(*inptr++);
- *outptr++ = (JSAMPLE) invalue;
- *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2);
-
- for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
- /* General case: 3/4 * nearer pixel + 1/4 * further pixel */
- invalue = GETJSAMPLE(*inptr++) * 3;
- *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2);
- *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2);
- }
-
- /* Special case for last column */
- invalue = GETJSAMPLE(*inptr);
- *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2);
- *outptr++ = (JSAMPLE) invalue;
- }
-}
-
-
-/*
- * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
- * Again a triangle filter; see comments for h2v1 case, above.
- *
- * It is OK for us to reference the adjacent input rows because we demanded
- * context from the main buffer controller (see initialization code).
- */
-
-METHODDEF void
-h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
-{
- JSAMPARRAY output_data = *output_data_ptr;
- register JSAMPROW inptr0, inptr1, outptr;
-#if BITS_IN_JSAMPLE == 8
- register int thiscolsum, lastcolsum, nextcolsum;
-#else
- register INT32 thiscolsum, lastcolsum, nextcolsum;
-#endif
- register JDIMENSION colctr;
- int inrow, outrow, v;
-
- inrow = outrow = 0;
- while (outrow < cinfo->max_v_samp_factor) {
- for (v = 0; v < 2; v++) {
- /* inptr0 points to nearest input row, inptr1 points to next nearest */
- inptr0 = input_data[inrow];
- if (v == 0) /* next nearest is row above */
- inptr1 = input_data[inrow-1];
- else /* next nearest is row below */
- inptr1 = input_data[inrow+1];
- outptr = output_data[outrow++];
-
- /* Special case for first column */
- thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
- nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
- *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4);
- *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
- lastcolsum = thiscolsum; thiscolsum = nextcolsum;
-
- for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
- /* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
- /* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
- nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
- *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
- *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
- lastcolsum = thiscolsum; thiscolsum = nextcolsum;
- }
-
- /* Special case for last column */
- *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
- *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4);
- }
- inrow++;
- }
-}
-
-
-/*
- * Module initialization routine for upsampling.
- */
-
-GLOBAL void
-jinit_upsampler (j_decompress_ptr cinfo)
-{
- my_upsample_ptr upsample;
- int ci;
- jpeg_component_info * compptr;
- boolean need_buffer, do_fancy;
- int h_in_group, v_in_group, h_out_group, v_out_group;
-
- upsample = (my_upsample_ptr)
- (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
- SIZEOF(my_upsampler));
- cinfo->upsample = (struct jpeg_upsampler *) upsample;
- upsample->pub.start_pass = start_pass_upsample;
- upsample->pub.upsample = sep_upsample;
- upsample->pub.need_context_rows = FALSE; /* until we find out differently */
-
- if (cinfo->CCIR601_sampling) /* this isn't supported */
- ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
-
- /* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1,
- * so don't ask for it.
- */
- do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1;
-
- /* Verify we can handle the sampling factors, select per-component methods,
- * and create storage as needed.
- */
- for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
- ci++, compptr++) {
- /* Compute size of an "input group" after IDCT scaling. This many samples
- * are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
- */
- h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) /
- cinfo->min_DCT_scaled_size;
- v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
- cinfo->min_DCT_scaled_size;
- h_out_group = cinfo->max_h_samp_factor;
- v_out_group = cinfo->max_v_samp_factor;
- upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
- need_buffer = TRUE;
- if (! compptr->component_needed) {
- /* Don't bother to upsample an uninteresting component. */
- upsample->methods[ci] = noop_upsample;
- need_buffer = FALSE;
- } else if (h_in_group == h_out_group && v_in_group == v_out_group) {
- /* Fullsize components can be processed without any work. */
- upsample->methods[ci] = fullsize_upsample;
- need_buffer = FALSE;
- } else if (h_in_group * 2 == h_out_group &&
- v_in_group == v_out_group) {
- /* Special cases for 2h1v upsampling */
- if (do_fancy && compptr->downsampled_width > 2)
- upsample->methods[ci] = h2v1_fancy_upsample;
- else
- upsample->methods[ci] = h2v1_upsample;
- } else if (h_in_group * 2 == h_out_group &&
- v_in_group * 2 == v_out_group) {
- /* Special cases for 2h2v upsampling */
- if (do_fancy && compptr->downsampled_width > 2) {
- upsample->methods[ci] = h2v2_fancy_upsample;
- upsample->pub.need_context_rows = TRUE;
- } else
- upsample->methods[ci] = h2v2_upsample;
- } else if ((h_out_group % h_in_group) == 0 &&
- (v_out_group % v_in_group) == 0) {
- /* Generic integral-factors upsampling method */
- upsample->methods[ci] = int_upsample;
- upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
- upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
- } else
- ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
- if (need_buffer) {
- upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
- ((j_common_ptr) cinfo, JPOOL_IMAGE,
- (JDIMENSION) jround_up((long) cinfo->output_width,
- (long) cinfo->max_h_samp_factor),
- (JDIMENSION) cinfo->max_v_samp_factor);
- }
- }
-}
+/*
+ * jdsample.c
+ *
+ * Copyright (C) 1991-1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains upsampling routines.
+ *
+ * Upsampling input data is counted in "row groups". A row group
+ * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
+ * sample rows of each component. Upsampling will normally produce
+ * max_v_samp_factor pixel rows from each row group (but this could vary
+ * if the upsampler is applying a scale factor of its own).
+ *
+ * An excellent reference for image resampling is
+ * Digital Image Warping, George Wolberg, 1990.
+ * Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Pointer to routine to upsample a single component */
+typedef JMETHOD(void, upsample1_ptr,
+ (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr));
+
+/* Private subobject */
+
+typedef struct {
+ struct jpeg_upsampler pub; /* public fields */
+
+ /* Color conversion buffer. When using separate upsampling and color
+ * conversion steps, this buffer holds one upsampled row group until it
+ * has been color converted and output.
+ * Note: we do not allocate any storage for component(s) which are full-size,
+ * ie do not need rescaling. The corresponding entry of color_buf[] is
+ * simply set to point to the input data array, thereby avoiding copying.
+ */
+ JSAMPARRAY color_buf[MAX_COMPONENTS];
+
+ /* Per-component upsampling method pointers */
+ upsample1_ptr methods[MAX_COMPONENTS];
+
+ int next_row_out; /* counts rows emitted from color_buf */
+ JDIMENSION rows_to_go; /* counts rows remaining in image */
+
+ /* Height of an input row group for each component. */
+ int rowgroup_height[MAX_COMPONENTS];
+
+ /* These arrays save pixel expansion factors so that int_expand need not
+ * recompute them each time. They are unused for other upsampling methods.
+ */
+ UINT8 h_expand[MAX_COMPONENTS];
+ UINT8 v_expand[MAX_COMPONENTS];
+} my_upsampler;
+
+typedef my_upsampler * my_upsample_ptr;
+
+
+/*
+ * Initialize for an upsampling pass.
+ */
+
+METHODDEF void
+start_pass_upsample (j_decompress_ptr cinfo)
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+
+ /* Mark the conversion buffer empty */
+ upsample->next_row_out = cinfo->max_v_samp_factor;
+ /* Initialize total-height counter for detecting bottom of image */
+ upsample->rows_to_go = cinfo->output_height;
+}
+
+
+/*
+ * Control routine to do upsampling (and color conversion).
+ *
+ * In this version we upsample each component independently.
+ * We upsample one row group into the conversion buffer, then apply
+ * color conversion a row at a time.
+ */
+
+METHODDEF void
+sep_upsample (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail)
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+ int ci;
+ jpeg_component_info * compptr;
+ JDIMENSION num_rows;
+
+ /* Fill the conversion buffer, if it's empty */
+ if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Invoke per-component upsample method. Notice we pass a POINTER
+ * to color_buf[ci], so that fullsize_upsample can change it.
+ */
+ (*upsample->methods[ci]) (cinfo, compptr,
+ input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
+ upsample->color_buf + ci);
+ }
+ upsample->next_row_out = 0;
+ }
+
+ /* Color-convert and emit rows */
+
+ /* How many we have in the buffer: */
+ num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out);
+ /* Not more than the distance to the end of the image. Need this test
+ * in case the image height is not a multiple of max_v_samp_factor:
+ */
+ if (num_rows > upsample->rows_to_go)
+ num_rows = upsample->rows_to_go;
+ /* And not more than what the client can accept: */
+ out_rows_avail -= *out_row_ctr;
+ if (num_rows > out_rows_avail)
+ num_rows = out_rows_avail;
+
+ (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
+ (JDIMENSION) upsample->next_row_out,
+ output_buf + *out_row_ctr,
+ (int) num_rows);
+
+ /* Adjust counts */
+ *out_row_ctr += num_rows;
+ upsample->rows_to_go -= num_rows;
+ upsample->next_row_out += num_rows;
+ /* When the buffer is emptied, declare this input row group consumed */
+ if (upsample->next_row_out >= cinfo->max_v_samp_factor)
+ (*in_row_group_ctr)++;
+}
+
+
+/*
+ * These are the routines invoked by sep_upsample to upsample pixel values
+ * of a single component. One row group is processed per call.
+ */
+
+
+/*
+ * For full-size components, we just make color_buf[ci] point at the
+ * input buffer, and thus avoid copying any data. Note that this is
+ * safe only because sep_upsample doesn't declare the input row group
+ * "consumed" until we are done color converting and emitting it.
+ */
+
+METHODDEF void
+fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+ *output_data_ptr = input_data;
+}
+
+
+/*
+ * This is a no-op version used for "uninteresting" components.
+ * These components will not be referenced by color conversion.
+ */
+
+METHODDEF void
+noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+ *output_data_ptr = NULL; /* safety check */
+}
+
+
+/*
+ * This version handles any integral sampling ratios.
+ * This is not used for typical JPEG files, so it need not be fast.
+ * Nor, for that matter, is it particularly accurate: the algorithm is
+ * simple replication of the input pixel onto the corresponding output
+ * pixels. The hi-falutin sampling literature refers to this as a
+ * "box filter". A box filter tends to introduce visible artifacts,
+ * so if you are actually going to use 3:1 or 4:1 sampling ratios
+ * you would be well advised to improve this code.
+ */
+
+METHODDEF void
+int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+ my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample;
+ JSAMPARRAY output_data = *output_data_ptr;
+ register JSAMPROW inptr, outptr;
+ register JSAMPLE invalue;
+ register int h;
+ JSAMPROW outend;
+ int h_expand, v_expand;
+ int inrow, outrow;
+
+ h_expand = upsample->h_expand[compptr->component_index];
+ v_expand = upsample->v_expand[compptr->component_index];
+
+ inrow = outrow = 0;
+ while (outrow < cinfo->max_v_samp_factor) {
+ /* Generate one output row with proper horizontal expansion */
+ inptr = input_data[inrow];
+ outptr = output_data[outrow];
+ outend = outptr + cinfo->output_width;
+ while (outptr < outend) {
+ invalue = *inptr++; /* don't need GETJSAMPLE() here */
+ for (h = h_expand; h > 0; h--) {
+ *outptr++ = invalue;
+ }
+ }
+ /* Generate any additional output rows by duplicating the first one */
+ if (v_expand > 1) {
+ jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
+ v_expand-1, cinfo->output_width);
+ }
+ inrow++;
+ outrow += v_expand;
+ }
+}
+
+
+/*
+ * Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
+ * It's still a box filter.
+ */
+
+METHODDEF void
+h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+ JSAMPARRAY output_data = *output_data_ptr;
+ register JSAMPROW inptr, outptr;
+ register JSAMPLE invalue;
+ JSAMPROW outend;
+ int inrow;
+
+ for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
+ inptr = input_data[inrow];
+ outptr = output_data[inrow];
+ outend = outptr + cinfo->output_width;
+ while (outptr < outend) {
+ invalue = *inptr++; /* don't need GETJSAMPLE() here */
+ *outptr++ = invalue;
+ *outptr++ = invalue;
+ }
+ }
+}
+
+
+/*
+ * Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
+ * It's still a box filter.
+ */
+
+METHODDEF void
+h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+ JSAMPARRAY output_data = *output_data_ptr;
+ register JSAMPROW inptr, outptr;
+ register JSAMPLE invalue;
+ JSAMPROW outend;
+ int inrow, outrow;
+
+ inrow = outrow = 0;
+ while (outrow < cinfo->max_v_samp_factor) {
+ inptr = input_data[inrow];
+ outptr = output_data[outrow];
+ outend = outptr + cinfo->output_width;
+ while (outptr < outend) {
+ invalue = *inptr++; /* don't need GETJSAMPLE() here */
+ *outptr++ = invalue;
+ *outptr++ = invalue;
+ }
+ jcopy_sample_rows(output_data, outrow, output_data, outrow+1,
+ 1, cinfo->output_width);
+ inrow++;
+ outrow += 2;
+ }
+}
+
+
+/*
+ * Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
+ *
+ * The upsampling algorithm is linear interpolation between pixel centers,
+ * also known as a "triangle filter". This is a good compromise between
+ * speed and visual quality. The centers of the output pixels are 1/4 and 3/4
+ * of the way between input pixel centers.
+ *
+ * A note about the "bias" calculations: when rounding fractional values to
+ * integer, we do not want to always round 0.5 up to the next integer.
+ * If we did that, we'd introduce a noticeable bias towards larger values.
+ * Instead, this code is arranged so that 0.5 will be rounded up or down at
+ * alternate pixel locations (a simple ordered dither pattern).
+ */
+
+METHODDEF void
+h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+ JSAMPARRAY output_data = *output_data_ptr;
+ register JSAMPROW inptr, outptr;
+ register int invalue;
+ register JDIMENSION colctr;
+ int inrow;
+
+ for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
+ inptr = input_data[inrow];
+ outptr = output_data[inrow];
+ /* Special case for first column */
+ invalue = GETJSAMPLE(*inptr++);
+ *outptr++ = (JSAMPLE) invalue;
+ *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2);
+
+ for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
+ /* General case: 3/4 * nearer pixel + 1/4 * further pixel */
+ invalue = GETJSAMPLE(*inptr++) * 3;
+ *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2);
+ *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2);
+ }
+
+ /* Special case for last column */
+ invalue = GETJSAMPLE(*inptr);
+ *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2);
+ *outptr++ = (JSAMPLE) invalue;
+ }
+}
+
+
+/*
+ * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
+ * Again a triangle filter; see comments for h2v1 case, above.
+ *
+ * It is OK for us to reference the adjacent input rows because we demanded
+ * context from the main buffer controller (see initialization code).
+ */
+
+METHODDEF void
+h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)
+{
+ JSAMPARRAY output_data = *output_data_ptr;
+ register JSAMPROW inptr0, inptr1, outptr;
+#if BITS_IN_JSAMPLE == 8
+ register int thiscolsum, lastcolsum, nextcolsum;
+#else
+ register INT32 thiscolsum, lastcolsum, nextcolsum;
+#endif
+ register JDIMENSION colctr;
+ int inrow, outrow, v;
+
+ inrow = outrow = 0;
+ while (outrow < cinfo->max_v_samp_factor) {
+ for (v = 0; v < 2; v++) {
+ /* inptr0 points to nearest input row, inptr1 points to next nearest */
+ inptr0 = input_data[inrow];
+ if (v == 0) /* next nearest is row above */
+ inptr1 = input_data[inrow-1];
+ else /* next nearest is row below */
+ inptr1 = input_data[inrow+1];
+ outptr = output_data[outrow++];
+
+ /* Special case for first column */
+ thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
+ nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
+ *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4);
+ *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
+ lastcolsum = thiscolsum; thiscolsum = nextcolsum;
+
+ for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
+ /* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
+ /* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
+ nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
+ *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
+ *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4);
+ lastcolsum = thiscolsum; thiscolsum = nextcolsum;
+ }
+
+ /* Special case for last column */
+ *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4);
+ *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4);
+ }
+ inrow++;
+ }
+}
+
+
+/*
+ * Module initialization routine for upsampling.
+ */
+
+GLOBAL void
+jinit_upsampler (j_decompress_ptr cinfo)
+{
+ my_upsample_ptr upsample;
+ int ci;
+ jpeg_component_info * compptr;
+ boolean need_buffer, do_fancy;
+ int h_in_group, v_in_group, h_out_group, v_out_group;
+
+ upsample = (my_upsample_ptr)
+ (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ SIZEOF(my_upsampler));
+ cinfo->upsample = (struct jpeg_upsampler *) upsample;
+ upsample->pub.start_pass = start_pass_upsample;
+ upsample->pub.upsample = sep_upsample;
+ upsample->pub.need_context_rows = FALSE; /* until we find out differently */
+
+ if (cinfo->CCIR601_sampling) /* this isn't supported */
+ ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
+
+ /* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1,
+ * so don't ask for it.
+ */
+ do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1;
+
+ /* Verify we can handle the sampling factors, select per-component methods,
+ * and create storage as needed.
+ */
+ for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
+ ci++, compptr++) {
+ /* Compute size of an "input group" after IDCT scaling. This many samples
+ * are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
+ */
+ h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) /
+ cinfo->min_DCT_scaled_size;
+ v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) /
+ cinfo->min_DCT_scaled_size;
+ h_out_group = cinfo->max_h_samp_factor;
+ v_out_group = cinfo->max_v_samp_factor;
+ upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
+ need_buffer = TRUE;
+ if (! compptr->component_needed) {
+ /* Don't bother to upsample an uninteresting component. */
+ upsample->methods[ci] = noop_upsample;
+ need_buffer = FALSE;
+ } else if (h_in_group == h_out_group && v_in_group == v_out_group) {
+ /* Fullsize components can be processed without any work. */
+ upsample->methods[ci] = fullsize_upsample;
+ need_buffer = FALSE;
+ } else if (h_in_group * 2 == h_out_group &&
+ v_in_group == v_out_group) {
+ /* Special cases for 2h1v upsampling */
+ if (do_fancy && compptr->downsampled_width > 2)
+ upsample->methods[ci] = h2v1_fancy_upsample;
+ else
+ upsample->methods[ci] = h2v1_upsample;
+ } else if (h_in_group * 2 == h_out_group &&
+ v_in_group * 2 == v_out_group) {
+ /* Special cases for 2h2v upsampling */
+ if (do_fancy && compptr->downsampled_width > 2) {
+ upsample->methods[ci] = h2v2_fancy_upsample;
+ upsample->pub.need_context_rows = TRUE;
+ } else
+ upsample->methods[ci] = h2v2_upsample;
+ } else if ((h_out_group % h_in_group) == 0 &&
+ (v_out_group % v_in_group) == 0) {
+ /* Generic integral-factors upsampling method */
+ upsample->methods[ci] = int_upsample;
+ upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group);
+ upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group);
+ } else
+ ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
+ if (need_buffer) {
+ upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
+ ((j_common_ptr) cinfo, JPOOL_IMAGE,
+ (JDIMENSION) jround_up((long) cinfo->output_width,
+ (long) cinfo->max_h_samp_factor),
+ (JDIMENSION) cinfo->max_v_samp_factor);
+ }
+ }
+}
diff --git a/libs/jpeg6/jdtrans.cpp b/libs/jpeg6/jdtrans.cpp
index eb873e0..5c14adc 100755
--- a/libs/jpeg6/jdtrans.cpp
+++ b/libs/jpeg6/jdtrans.cpp
@@ -1,122 +1,122 @@
-/*
- * jdtrans.c
- *
- * Copyright (C) 1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains library routines for transcoding decompression,
- * that is, reading raw DCT coefficient arrays from an input JPEG file.
- * The routines in jdapimin.c will also be needed by a transcoder.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/* Forward declarations */
-LOCAL void transdecode_master_selection JPP((j_decompress_ptr cinfo));
-
-
-/*
- * Read the coefficient arrays from a JPEG file.
- * jpeg_read_header must be completed before calling this.
- *
- * The entire image is read into a set of virtual coefficient-block arrays,
- * one per component. The return value is a pointer to the array of
- * virtual-array descriptors. These can be manipulated directly via the
- * JPEG memory manager, or handed off to jpeg_write_coefficients().
- * To release the memory occupied by the virtual arrays, call
- * jpeg_finish_decompress() when done with the data.
- *
- * Returns NULL if suspended. This case need be checked only if
- * a suspending data source is used.
- */
-
-GLOBAL jvirt_barray_ptr *
-jpeg_read_coefficients (j_decompress_ptr cinfo)
-{
- if (cinfo->global_state == DSTATE_READY) {
- /* First call: initialize active modules */
- transdecode_master_selection(cinfo);
- cinfo->global_state = DSTATE_RDCOEFS;
- } else if (cinfo->global_state != DSTATE_RDCOEFS)
- ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
- /* Absorb whole file into the coef buffer */
- for (;;) {
- int retcode;
- /* Call progress monitor hook if present */
- if (cinfo->progress != NULL)
- (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
- /* Absorb some more input */
- retcode = (*cinfo->inputctl->consume_input) (cinfo);
- if (retcode == JPEG_SUSPENDED)
- return NULL;
- if (retcode == JPEG_REACHED_EOI)
- break;
- /* Advance progress counter if appropriate */
- if (cinfo->progress != NULL &&
- (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
- if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
- /* startup underestimated number of scans; ratchet up one scan */
- cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
- }
- }
- }
- /* Set state so that jpeg_finish_decompress does the right thing */
- cinfo->global_state = DSTATE_STOPPING;
- return cinfo->coef->coef_arrays;
-}
-
-
-/*
- * Master selection of decompression modules for transcoding.
- * This substitutes for jdmaster.c's initialization of the full decompressor.
- */
-
-LOCAL void
-transdecode_master_selection (j_decompress_ptr cinfo)
-{
- /* Entropy decoding: either Huffman or arithmetic coding. */
- if (cinfo->arith_code) {
- ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
- } else {
- if (cinfo->progressive_mode) {
-#ifdef D_PROGRESSIVE_SUPPORTED
- jinit_phuff_decoder(cinfo);
-#else
- ERREXIT(cinfo, JERR_NOT_COMPILED);
-#endif
- } else
- jinit_huff_decoder(cinfo);
- }
-
- /* Always get a full-image coefficient buffer. */
- jinit_d_coef_controller(cinfo, TRUE);
-
- /* We can now tell the memory manager to allocate virtual arrays. */
- (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
-
- /* Initialize input side of decompressor to consume first scan. */
- (*cinfo->inputctl->start_input_pass) (cinfo);
-
- /* Initialize progress monitoring. */
- if (cinfo->progress != NULL) {
- int nscans;
- /* Estimate number of scans to set pass_limit. */
- if (cinfo->progressive_mode) {
- /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
- nscans = 2 + 3 * cinfo->num_components;
- } else if (cinfo->inputctl->has_multiple_scans) {
- /* For a nonprogressive multiscan file, estimate 1 scan per component. */
- nscans = cinfo->num_components;
- } else {
- nscans = 1;
- }
- cinfo->progress->pass_counter = 0L;
- cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
- cinfo->progress->completed_passes = 0;
- cinfo->progress->total_passes = 1;
- }
-}
+/*
+ * jdtrans.c
+ *
+ * Copyright (C) 1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains library routines for transcoding decompression,
+ * that is, reading raw DCT coefficient arrays from an input JPEG file.
+ * The routines in jdapimin.c will also be needed by a transcoder.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/* Forward declarations */
+LOCAL void transdecode_master_selection JPP((j_decompress_ptr cinfo));
+
+
+/*
+ * Read the coefficient arrays from a JPEG file.
+ * jpeg_read_header must be completed before calling this.
+ *
+ * The entire image is read into a set of virtual coefficient-block arrays,
+ * one per component. The return value is a pointer to the array of
+ * virtual-array descriptors. These can be manipulated directly via the
+ * JPEG memory manager, or handed off to jpeg_write_coefficients().
+ * To release the memory occupied by the virtual arrays, call
+ * jpeg_finish_decompress() when done with the data.
+ *
+ * Returns NULL if suspended. This case need be checked only if
+ * a suspending data source is used.
+ */
+
+GLOBAL jvirt_barray_ptr *
+jpeg_read_coefficients (j_decompress_ptr cinfo)
+{
+ if (cinfo->global_state == DSTATE_READY) {
+ /* First call: initialize active modules */
+ transdecode_master_selection(cinfo);
+ cinfo->global_state = DSTATE_RDCOEFS;
+ } else if (cinfo->global_state != DSTATE_RDCOEFS)
+ ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
+ /* Absorb whole file into the coef buffer */
+ for (;;) {
+ int retcode;
+ /* Call progress monitor hook if present */
+ if (cinfo->progress != NULL)
+ (*cinfo->progress->progress_monitor) ((j_common_ptr) cinfo);
+ /* Absorb some more input */
+ retcode = (*cinfo->inputctl->consume_input) (cinfo);
+ if (retcode == JPEG_SUSPENDED)
+ return NULL;
+ if (retcode == JPEG_REACHED_EOI)
+ break;
+ /* Advance progress counter if appropriate */
+ if (cinfo->progress != NULL &&
+ (retcode == JPEG_ROW_COMPLETED || retcode == JPEG_REACHED_SOS)) {
+ if (++cinfo->progress->pass_counter >= cinfo->progress->pass_limit) {
+ /* startup underestimated number of scans; ratchet up one scan */
+ cinfo->progress->pass_limit += (long) cinfo->total_iMCU_rows;
+ }
+ }
+ }
+ /* Set state so that jpeg_finish_decompress does the right thing */
+ cinfo->global_state = DSTATE_STOPPING;
+ return cinfo->coef->coef_arrays;
+}
+
+
+/*
+ * Master selection of decompression modules for transcoding.
+ * This substitutes for jdmaster.c's initialization of the full decompressor.
+ */
+
+LOCAL void
+transdecode_master_selection (j_decompress_ptr cinfo)
+{
+ /* Entropy decoding: either Huffman or arithmetic coding. */
+ if (cinfo->arith_code) {
+ ERREXIT(cinfo, JERR_ARITH_NOTIMPL);
+ } else {
+ if (cinfo->progressive_mode) {
+#ifdef D_PROGRESSIVE_SUPPORTED
+ jinit_phuff_decoder(cinfo);
+#else
+ ERREXIT(cinfo, JERR_NOT_COMPILED);
+#endif
+ } else
+ jinit_huff_decoder(cinfo);
+ }
+
+ /* Always get a full-image coefficient buffer. */
+ jinit_d_coef_controller(cinfo, TRUE);
+
+ /* We can now tell the memory manager to allocate virtual arrays. */
+ (*cinfo->mem->realize_virt_arrays) ((j_common_ptr) cinfo);
+
+ /* Initialize input side of decompressor to consume first scan. */
+ (*cinfo->inputctl->start_input_pass) (cinfo);
+
+ /* Initialize progress monitoring. */
+ if (cinfo->progress != NULL) {
+ int nscans;
+ /* Estimate number of scans to set pass_limit. */
+ if (cinfo->progressive_mode) {
+ /* Arbitrarily estimate 2 interleaved DC scans + 3 AC scans/component. */
+ nscans = 2 + 3 * cinfo->num_components;
+ } else if (cinfo->inputctl->has_multiple_scans) {
+ /* For a nonprogressive multiscan file, estimate 1 scan per component. */
+ nscans = cinfo->num_components;
+ } else {
+ nscans = 1;
+ }
+ cinfo->progress->pass_counter = 0L;
+ cinfo->progress->pass_limit = (long) cinfo->total_iMCU_rows * nscans;
+ cinfo->progress->completed_passes = 0;
+ cinfo->progress->total_passes = 1;
+ }
+}
diff --git a/libs/jpeg6/jerror.cpp b/libs/jpeg6/jerror.cpp
index 09027d8..595f371 100755
--- a/libs/jpeg6/jerror.cpp
+++ b/libs/jpeg6/jerror.cpp
@@ -1,231 +1,231 @@
-/*
- * jerror.c
- *
- * Copyright (C) 1991-1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains simple error-reporting and trace-message routines.
- * These are suitable for Unix-like systems and others where writing to
- * stderr is the right thing to do. Many applications will want to replace
- * some or all of these routines.
- *
- * These routines are used by both the compression and decompression code.
- */
-
-/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jversion.h"
-#include "jerror.h"
-
-#ifndef EXIT_FAILURE /* define exit() codes if not provided */
-#define EXIT_FAILURE 1
-#endif
-
-
-/*
- * Create the message string table.
- * We do this from the master message list in jerror.h by re-reading
- * jerror.h with a suitable definition for macro JMESSAGE.
- * The message table is made an external symbol just in case any applications
- * want to refer to it directly.
- */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jpeg_std_message_table jMsgTable
-#endif
-
-#define JMESSAGE(code,string) string ,
-
-const char * const jpeg_std_message_table[] = {
-#include "jerror.h"
- NULL
-};
-
-
-/*
- * Error exit handler: must not return to caller.
- *
- * Applications may override this if they want to get control back after
- * an error. Typically one would longjmp somewhere instead of exiting.
- * The setjmp buffer can be made a private field within an expanded error
- * handler object. Note that the info needed to generate an error message
- * is stored in the error object, so you can generate the message now or
- * later, at your convenience.
- * You should make sure that the JPEG object is cleaned up (with jpeg_abort
- * or jpeg_destroy) at some point.
- */
-
-METHODDEF void
-error_exit (j_common_ptr cinfo)
-{
- char buffer[JMSG_LENGTH_MAX];
-
- /* Create the message */
- (*cinfo->err->format_message) (cinfo, buffer);
-
- /* Let the memory manager delete any temp files before we die */
- jpeg_destroy(cinfo);
-
- // FIXME: need to get this setup with an error handler
- //Error("%s\n", buffer );
-}
-
-
-/*
- * Actual output of an error or trace message.
- * Applications may override this method to send JPEG messages somewhere
- * other than stderr.
- */
-
-METHODDEF void
-output_message (j_common_ptr cinfo)
-{
- char buffer[JMSG_LENGTH_MAX];
-
- /* Create the message */
- (*cinfo->err->format_message) (cinfo, buffer);
-
- /* Send it to stderr, adding a newline */
- printf("%s\n", buffer);
-}
-
-
-/*
- * Decide whether to emit a trace or warning message.
- * msg_level is one of:
- * -1: recoverable corrupt-data warning, may want to abort.
- * 0: important advisory messages (always display to user).
- * 1: first level of tracing detail.
- * 2,3,...: successively more detailed tracing messages.
- * An application might override this method if it wanted to abort on warnings
- * or change the policy about which messages to display.
- */
-
-METHODDEF void
-emit_message (j_common_ptr cinfo, int msg_level)
-{
- struct jpeg_error_mgr * err = cinfo->err;
-
- if (msg_level < 0) {
- /* It's a warning message. Since corrupt files may generate many warnings,
- * the policy implemented here is to show only the first warning,
- * unless trace_level >= 3.
- */
- if (err->num_warnings == 0 || err->trace_level >= 3)
- (*err->output_message) (cinfo);
- /* Always count warnings in num_warnings. */
- err->num_warnings++;
- } else {
- /* It's a trace message. Show it if trace_level >= msg_level. */
- if (err->trace_level >= msg_level)
- (*err->output_message) (cinfo);
- }
-}
-
-
-/*
- * Format a message string for the most recent JPEG error or message.
- * The message is stored into buffer, which should be at least JMSG_LENGTH_MAX
- * characters. Note that no '\n' character is added to the string.
- * Few applications should need to override this method.
- */
-
-METHODDEF void
-format_message (j_common_ptr cinfo, char * buffer)
-{
- struct jpeg_error_mgr * err = cinfo->err;
- int msg_code = err->msg_code;
- const char * msgtext = NULL;
- const char * msgptr;
- char ch;
- boolean isstring;
-
- /* Look up message string in proper table */
- if (msg_code > 0 && msg_code <= err->last_jpeg_message) {
- msgtext = err->jpeg_message_table[msg_code];
- } else if (err->addon_message_table != NULL &&
- msg_code >= err->first_addon_message &&
- msg_code <= err->last_addon_message) {
- msgtext = err->addon_message_table[msg_code - err->first_addon_message];
- }
-
- /* Defend against bogus message number */
- if (msgtext == NULL) {
- err->msg_parm.i[0] = msg_code;
- msgtext = err->jpeg_message_table[0];
- }
-
- /* Check for string parameter, as indicated by %s in the message text */
- isstring = FALSE;
- msgptr = msgtext;
- while ((ch = *msgptr++) != '\0') {
- if (ch == '%') {
- if (*msgptr == 's') isstring = TRUE;
- break;
- }
- }
-
- /* Format the message into the passed buffer */
- if (isstring)
- sprintf(buffer, msgtext, err->msg_parm.s);
- else
- sprintf(buffer, msgtext,
- err->msg_parm.i[0], err->msg_parm.i[1],
- err->msg_parm.i[2], err->msg_parm.i[3],
- err->msg_parm.i[4], err->msg_parm.i[5],
- err->msg_parm.i[6], err->msg_parm.i[7]);
-}
-
-
-/*
- * Reset error state variables at start of a new image.
- * This is called during compression startup to reset trace/error
- * processing to default state, without losing any application-specific
- * method pointers. An application might possibly want to override
- * this method if it has additional error processing state.
- */
-
-METHODDEF void
-reset_error_mgr (j_common_ptr cinfo)
-{
- cinfo->err->num_warnings = 0;
- /* trace_level is not reset since it is an application-supplied parameter */
- cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */
-}
-
-
-/*
- * Fill in the standard error-handling methods in a jpeg_error_mgr object.
- * Typical call is:
- * struct jpeg_compress_struct cinfo;
- * struct jpeg_error_mgr err;
- *
- * cinfo.err = jpeg_std_error(&err);
- * after which the application may override some of the methods.
- */
-
-GLOBAL struct jpeg_error_mgr *
-jpeg_std_error (struct jpeg_error_mgr * err)
-{
- err->error_exit = error_exit;
- err->emit_message = emit_message;
- err->output_message = output_message;
- err->format_message = format_message;
- err->reset_error_mgr = reset_error_mgr;
-
- err->trace_level = 0; /* default = no tracing */
- err->num_warnings = 0; /* no warnings emitted yet */
- err->msg_code = 0; /* may be useful as a flag for "no error" */
-
- /* Initialize message table pointers */
- err->jpeg_message_table = jpeg_std_message_table;
- err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1;
-
- err->addon_message_table = NULL;
- err->first_addon_message = 0; /* for safety */
- err->last_addon_message = 0;
-
- return err;
-}
+/*
+ * jerror.c
+ *
+ * Copyright (C) 1991-1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains simple error-reporting and trace-message routines.
+ * These are suitable for Unix-like systems and others where writing to
+ * stderr is the right thing to do. Many applications will want to replace
+ * some or all of these routines.
+ *
+ * These routines are used by both the compression and decompression code.
+ */
+
+/* this is not a core library module, so it doesn't define JPEG_INTERNALS */
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jversion.h"
+#include "jerror.h"
+
+#ifndef EXIT_FAILURE /* define exit() codes if not provided */
+#define EXIT_FAILURE 1
+#endif
+
+
+/*
+ * Create the message string table.
+ * We do this from the master message list in jerror.h by re-reading
+ * jerror.h with a suitable definition for macro JMESSAGE.
+ * The message table is made an external symbol just in case any applications
+ * want to refer to it directly.
+ */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_std_message_table jMsgTable
+#endif
+
+#define JMESSAGE(code,string) string ,
+
+const char * const jpeg_std_message_table[] = {
+#include "jerror.h"
+ NULL
+};
+
+
+/*
+ * Error exit handler: must not return to caller.
+ *
+ * Applications may override this if they want to get control back after
+ * an error. Typically one would longjmp somewhere instead of exiting.
+ * The setjmp buffer can be made a private field within an expanded error
+ * handler object. Note that the info needed to generate an error message
+ * is stored in the error object, so you can generate the message now or
+ * later, at your convenience.
+ * You should make sure that the JPEG object is cleaned up (with jpeg_abort
+ * or jpeg_destroy) at some point.
+ */
+
+METHODDEF void
+error_exit (j_common_ptr cinfo)
+{
+ char buffer[JMSG_LENGTH_MAX];
+
+ /* Create the message */
+ (*cinfo->err->format_message) (cinfo, buffer);
+
+ /* Let the memory manager delete any temp files before we die */
+ jpeg_destroy(cinfo);
+
+ // FIXME: need to get this setup with an error handler
+ //Error("%s\n", buffer );
+}
+
+
+/*
+ * Actual output of an error or trace message.
+ * Applications may override this method to send JPEG messages somewhere
+ * other than stderr.
+ */
+
+METHODDEF void
+output_message (j_common_ptr cinfo)
+{
+ char buffer[JMSG_LENGTH_MAX];
+
+ /* Create the message */
+ (*cinfo->err->format_message) (cinfo, buffer);
+
+ /* Send it to stderr, adding a newline */
+ printf("%s\n", buffer);
+}
+
+
+/*
+ * Decide whether to emit a trace or warning message.
+ * msg_level is one of:
+ * -1: recoverable corrupt-data warning, may want to abort.
+ * 0: important advisory messages (always display to user).
+ * 1: first level of tracing detail.
+ * 2,3,...: successively more detailed tracing messages.
+ * An application might override this method if it wanted to abort on warnings
+ * or change the policy about which messages to display.
+ */
+
+METHODDEF void
+emit_message (j_common_ptr cinfo, int msg_level)
+{
+ struct jpeg_error_mgr * err = cinfo->err;
+
+ if (msg_level < 0) {
+ /* It's a warning message. Since corrupt files may generate many warnings,
+ * the policy implemented here is to show only the first warning,
+ * unless trace_level >= 3.
+ */
+ if (err->num_warnings == 0 || err->trace_level >= 3)
+ (*err->output_message) (cinfo);
+ /* Always count warnings in num_warnings. */
+ err->num_warnings++;
+ } else {
+ /* It's a trace message. Show it if trace_level >= msg_level. */
+ if (err->trace_level >= msg_level)
+ (*err->output_message) (cinfo);
+ }
+}
+
+
+/*
+ * Format a message string for the most recent JPEG error or message.
+ * The message is stored into buffer, which should be at least JMSG_LENGTH_MAX
+ * characters. Note that no '\n' character is added to the string.
+ * Few applications should need to override this method.
+ */
+
+METHODDEF void
+format_message (j_common_ptr cinfo, char * buffer)
+{
+ struct jpeg_error_mgr * err = cinfo->err;
+ int msg_code = err->msg_code;
+ const char * msgtext = NULL;
+ const char * msgptr;
+ char ch;
+ boolean isstring;
+
+ /* Look up message string in proper table */
+ if (msg_code > 0 && msg_code <= err->last_jpeg_message) {
+ msgtext = err->jpeg_message_table[msg_code];
+ } else if (err->addon_message_table != NULL &&
+ msg_code >= err->first_addon_message &&
+ msg_code <= err->last_addon_message) {
+ msgtext = err->addon_message_table[msg_code - err->first_addon_message];
+ }
+
+ /* Defend against bogus message number */
+ if (msgtext == NULL) {
+ err->msg_parm.i[0] = msg_code;
+ msgtext = err->jpeg_message_table[0];
+ }
+
+ /* Check for string parameter, as indicated by %s in the message text */
+ isstring = FALSE;
+ msgptr = msgtext;
+ while ((ch = *msgptr++) != '\0') {
+ if (ch == '%') {
+ if (*msgptr == 's') isstring = TRUE;
+ break;
+ }
+ }
+
+ /* Format the message into the passed buffer */
+ if (isstring)
+ sprintf(buffer, msgtext, err->msg_parm.s);
+ else
+ sprintf(buffer, msgtext,
+ err->msg_parm.i[0], err->msg_parm.i[1],
+ err->msg_parm.i[2], err->msg_parm.i[3],
+ err->msg_parm.i[4], err->msg_parm.i[5],
+ err->msg_parm.i[6], err->msg_parm.i[7]);
+}
+
+
+/*
+ * Reset error state variables at start of a new image.
+ * This is called during compression startup to reset trace/error
+ * processing to default state, without losing any application-specific
+ * method pointers. An application might possibly want to override
+ * this method if it has additional error processing state.
+ */
+
+METHODDEF void
+reset_error_mgr (j_common_ptr cinfo)
+{
+ cinfo->err->num_warnings = 0;
+ /* trace_level is not reset since it is an application-supplied parameter */
+ cinfo->err->msg_code = 0; /* may be useful as a flag for "no error" */
+}
+
+
+/*
+ * Fill in the standard error-handling methods in a jpeg_error_mgr object.
+ * Typical call is:
+ * struct jpeg_compress_struct cinfo;
+ * struct jpeg_error_mgr err;
+ *
+ * cinfo.err = jpeg_std_error(&err);
+ * after which the application may override some of the methods.
+ */
+
+GLOBAL struct jpeg_error_mgr *
+jpeg_std_error (struct jpeg_error_mgr * err)
+{
+ err->error_exit = error_exit;
+ err->emit_message = emit_message;
+ err->output_message = output_message;
+ err->format_message = format_message;
+ err->reset_error_mgr = reset_error_mgr;
+
+ err->trace_level = 0; /* default = no tracing */
+ err->num_warnings = 0; /* no warnings emitted yet */
+ err->msg_code = 0; /* may be useful as a flag for "no error" */
+
+ /* Initialize message table pointers */
+ err->jpeg_message_table = jpeg_std_message_table;
+ err->last_jpeg_message = (int) JMSG_LASTMSGCODE - 1;
+
+ err->addon_message_table = NULL;
+ err->first_addon_message = 0; /* for safety */
+ err->last_addon_message = 0;
+
+ return err;
+}
diff --git a/libs/jpeg6/jerror.h b/libs/jpeg6/jerror.h
index 0ffb8b4..bf60e7e 100755
--- a/libs/jpeg6/jerror.h
+++ b/libs/jpeg6/jerror.h
@@ -1,273 +1,273 @@
-/*
- * jerror.h
- *
- * Copyright (C) 1994-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file defines the error and message codes for the JPEG library.
- * Edit this file to add new codes, or to translate the message strings to
- * some other language.
- * A set of error-reporting macros are defined too. Some applications using
- * the JPEG library may wish to include this file to get the error codes
- * and/or the macros.
- */
-
-/*
- * To define the enum list of message codes, include this file without
- * defining macro JMESSAGE. To create a message string table, include it
- * again with a suitable JMESSAGE definition (see jerror.c for an example).
- */
-#ifndef JMESSAGE
-#ifndef JERROR_H
-/* First time through, define the enum list */
-#define JMAKE_ENUM_LIST
-#else
-/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
-#define JMESSAGE(code,string)
-#endif /* JERROR_H */
-#endif /* JMESSAGE */
-
-#ifdef JMAKE_ENUM_LIST
-
-typedef enum {
-
-#define JMESSAGE(code,string) code ,
-
-#endif /* JMAKE_ENUM_LIST */
-
-JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */
-
-/* For maintenance convenience, list is alphabetical by message code name */
-JMESSAGE(JERR_ARITH_NOTIMPL,
- "Sorry, there are legal restrictions on arithmetic coding")
-JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix")
-JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix")
-JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode")
-JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS")
-JMESSAGE(JERR_BAD_DCTSIZE, "IDCT output block size %d not supported")
-JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace")
-JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace")
-JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length")
-JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan")
-JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d")
-JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d")
-JMESSAGE(JERR_BAD_PROGRESSION,
- "Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d")
-JMESSAGE(JERR_BAD_PROG_SCRIPT,
- "Invalid progressive parameters at scan script entry %d")
-JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors")
-JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d")
-JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d")
-JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access")
-JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small")
-JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here")
-JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet")
-JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d")
-JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request")
-JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d")
-JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x")
-JMESSAGE(JERR_DHT_COUNTS, "Bogus DHT counts")
-JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d")
-JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d")
-JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)")
-JMESSAGE(JERR_EMS_READ, "Read from EMS failed")
-JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed")
-JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan")
-JMESSAGE(JERR_FILE_READ, "Input file read error")
-JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?")
-JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet")
-JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow")
-JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry")
-JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels")
-JMESSAGE(JERR_INPUT_EMPTY, "Empty input file")
-JMESSAGE(JERR_INPUT_EOF, "Premature end of input file")
-JMESSAGE(JERR_MISMATCHED_QUANT_TABLE,
- "Cannot transcode due to multiple use of quantization table %d")
-JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data")
-JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change")
-JMESSAGE(JERR_NOTIMPL, "Not implemented yet")
-JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
-JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported")
-JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
-JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
-JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined")
-JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x")
-JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)")
-JMESSAGE(JERR_QUANT_COMPONENTS,
- "Cannot quantize more than %d color components")
-JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors")
-JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors")
-JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers")
-JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker")
-JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x")
-JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers")
-JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF")
-JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s")
-JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file")
-JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file")
-JMESSAGE(JERR_TFILE_WRITE,
- "Write failed on temporary file --- out of disk space?")
-JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines")
-JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x")
-JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up")
-JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation")
-JMESSAGE(JERR_XMS_READ, "Read from XMS failed")
-JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed")
-JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT)
-JMESSAGE(JMSG_VERSION, JVERSION)
-JMESSAGE(JTRC_16BIT_TABLES,
- "Caution: quantization tables are too coarse for baseline JPEG")
-JMESSAGE(JTRC_ADOBE,
- "Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d")
-JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u")
-JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u")
-JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x")
-JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x")
-JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d")
-JMESSAGE(JTRC_DRI, "Define Restart Interval %u")
-JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u")
-JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u")
-JMESSAGE(JTRC_EOI, "End Of Image")
-JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d")
-JMESSAGE(JTRC_JFIF, "JFIF APP0 marker, density %dx%d %d")
-JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE,
- "Warning: thumbnail image size does not match data length %u")
-JMESSAGE(JTRC_JFIF_MINOR, "Unknown JFIF minor revision number %d.%02d")
-JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image")
-JMESSAGE(JTRC_MISC_MARKER, "Skipping marker 0x%02x, length %u")
-JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x")
-JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u")
-JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors")
-JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors")
-JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization")
-JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d")
-JMESSAGE(JTRC_RST, "RST%d")
-JMESSAGE(JTRC_SMOOTH_NOTIMPL,
- "Smoothing not supported with nonstandard sampling ratios")
-JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d")
-JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d")
-JMESSAGE(JTRC_SOI, "Start of Image")
-JMESSAGE(JTRC_SOS, "Start Of Scan: %d components")
-JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d")
-JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d")
-JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s")
-JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s")
-JMESSAGE(JTRC_UNKNOWN_IDS,
- "Unrecognized component IDs %d %d %d, assuming YCbCr")
-JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
-JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
-JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
-JMESSAGE(JWRN_BOGUS_PROGRESSION,
- "Inconsistent progression sequence for component %d coefficient %d")
-JMESSAGE(JWRN_EXTRANEOUS_DATA,
- "Corrupt JPEG data: %u extraneous bytes before marker 0x%02x")
-JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment")
-JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code")
-JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d")
-JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file")
-JMESSAGE(JWRN_MUST_RESYNC,
- "Corrupt JPEG data: found marker 0x%02x instead of RST%d")
-JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG")
-JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines")
-
-#ifdef JMAKE_ENUM_LIST
-
- JMSG_LASTMSGCODE
-} J_MESSAGE_CODE;
-
-#undef JMAKE_ENUM_LIST
-#endif /* JMAKE_ENUM_LIST */
-
-/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
-#undef JMESSAGE
-
-
-#ifndef JERROR_H
-#define JERROR_H
-
-/* Macros to simplify using the error and trace message stuff */
-/* The first parameter is either type of cinfo pointer */
-
-/* Fatal errors (print message and exit) */
-#define ERREXIT(cinfo,code) \
- ((cinfo)->err->msg_code = (code), \
- (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
-#define ERREXIT1(cinfo,code,p1) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
-#define ERREXIT2(cinfo,code,p1,p2) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (cinfo)->err->msg_parm.i[1] = (p2), \
- (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
-#define ERREXIT3(cinfo,code,p1,p2,p3) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (cinfo)->err->msg_parm.i[1] = (p2), \
- (cinfo)->err->msg_parm.i[2] = (p3), \
- (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
-#define ERREXIT4(cinfo,code,p1,p2,p3,p4) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (cinfo)->err->msg_parm.i[1] = (p2), \
- (cinfo)->err->msg_parm.i[2] = (p3), \
- (cinfo)->err->msg_parm.i[3] = (p4), \
- (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
-#define ERREXITS(cinfo,code,str) \
- ((cinfo)->err->msg_code = (code), \
- strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
- (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
-
-#define MAKESTMT(stuff) do { stuff } while (0)
-
-/* Nonfatal errors (we can keep going, but the data is probably corrupt) */
-#define WARNMS(cinfo,code) \
- ((cinfo)->err->msg_code = (code), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
-#define WARNMS1(cinfo,code,p1) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
-#define WARNMS2(cinfo,code,p1,p2) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (cinfo)->err->msg_parm.i[1] = (p2), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
-
-/* Informational/debugging messages */
-#define TRACEMS(cinfo,lvl,code) \
- ((cinfo)->err->msg_code = (code), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
-#define TRACEMS1(cinfo,lvl,code,p1) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
-#define TRACEMS2(cinfo,lvl,code,p1,p2) \
- ((cinfo)->err->msg_code = (code), \
- (cinfo)->err->msg_parm.i[0] = (p1), \
- (cinfo)->err->msg_parm.i[1] = (p2), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
-#define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \
- MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
- _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
- (cinfo)->err->msg_code = (code); \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
-#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \
- MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
- _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
- (cinfo)->err->msg_code = (code); \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
-#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \
- MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
- _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
- _mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
- (cinfo)->err->msg_code = (code); \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
-#define TRACEMSS(cinfo,lvl,code,str) \
- ((cinfo)->err->msg_code = (code), \
- strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
- (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
-
-#endif /* JERROR_H */
+/*
+ * jerror.h
+ *
+ * Copyright (C) 1994-1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file defines the error and message codes for the JPEG library.
+ * Edit this file to add new codes, or to translate the message strings to
+ * some other language.
+ * A set of error-reporting macros are defined too. Some applications using
+ * the JPEG library may wish to include this file to get the error codes
+ * and/or the macros.
+ */
+
+/*
+ * To define the enum list of message codes, include this file without
+ * defining macro JMESSAGE. To create a message string table, include it
+ * again with a suitable JMESSAGE definition (see jerror.c for an example).
+ */
+#ifndef JMESSAGE
+#ifndef JERROR_H
+/* First time through, define the enum list */
+#define JMAKE_ENUM_LIST
+#else
+/* Repeated inclusions of this file are no-ops unless JMESSAGE is defined */
+#define JMESSAGE(code,string)
+#endif /* JERROR_H */
+#endif /* JMESSAGE */
+
+#ifdef JMAKE_ENUM_LIST
+
+typedef enum {
+
+#define JMESSAGE(code,string) code ,
+
+#endif /* JMAKE_ENUM_LIST */
+
+JMESSAGE(JMSG_NOMESSAGE, "Bogus message code %d") /* Must be first entry! */
+
+/* For maintenance convenience, list is alphabetical by message code name */
+JMESSAGE(JERR_ARITH_NOTIMPL,
+ "Sorry, there are legal restrictions on arithmetic coding")
+JMESSAGE(JERR_BAD_ALIGN_TYPE, "ALIGN_TYPE is wrong, please fix")
+JMESSAGE(JERR_BAD_ALLOC_CHUNK, "MAX_ALLOC_CHUNK is wrong, please fix")
+JMESSAGE(JERR_BAD_BUFFER_MODE, "Bogus buffer control mode")
+JMESSAGE(JERR_BAD_COMPONENT_ID, "Invalid component ID %d in SOS")
+JMESSAGE(JERR_BAD_DCTSIZE, "IDCT output block size %d not supported")
+JMESSAGE(JERR_BAD_IN_COLORSPACE, "Bogus input colorspace")
+JMESSAGE(JERR_BAD_J_COLORSPACE, "Bogus JPEG colorspace")
+JMESSAGE(JERR_BAD_LENGTH, "Bogus marker length")
+JMESSAGE(JERR_BAD_MCU_SIZE, "Sampling factors too large for interleaved scan")
+JMESSAGE(JERR_BAD_POOL_ID, "Invalid memory pool code %d")
+JMESSAGE(JERR_BAD_PRECISION, "Unsupported JPEG data precision %d")
+JMESSAGE(JERR_BAD_PROGRESSION,
+ "Invalid progressive parameters Ss=%d Se=%d Ah=%d Al=%d")
+JMESSAGE(JERR_BAD_PROG_SCRIPT,
+ "Invalid progressive parameters at scan script entry %d")
+JMESSAGE(JERR_BAD_SAMPLING, "Bogus sampling factors")
+JMESSAGE(JERR_BAD_SCAN_SCRIPT, "Invalid scan script at entry %d")
+JMESSAGE(JERR_BAD_STATE, "Improper call to JPEG library in state %d")
+JMESSAGE(JERR_BAD_VIRTUAL_ACCESS, "Bogus virtual array access")
+JMESSAGE(JERR_BUFFER_SIZE, "Buffer passed to JPEG library is too small")
+JMESSAGE(JERR_CANT_SUSPEND, "Suspension not allowed here")
+JMESSAGE(JERR_CCIR601_NOTIMPL, "CCIR601 sampling not implemented yet")
+JMESSAGE(JERR_COMPONENT_COUNT, "Too many color components: %d, max %d")
+JMESSAGE(JERR_CONVERSION_NOTIMPL, "Unsupported color conversion request")
+JMESSAGE(JERR_DAC_INDEX, "Bogus DAC index %d")
+JMESSAGE(JERR_DAC_VALUE, "Bogus DAC value 0x%x")
+JMESSAGE(JERR_DHT_COUNTS, "Bogus DHT counts")
+JMESSAGE(JERR_DHT_INDEX, "Bogus DHT index %d")
+JMESSAGE(JERR_DQT_INDEX, "Bogus DQT index %d")
+JMESSAGE(JERR_EMPTY_IMAGE, "Empty JPEG image (DNL not supported)")
+JMESSAGE(JERR_EMS_READ, "Read from EMS failed")
+JMESSAGE(JERR_EMS_WRITE, "Write to EMS failed")
+JMESSAGE(JERR_EOI_EXPECTED, "Didn't expect more than one scan")
+JMESSAGE(JERR_FILE_READ, "Input file read error")
+JMESSAGE(JERR_FILE_WRITE, "Output file write error --- out of disk space?")
+JMESSAGE(JERR_FRACT_SAMPLE_NOTIMPL, "Fractional sampling not implemented yet")
+JMESSAGE(JERR_HUFF_CLEN_OVERFLOW, "Huffman code size table overflow")
+JMESSAGE(JERR_HUFF_MISSING_CODE, "Missing Huffman code table entry")
+JMESSAGE(JERR_IMAGE_TOO_BIG, "Maximum supported image dimension is %u pixels")
+JMESSAGE(JERR_INPUT_EMPTY, "Empty input file")
+JMESSAGE(JERR_INPUT_EOF, "Premature end of input file")
+JMESSAGE(JERR_MISMATCHED_QUANT_TABLE,
+ "Cannot transcode due to multiple use of quantization table %d")
+JMESSAGE(JERR_MISSING_DATA, "Scan script does not transmit all data")
+JMESSAGE(JERR_MODE_CHANGE, "Invalid color quantization mode change")
+JMESSAGE(JERR_NOTIMPL, "Not implemented yet")
+JMESSAGE(JERR_NOT_COMPILED, "Requested feature was omitted at compile time")
+JMESSAGE(JERR_NO_BACKING_STORE, "Backing store not supported")
+JMESSAGE(JERR_NO_HUFF_TABLE, "Huffman table 0x%02x was not defined")
+JMESSAGE(JERR_NO_IMAGE, "JPEG datastream contains no image")
+JMESSAGE(JERR_NO_QUANT_TABLE, "Quantization table 0x%02x was not defined")
+JMESSAGE(JERR_NO_SOI, "Not a JPEG file: starts with 0x%02x 0x%02x")
+JMESSAGE(JERR_OUT_OF_MEMORY, "Insufficient memory (case %d)")
+JMESSAGE(JERR_QUANT_COMPONENTS,
+ "Cannot quantize more than %d color components")
+JMESSAGE(JERR_QUANT_FEW_COLORS, "Cannot quantize to fewer than %d colors")
+JMESSAGE(JERR_QUANT_MANY_COLORS, "Cannot quantize to more than %d colors")
+JMESSAGE(JERR_SOF_DUPLICATE, "Invalid JPEG file structure: two SOF markers")
+JMESSAGE(JERR_SOF_NO_SOS, "Invalid JPEG file structure: missing SOS marker")
+JMESSAGE(JERR_SOF_UNSUPPORTED, "Unsupported JPEG process: SOF type 0x%02x")
+JMESSAGE(JERR_SOI_DUPLICATE, "Invalid JPEG file structure: two SOI markers")
+JMESSAGE(JERR_SOS_NO_SOF, "Invalid JPEG file structure: SOS before SOF")
+JMESSAGE(JERR_TFILE_CREATE, "Failed to create temporary file %s")
+JMESSAGE(JERR_TFILE_READ, "Read failed on temporary file")
+JMESSAGE(JERR_TFILE_SEEK, "Seek failed on temporary file")
+JMESSAGE(JERR_TFILE_WRITE,
+ "Write failed on temporary file --- out of disk space?")
+JMESSAGE(JERR_TOO_LITTLE_DATA, "Application transferred too few scanlines")
+JMESSAGE(JERR_UNKNOWN_MARKER, "Unsupported marker type 0x%02x")
+JMESSAGE(JERR_VIRTUAL_BUG, "Virtual array controller messed up")
+JMESSAGE(JERR_WIDTH_OVERFLOW, "Image too wide for this implementation")
+JMESSAGE(JERR_XMS_READ, "Read from XMS failed")
+JMESSAGE(JERR_XMS_WRITE, "Write to XMS failed")
+JMESSAGE(JMSG_COPYRIGHT, JCOPYRIGHT)
+JMESSAGE(JMSG_VERSION, JVERSION)
+JMESSAGE(JTRC_16BIT_TABLES,
+ "Caution: quantization tables are too coarse for baseline JPEG")
+JMESSAGE(JTRC_ADOBE,
+ "Adobe APP14 marker: version %d, flags 0x%04x 0x%04x, transform %d")
+JMESSAGE(JTRC_APP0, "Unknown APP0 marker (not JFIF), length %u")
+JMESSAGE(JTRC_APP14, "Unknown APP14 marker (not Adobe), length %u")
+JMESSAGE(JTRC_DAC, "Define Arithmetic Table 0x%02x: 0x%02x")
+JMESSAGE(JTRC_DHT, "Define Huffman Table 0x%02x")
+JMESSAGE(JTRC_DQT, "Define Quantization Table %d precision %d")
+JMESSAGE(JTRC_DRI, "Define Restart Interval %u")
+JMESSAGE(JTRC_EMS_CLOSE, "Freed EMS handle %u")
+JMESSAGE(JTRC_EMS_OPEN, "Obtained EMS handle %u")
+JMESSAGE(JTRC_EOI, "End Of Image")
+JMESSAGE(JTRC_HUFFBITS, " %3d %3d %3d %3d %3d %3d %3d %3d")
+JMESSAGE(JTRC_JFIF, "JFIF APP0 marker, density %dx%d %d")
+JMESSAGE(JTRC_JFIF_BADTHUMBNAILSIZE,
+ "Warning: thumbnail image size does not match data length %u")
+JMESSAGE(JTRC_JFIF_MINOR, "Unknown JFIF minor revision number %d.%02d")
+JMESSAGE(JTRC_JFIF_THUMBNAIL, " with %d x %d thumbnail image")
+JMESSAGE(JTRC_MISC_MARKER, "Skipping marker 0x%02x, length %u")
+JMESSAGE(JTRC_PARMLESS_MARKER, "Unexpected marker 0x%02x")
+JMESSAGE(JTRC_QUANTVALS, " %4u %4u %4u %4u %4u %4u %4u %4u")
+JMESSAGE(JTRC_QUANT_3_NCOLORS, "Quantizing to %d = %d*%d*%d colors")
+JMESSAGE(JTRC_QUANT_NCOLORS, "Quantizing to %d colors")
+JMESSAGE(JTRC_QUANT_SELECTED, "Selected %d colors for quantization")
+JMESSAGE(JTRC_RECOVERY_ACTION, "At marker 0x%02x, recovery action %d")
+JMESSAGE(JTRC_RST, "RST%d")
+JMESSAGE(JTRC_SMOOTH_NOTIMPL,
+ "Smoothing not supported with nonstandard sampling ratios")
+JMESSAGE(JTRC_SOF, "Start Of Frame 0x%02x: width=%u, height=%u, components=%d")
+JMESSAGE(JTRC_SOF_COMPONENT, " Component %d: %dhx%dv q=%d")
+JMESSAGE(JTRC_SOI, "Start of Image")
+JMESSAGE(JTRC_SOS, "Start Of Scan: %d components")
+JMESSAGE(JTRC_SOS_COMPONENT, " Component %d: dc=%d ac=%d")
+JMESSAGE(JTRC_SOS_PARAMS, " Ss=%d, Se=%d, Ah=%d, Al=%d")
+JMESSAGE(JTRC_TFILE_CLOSE, "Closed temporary file %s")
+JMESSAGE(JTRC_TFILE_OPEN, "Opened temporary file %s")
+JMESSAGE(JTRC_UNKNOWN_IDS,
+ "Unrecognized component IDs %d %d %d, assuming YCbCr")
+JMESSAGE(JTRC_XMS_CLOSE, "Freed XMS handle %u")
+JMESSAGE(JTRC_XMS_OPEN, "Obtained XMS handle %u")
+JMESSAGE(JWRN_ADOBE_XFORM, "Unknown Adobe color transform code %d")
+JMESSAGE(JWRN_BOGUS_PROGRESSION,
+ "Inconsistent progression sequence for component %d coefficient %d")
+JMESSAGE(JWRN_EXTRANEOUS_DATA,
+ "Corrupt JPEG data: %u extraneous bytes before marker 0x%02x")
+JMESSAGE(JWRN_HIT_MARKER, "Corrupt JPEG data: premature end of data segment")
+JMESSAGE(JWRN_HUFF_BAD_CODE, "Corrupt JPEG data: bad Huffman code")
+JMESSAGE(JWRN_JFIF_MAJOR, "Warning: unknown JFIF revision number %d.%02d")
+JMESSAGE(JWRN_JPEG_EOF, "Premature end of JPEG file")
+JMESSAGE(JWRN_MUST_RESYNC,
+ "Corrupt JPEG data: found marker 0x%02x instead of RST%d")
+JMESSAGE(JWRN_NOT_SEQUENTIAL, "Invalid SOS parameters for sequential JPEG")
+JMESSAGE(JWRN_TOO_MUCH_DATA, "Application transferred too many scanlines")
+
+#ifdef JMAKE_ENUM_LIST
+
+ JMSG_LASTMSGCODE
+} J_MESSAGE_CODE;
+
+#undef JMAKE_ENUM_LIST
+#endif /* JMAKE_ENUM_LIST */
+
+/* Zap JMESSAGE macro so that future re-inclusions do nothing by default */
+#undef JMESSAGE
+
+
+#ifndef JERROR_H
+#define JERROR_H
+
+/* Macros to simplify using the error and trace message stuff */
+/* The first parameter is either type of cinfo pointer */
+
+/* Fatal errors (print message and exit) */
+#define ERREXIT(cinfo,code) \
+ ((cinfo)->err->msg_code = (code), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXIT1(cinfo,code,p1) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXIT2(cinfo,code,p1,p2) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (cinfo)->err->msg_parm.i[1] = (p2), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXIT3(cinfo,code,p1,p2,p3) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (cinfo)->err->msg_parm.i[1] = (p2), \
+ (cinfo)->err->msg_parm.i[2] = (p3), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXIT4(cinfo,code,p1,p2,p3,p4) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (cinfo)->err->msg_parm.i[1] = (p2), \
+ (cinfo)->err->msg_parm.i[2] = (p3), \
+ (cinfo)->err->msg_parm.i[3] = (p4), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+#define ERREXITS(cinfo,code,str) \
+ ((cinfo)->err->msg_code = (code), \
+ strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
+ (*(cinfo)->err->error_exit) ((j_common_ptr) (cinfo)))
+
+#define MAKESTMT(stuff) do { stuff } while (0)
+
+/* Nonfatal errors (we can keep going, but the data is probably corrupt) */
+#define WARNMS(cinfo,code) \
+ ((cinfo)->err->msg_code = (code), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
+#define WARNMS1(cinfo,code,p1) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
+#define WARNMS2(cinfo,code,p1,p2) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (cinfo)->err->msg_parm.i[1] = (p2), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), -1))
+
+/* Informational/debugging messages */
+#define TRACEMS(cinfo,lvl,code) \
+ ((cinfo)->err->msg_code = (code), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+#define TRACEMS1(cinfo,lvl,code,p1) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+#define TRACEMS2(cinfo,lvl,code,p1,p2) \
+ ((cinfo)->err->msg_code = (code), \
+ (cinfo)->err->msg_parm.i[0] = (p1), \
+ (cinfo)->err->msg_parm.i[1] = (p2), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+#define TRACEMS3(cinfo,lvl,code,p1,p2,p3) \
+ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
+ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); \
+ (cinfo)->err->msg_code = (code); \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
+#define TRACEMS4(cinfo,lvl,code,p1,p2,p3,p4) \
+ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
+ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
+ (cinfo)->err->msg_code = (code); \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
+#define TRACEMS8(cinfo,lvl,code,p1,p2,p3,p4,p5,p6,p7,p8) \
+ MAKESTMT(int * _mp = (cinfo)->err->msg_parm.i; \
+ _mp[0] = (p1); _mp[1] = (p2); _mp[2] = (p3); _mp[3] = (p4); \
+ _mp[4] = (p5); _mp[5] = (p6); _mp[6] = (p7); _mp[7] = (p8); \
+ (cinfo)->err->msg_code = (code); \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)); )
+#define TRACEMSS(cinfo,lvl,code,str) \
+ ((cinfo)->err->msg_code = (code), \
+ strncpy((cinfo)->err->msg_parm.s, (str), JMSG_STR_PARM_MAX), \
+ (*(cinfo)->err->emit_message) ((j_common_ptr) (cinfo), (lvl)))
+
+#endif /* JERROR_H */
diff --git a/libs/jpeg6/jfdctflt.cpp b/libs/jpeg6/jfdctflt.cpp
index 1509b88..21371eb 100755
--- a/libs/jpeg6/jfdctflt.cpp
+++ b/libs/jpeg6/jfdctflt.cpp
@@ -1,168 +1,168 @@
-/*
- * jfdctflt.c
- *
- * Copyright (C) 1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a floating-point implementation of the
- * forward DCT (Discrete Cosine Transform).
- *
- * This implementation should be more accurate than either of the integer
- * DCT implementations. However, it may not give the same results on all
- * machines because of differences in roundoff behavior. Speed will depend
- * on the hardware's floating point capacity.
- *
- * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
- * on each column. Direct algorithms are also available, but they are
- * much more complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on Arai, Agui, and Nakajima's algorithm for
- * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
- * Japanese, but the algorithm is described in the Pennebaker & Mitchell
- * JPEG textbook (see REFERENCES section in file README). The following code
- * is based directly on figure 4-8 in P&M.
- * While an 8-point DCT cannot be done in less than 11 multiplies, it is
- * possible to arrange the computation so that many of the multiplies are
- * simple scalings of the final outputs. These multiplies can then be
- * folded into the multiplications or divisions by the JPEG quantization
- * table entries. The AA&N method leaves only 5 multiplies and 29 adds
- * to be done in the DCT itself.
- * The primary disadvantage of this method is that with a fixed-point
- * implementation, accuracy is lost due to imprecise representation of the
- * scaled quantization values. However, that problem does not arise if
- * we use floating point arithmetic.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
-
-#ifdef DCT_FLOAT_SUPPORTED
-
-
-/*
- * This module is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
-#endif
-
-
-/*
- * Perform the forward DCT on one block of samples.
- */
-
-GLOBAL void
-jpeg_fdct_float (FAST_FLOAT * data)
-{
- FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
- FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
- FAST_FLOAT *dataptr;
- int ctr;
-
- /* Pass 1: process rows. */
-
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- tmp0 = dataptr[0] + dataptr[7];
- tmp7 = dataptr[0] - dataptr[7];
- tmp1 = dataptr[1] + dataptr[6];
- tmp6 = dataptr[1] - dataptr[6];
- tmp2 = dataptr[2] + dataptr[5];
- tmp5 = dataptr[2] - dataptr[5];
- tmp3 = dataptr[3] + dataptr[4];
- tmp4 = dataptr[3] - dataptr[4];
-
- /* Even part */
-
- tmp10 = tmp0 + tmp3; /* phase 2 */
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
-
- dataptr[0] = tmp10 + tmp11; /* phase 3 */
- dataptr[4] = tmp10 - tmp11;
-
- z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
- dataptr[2] = tmp13 + z1; /* phase 5 */
- dataptr[6] = tmp13 - z1;
-
- /* Odd part */
-
- tmp10 = tmp4 + tmp5; /* phase 2 */
- tmp11 = tmp5 + tmp6;
- tmp12 = tmp6 + tmp7;
-
- /* The rotator is modified from fig 4-8 to avoid extra negations. */
- z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
- z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
- z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
- z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
-
- z11 = tmp7 + z3; /* phase 5 */
- z13 = tmp7 - z3;
-
- dataptr[5] = z13 + z2; /* phase 6 */
- dataptr[3] = z13 - z2;
- dataptr[1] = z11 + z4;
- dataptr[7] = z11 - z4;
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns. */
-
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
- tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
- tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
- tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
- tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
-
- /* Even part */
-
- tmp10 = tmp0 + tmp3; /* phase 2 */
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
-
- dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
- dataptr[DCTSIZE*4] = tmp10 - tmp11;
-
- z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
- dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
- dataptr[DCTSIZE*6] = tmp13 - z1;
-
- /* Odd part */
-
- tmp10 = tmp4 + tmp5; /* phase 2 */
- tmp11 = tmp5 + tmp6;
- tmp12 = tmp6 + tmp7;
-
- /* The rotator is modified from fig 4-8 to avoid extra negations. */
- z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
- z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
- z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
- z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
-
- z11 = tmp7 + z3; /* phase 5 */
- z13 = tmp7 - z3;
-
- dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
- dataptr[DCTSIZE*3] = z13 - z2;
- dataptr[DCTSIZE*1] = z11 + z4;
- dataptr[DCTSIZE*7] = z11 - z4;
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-#endif /* DCT_FLOAT_SUPPORTED */
+/*
+ * jfdctflt.c
+ *
+ * Copyright (C) 1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a floating-point implementation of the
+ * forward DCT (Discrete Cosine Transform).
+ *
+ * This implementation should be more accurate than either of the integer
+ * DCT implementations. However, it may not give the same results on all
+ * machines because of differences in roundoff behavior. Speed will depend
+ * on the hardware's floating point capacity.
+ *
+ * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
+ * on each column. Direct algorithms are also available, but they are
+ * much more complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+ * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
+ * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+ * JPEG textbook (see REFERENCES section in file README). The following code
+ * is based directly on figure 4-8 in P&M.
+ * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+ * possible to arrange the computation so that many of the multiplies are
+ * simple scalings of the final outputs. These multiplies can then be
+ * folded into the multiplications or divisions by the JPEG quantization
+ * table entries. The AA&N method leaves only 5 multiplies and 29 adds
+ * to be done in the DCT itself.
+ * The primary disadvantage of this method is that with a fixed-point
+ * implementation, accuracy is lost due to imprecise representation of the
+ * scaled quantization values. However, that problem does not arise if
+ * we use floating point arithmetic.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+#ifdef DCT_FLOAT_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+ Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/*
+ * Perform the forward DCT on one block of samples.
+ */
+
+GLOBAL void
+jpeg_fdct_float (FAST_FLOAT * data)
+{
+ FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
+ FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
+ FAST_FLOAT *dataptr;
+ int ctr;
+
+ /* Pass 1: process rows. */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ tmp0 = dataptr[0] + dataptr[7];
+ tmp7 = dataptr[0] - dataptr[7];
+ tmp1 = dataptr[1] + dataptr[6];
+ tmp6 = dataptr[1] - dataptr[6];
+ tmp2 = dataptr[2] + dataptr[5];
+ tmp5 = dataptr[2] - dataptr[5];
+ tmp3 = dataptr[3] + dataptr[4];
+ tmp4 = dataptr[3] - dataptr[4];
+
+ /* Even part */
+
+ tmp10 = tmp0 + tmp3; /* phase 2 */
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+
+ dataptr[0] = tmp10 + tmp11; /* phase 3 */
+ dataptr[4] = tmp10 - tmp11;
+
+ z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
+ dataptr[2] = tmp13 + z1; /* phase 5 */
+ dataptr[6] = tmp13 - z1;
+
+ /* Odd part */
+
+ tmp10 = tmp4 + tmp5; /* phase 2 */
+ tmp11 = tmp5 + tmp6;
+ tmp12 = tmp6 + tmp7;
+
+ /* The rotator is modified from fig 4-8 to avoid extra negations. */
+ z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
+ z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
+ z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
+ z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
+
+ z11 = tmp7 + z3; /* phase 5 */
+ z13 = tmp7 - z3;
+
+ dataptr[5] = z13 + z2; /* phase 6 */
+ dataptr[3] = z13 - z2;
+ dataptr[1] = z11 + z4;
+ dataptr[7] = z11 - z4;
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns. */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+ tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+ tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+ tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+ tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+
+ /* Even part */
+
+ tmp10 = tmp0 + tmp3; /* phase 2 */
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+
+ dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
+ dataptr[DCTSIZE*4] = tmp10 - tmp11;
+
+ z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
+ dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
+ dataptr[DCTSIZE*6] = tmp13 - z1;
+
+ /* Odd part */
+
+ tmp10 = tmp4 + tmp5; /* phase 2 */
+ tmp11 = tmp5 + tmp6;
+ tmp12 = tmp6 + tmp7;
+
+ /* The rotator is modified from fig 4-8 to avoid extra negations. */
+ z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
+ z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
+ z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
+ z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
+
+ z11 = tmp7 + z3; /* phase 5 */
+ z13 = tmp7 - z3;
+
+ dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
+ dataptr[DCTSIZE*3] = z13 - z2;
+ dataptr[DCTSIZE*1] = z11 + z4;
+ dataptr[DCTSIZE*7] = z11 - z4;
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+#endif /* DCT_FLOAT_SUPPORTED */
diff --git a/libs/jpeg6/jidctflt.cpp b/libs/jpeg6/jidctflt.cpp
index 2e25c44..847919e 100755
--- a/libs/jpeg6/jidctflt.cpp
+++ b/libs/jpeg6/jidctflt.cpp
@@ -1,241 +1,241 @@
-/*
- * jidctflt.c
- *
- * Copyright (C) 1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a floating-point implementation of the
- * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
- * must also perform dequantization of the input coefficients.
- *
- * This implementation should be more accurate than either of the integer
- * IDCT implementations. However, it may not give the same results on all
- * machines because of differences in roundoff behavior. Speed will depend
- * on the hardware's floating point capacity.
- *
- * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
- * on each row (or vice versa, but it's more convenient to emit a row at
- * a time). Direct algorithms are also available, but they are much more
- * complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on Arai, Agui, and Nakajima's algorithm for
- * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
- * Japanese, but the algorithm is described in the Pennebaker & Mitchell
- * JPEG textbook (see REFERENCES section in file README). The following code
- * is based directly on figure 4-8 in P&M.
- * While an 8-point DCT cannot be done in less than 11 multiplies, it is
- * possible to arrange the computation so that many of the multiplies are
- * simple scalings of the final outputs. These multiplies can then be
- * folded into the multiplications or divisions by the JPEG quantization
- * table entries. The AA&N method leaves only 5 multiplies and 29 adds
- * to be done in the DCT itself.
- * The primary disadvantage of this method is that with a fixed-point
- * implementation, accuracy is lost due to imprecise representation of the
- * scaled quantization values. However, that problem does not arise if
- * we use floating point arithmetic.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
-
-#ifdef DCT_FLOAT_SUPPORTED
-
-
-/*
- * This module is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
-#endif
-
-
-/* Dequantize a coefficient by multiplying it by the multiplier-table
- * entry; produce a float result.
- */
-
-#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
-
-
-/*
- * Perform dequantization and inverse DCT on one block of coefficients.
- */
-
-GLOBAL void
-jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col)
-{
- FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
- FAST_FLOAT z5, z10, z11, z12, z13;
- JCOEFPTR inptr;
- FLOAT_MULT_TYPE * quantptr;
- FAST_FLOAT * wsptr;
- JSAMPROW outptr;
- JSAMPLE *range_limit = IDCT_range_limit(cinfo);
- int ctr;
- FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
- SHIFT_TEMPS
-
- /* Pass 1: process columns from input, store into work array. */
-
- inptr = coef_block;
- quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
- wsptr = workspace;
- for (ctr = DCTSIZE; ctr > 0; ctr--) {
- /* Due to quantization, we will usually find that many of the input
- * coefficients are zero, especially the AC terms. We can exploit this
- * by short-circuiting the IDCT calculation for any column in which all
- * the AC terms are zero. In that case each output is equal to the
- * DC coefficient (with scale factor as needed).
- * With typical images and quantization tables, half or more of the
- * column DCT calculations can be simplified this way.
- */
-
- if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
- inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] |
- inptr[DCTSIZE*7]) == 0) {
- /* AC terms all zero */
- FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
-
- wsptr[DCTSIZE*0] = dcval;
- wsptr[DCTSIZE*1] = dcval;
- wsptr[DCTSIZE*2] = dcval;
- wsptr[DCTSIZE*3] = dcval;
- wsptr[DCTSIZE*4] = dcval;
- wsptr[DCTSIZE*5] = dcval;
- wsptr[DCTSIZE*6] = dcval;
- wsptr[DCTSIZE*7] = dcval;
-
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- continue;
- }
-
- /* Even part */
-
- tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
- tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
- tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
- tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
-
- tmp10 = tmp0 + tmp2; /* phase 3 */
- tmp11 = tmp0 - tmp2;
-
- tmp13 = tmp1 + tmp3; /* phases 5-3 */
- tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
-
- tmp0 = tmp10 + tmp13; /* phase 2 */
- tmp3 = tmp10 - tmp13;
- tmp1 = tmp11 + tmp12;
- tmp2 = tmp11 - tmp12;
-
- /* Odd part */
-
- tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
- tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
- tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
- tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
-
- z13 = tmp6 + tmp5; /* phase 6 */
- z10 = tmp6 - tmp5;
- z11 = tmp4 + tmp7;
- z12 = tmp4 - tmp7;
-
- tmp7 = z11 + z13; /* phase 5 */
- tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
-
- z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
- tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
- tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
-
- tmp6 = tmp12 - tmp7; /* phase 2 */
- tmp5 = tmp11 - tmp6;
- tmp4 = tmp10 + tmp5;
-
- wsptr[DCTSIZE*0] = tmp0 + tmp7;
- wsptr[DCTSIZE*7] = tmp0 - tmp7;
- wsptr[DCTSIZE*1] = tmp1 + tmp6;
- wsptr[DCTSIZE*6] = tmp1 - tmp6;
- wsptr[DCTSIZE*2] = tmp2 + tmp5;
- wsptr[DCTSIZE*5] = tmp2 - tmp5;
- wsptr[DCTSIZE*4] = tmp3 + tmp4;
- wsptr[DCTSIZE*3] = tmp3 - tmp4;
-
- inptr++; /* advance pointers to next column */
- quantptr++;
- wsptr++;
- }
-
- /* Pass 2: process rows from work array, store into output array. */
- /* Note that we must descale the results by a factor of 8 == 2**3. */
-
- wsptr = workspace;
- for (ctr = 0; ctr < DCTSIZE; ctr++) {
- outptr = output_buf[ctr] + output_col;
- /* Rows of zeroes can be exploited in the same way as we did with columns.
- * However, the column calculation has created many nonzero AC terms, so
- * the simplification applies less often (typically 5% to 10% of the time).
- * And testing floats for zero is relatively expensive, so we don't bother.
- */
-
- /* Even part */
-
- tmp10 = wsptr[0] + wsptr[4];
- tmp11 = wsptr[0] - wsptr[4];
-
- tmp13 = wsptr[2] + wsptr[6];
- tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
-
- tmp0 = tmp10 + tmp13;
- tmp3 = tmp10 - tmp13;
- tmp1 = tmp11 + tmp12;
- tmp2 = tmp11 - tmp12;
-
- /* Odd part */
-
- z13 = wsptr[5] + wsptr[3];
- z10 = wsptr[5] - wsptr[3];
- z11 = wsptr[1] + wsptr[7];
- z12 = wsptr[1] - wsptr[7];
-
- tmp7 = z11 + z13;
- tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
-
- z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
- tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
- tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
-
- tmp6 = tmp12 - tmp7;
- tmp5 = tmp11 - tmp6;
- tmp4 = tmp10 + tmp5;
-
- /* Final output stage: scale down by a factor of 8 and range-limit */
-
- outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
- & RANGE_MASK];
- outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
- & RANGE_MASK];
- outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
- & RANGE_MASK];
- outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
- & RANGE_MASK];
- outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
- & RANGE_MASK];
- outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
- & RANGE_MASK];
- outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
- & RANGE_MASK];
- outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
- & RANGE_MASK];
-
- wsptr += DCTSIZE; /* advance pointer to next row */
- }
-}
-
-#endif /* DCT_FLOAT_SUPPORTED */
+/*
+ * jidctflt.c
+ *
+ * Copyright (C) 1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a floating-point implementation of the
+ * inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
+ * must also perform dequantization of the input coefficients.
+ *
+ * This implementation should be more accurate than either of the integer
+ * IDCT implementations. However, it may not give the same results on all
+ * machines because of differences in roundoff behavior. Speed will depend
+ * on the hardware's floating point capacity.
+ *
+ * A 2-D IDCT can be done by 1-D IDCT on each column followed by 1-D IDCT
+ * on each row (or vice versa, but it's more convenient to emit a row at
+ * a time). Direct algorithms are also available, but they are much more
+ * complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+ * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
+ * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+ * JPEG textbook (see REFERENCES section in file README). The following code
+ * is based directly on figure 4-8 in P&M.
+ * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+ * possible to arrange the computation so that many of the multiplies are
+ * simple scalings of the final outputs. These multiplies can then be
+ * folded into the multiplications or divisions by the JPEG quantization
+ * table entries. The AA&N method leaves only 5 multiplies and 29 adds
+ * to be done in the DCT itself.
+ * The primary disadvantage of this method is that with a fixed-point
+ * implementation, accuracy is lost due to imprecise representation of the
+ * scaled quantization values. However, that problem does not arise if
+ * we use floating point arithmetic.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+#ifdef DCT_FLOAT_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+ Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/* Dequantize a coefficient by multiplying it by the multiplier-table
+ * entry; produce a float result.
+ */
+
+#define DEQUANTIZE(coef,quantval) (((FAST_FLOAT) (coef)) * (quantval))
+
+
+/*
+ * Perform dequantization and inverse DCT on one block of coefficients.
+ */
+
+GLOBAL void
+jpeg_idct_float (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col)
+{
+ FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
+ FAST_FLOAT z5, z10, z11, z12, z13;
+ JCOEFPTR inptr;
+ FLOAT_MULT_TYPE * quantptr;
+ FAST_FLOAT * wsptr;
+ JSAMPROW outptr;
+ JSAMPLE *range_limit = IDCT_range_limit(cinfo);
+ int ctr;
+ FAST_FLOAT workspace[DCTSIZE2]; /* buffers data between passes */
+ SHIFT_TEMPS
+
+ /* Pass 1: process columns from input, store into work array. */
+
+ inptr = coef_block;
+ quantptr = (FLOAT_MULT_TYPE *) compptr->dct_table;
+ wsptr = workspace;
+ for (ctr = DCTSIZE; ctr > 0; ctr--) {
+ /* Due to quantization, we will usually find that many of the input
+ * coefficients are zero, especially the AC terms. We can exploit this
+ * by short-circuiting the IDCT calculation for any column in which all
+ * the AC terms are zero. In that case each output is equal to the
+ * DC coefficient (with scale factor as needed).
+ * With typical images and quantization tables, half or more of the
+ * column DCT calculations can be simplified this way.
+ */
+
+ if ((inptr[DCTSIZE*1] | inptr[DCTSIZE*2] | inptr[DCTSIZE*3] |
+ inptr[DCTSIZE*4] | inptr[DCTSIZE*5] | inptr[DCTSIZE*6] |
+ inptr[DCTSIZE*7]) == 0) {
+ /* AC terms all zero */
+ FAST_FLOAT dcval = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+
+ wsptr[DCTSIZE*0] = dcval;
+ wsptr[DCTSIZE*1] = dcval;
+ wsptr[DCTSIZE*2] = dcval;
+ wsptr[DCTSIZE*3] = dcval;
+ wsptr[DCTSIZE*4] = dcval;
+ wsptr[DCTSIZE*5] = dcval;
+ wsptr[DCTSIZE*6] = dcval;
+ wsptr[DCTSIZE*7] = dcval;
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ continue;
+ }
+
+ /* Even part */
+
+ tmp0 = DEQUANTIZE(inptr[DCTSIZE*0], quantptr[DCTSIZE*0]);
+ tmp1 = DEQUANTIZE(inptr[DCTSIZE*2], quantptr[DCTSIZE*2]);
+ tmp2 = DEQUANTIZE(inptr[DCTSIZE*4], quantptr[DCTSIZE*4]);
+ tmp3 = DEQUANTIZE(inptr[DCTSIZE*6], quantptr[DCTSIZE*6]);
+
+ tmp10 = tmp0 + tmp2; /* phase 3 */
+ tmp11 = tmp0 - tmp2;
+
+ tmp13 = tmp1 + tmp3; /* phases 5-3 */
+ tmp12 = (tmp1 - tmp3) * ((FAST_FLOAT) 1.414213562) - tmp13; /* 2*c4 */
+
+ tmp0 = tmp10 + tmp13; /* phase 2 */
+ tmp3 = tmp10 - tmp13;
+ tmp1 = tmp11 + tmp12;
+ tmp2 = tmp11 - tmp12;
+
+ /* Odd part */
+
+ tmp4 = DEQUANTIZE(inptr[DCTSIZE*1], quantptr[DCTSIZE*1]);
+ tmp5 = DEQUANTIZE(inptr[DCTSIZE*3], quantptr[DCTSIZE*3]);
+ tmp6 = DEQUANTIZE(inptr[DCTSIZE*5], quantptr[DCTSIZE*5]);
+ tmp7 = DEQUANTIZE(inptr[DCTSIZE*7], quantptr[DCTSIZE*7]);
+
+ z13 = tmp6 + tmp5; /* phase 6 */
+ z10 = tmp6 - tmp5;
+ z11 = tmp4 + tmp7;
+ z12 = tmp4 - tmp7;
+
+ tmp7 = z11 + z13; /* phase 5 */
+ tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562); /* 2*c4 */
+
+ z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
+ tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
+ tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
+
+ tmp6 = tmp12 - tmp7; /* phase 2 */
+ tmp5 = tmp11 - tmp6;
+ tmp4 = tmp10 + tmp5;
+
+ wsptr[DCTSIZE*0] = tmp0 + tmp7;
+ wsptr[DCTSIZE*7] = tmp0 - tmp7;
+ wsptr[DCTSIZE*1] = tmp1 + tmp6;
+ wsptr[DCTSIZE*6] = tmp1 - tmp6;
+ wsptr[DCTSIZE*2] = tmp2 + tmp5;
+ wsptr[DCTSIZE*5] = tmp2 - tmp5;
+ wsptr[DCTSIZE*4] = tmp3 + tmp4;
+ wsptr[DCTSIZE*3] = tmp3 - tmp4;
+
+ inptr++; /* advance pointers to next column */
+ quantptr++;
+ wsptr++;
+ }
+
+ /* Pass 2: process rows from work array, store into output array. */
+ /* Note that we must descale the results by a factor of 8 == 2**3. */
+
+ wsptr = workspace;
+ for (ctr = 0; ctr < DCTSIZE; ctr++) {
+ outptr = output_buf[ctr] + output_col;
+ /* Rows of zeroes can be exploited in the same way as we did with columns.
+ * However, the column calculation has created many nonzero AC terms, so
+ * the simplification applies less often (typically 5% to 10% of the time).
+ * And testing floats for zero is relatively expensive, so we don't bother.
+ */
+
+ /* Even part */
+
+ tmp10 = wsptr[0] + wsptr[4];
+ tmp11 = wsptr[0] - wsptr[4];
+
+ tmp13 = wsptr[2] + wsptr[6];
+ tmp12 = (wsptr[2] - wsptr[6]) * ((FAST_FLOAT) 1.414213562) - tmp13;
+
+ tmp0 = tmp10 + tmp13;
+ tmp3 = tmp10 - tmp13;
+ tmp1 = tmp11 + tmp12;
+ tmp2 = tmp11 - tmp12;
+
+ /* Odd part */
+
+ z13 = wsptr[5] + wsptr[3];
+ z10 = wsptr[5] - wsptr[3];
+ z11 = wsptr[1] + wsptr[7];
+ z12 = wsptr[1] - wsptr[7];
+
+ tmp7 = z11 + z13;
+ tmp11 = (z11 - z13) * ((FAST_FLOAT) 1.414213562);
+
+ z5 = (z10 + z12) * ((FAST_FLOAT) 1.847759065); /* 2*c2 */
+ tmp10 = ((FAST_FLOAT) 1.082392200) * z12 - z5; /* 2*(c2-c6) */
+ tmp12 = ((FAST_FLOAT) -2.613125930) * z10 + z5; /* -2*(c2+c6) */
+
+ tmp6 = tmp12 - tmp7;
+ tmp5 = tmp11 - tmp6;
+ tmp4 = tmp10 + tmp5;
+
+ /* Final output stage: scale down by a factor of 8 and range-limit */
+
+ outptr[0] = range_limit[(int) DESCALE((INT32) (tmp0 + tmp7), 3)
+ & RANGE_MASK];
+ outptr[7] = range_limit[(int) DESCALE((INT32) (tmp0 - tmp7), 3)
+ & RANGE_MASK];
+ outptr[1] = range_limit[(int) DESCALE((INT32) (tmp1 + tmp6), 3)
+ & RANGE_MASK];
+ outptr[6] = range_limit[(int) DESCALE((INT32) (tmp1 - tmp6), 3)
+ & RANGE_MASK];
+ outptr[2] = range_limit[(int) DESCALE((INT32) (tmp2 + tmp5), 3)
+ & RANGE_MASK];
+ outptr[5] = range_limit[(int) DESCALE((INT32) (tmp2 - tmp5), 3)
+ & RANGE_MASK];
+ outptr[4] = range_limit[(int) DESCALE((INT32) (tmp3 + tmp4), 3)
+ & RANGE_MASK];
+ outptr[3] = range_limit[(int) DESCALE((INT32) (tmp3 - tmp4), 3)
+ & RANGE_MASK];
+
+ wsptr += DCTSIZE; /* advance pointer to next row */
+ }
+}
+
+#endif /* DCT_FLOAT_SUPPORTED */
diff --git a/libs/jpeg6/jinclude.h b/libs/jpeg6/jinclude.h
index 5ff60fe..0a4f151 100755
--- a/libs/jpeg6/jinclude.h
+++ b/libs/jpeg6/jinclude.h
@@ -1,91 +1,91 @@
-/*
- * jinclude.h
- *
- * Copyright (C) 1991-1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file exists to provide a single place to fix any problems with
- * including the wrong system include files. (Common problems are taken
- * care of by the standard jconfig symbols, but on really weird systems
- * you may have to edit this file.)
- *
- * NOTE: this file is NOT intended to be included by applications using the
- * JPEG library. Most applications need only include jpeglib.h.
- */
-
-
-/* Include auto-config file to find out which system include files we need. */
-
-#include "jconfig.h" /* auto configuration options */
-#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */
-
-/*
- * We need the NULL macro and size_t typedef.
- * On an ANSI-conforming system it is sufficient to include <stddef.h>.
- * Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
- * pull in <sys/types.h> as well.
- * Note that the core JPEG library does not require <stdio.h>;
- * only the default error handler and data source/destination modules do.
- * But we must pull it in because of the references to FILE in jpeglib.h.
- * You can remove those references if you want to compile without <stdio.h>.
- */
-
-#ifdef HAVE_STDDEF_H
-#include <stddef.h>
-#endif
-
-#ifdef HAVE_STDLIB_H
-#include <stdlib.h>
-#endif
-
-#ifdef NEED_SYS_TYPES_H
-#include <sys/types.h>
-#endif
-
-#include <stdio.h>
-
-/*
- * We need memory copying and zeroing functions, plus strncpy().
- * ANSI and System V implementations declare these in <string.h>.
- * BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
- * Some systems may declare memset and memcpy in <memory.h>.
- *
- * NOTE: we assume the size parameters to these functions are of type size_t.
- * Change the casts in these macros if not!
- */
-
-#ifdef NEED_BSD_STRINGS
-
-#include <strings.h>
-#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size))
-#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size))
-
-#else /* not BSD, assume ANSI/SysV string lib */
-
-#include <string.h>
-#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size))
-#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size))
-
-#endif
-
-/*
- * In ANSI C, and indeed any rational implementation, size_t is also the
- * type returned by sizeof(). However, it seems there are some irrational
- * implementations out there, in which sizeof() returns an int even though
- * size_t is defined as long or unsigned long. To ensure consistent results
- * we always use this SIZEOF() macro in place of using sizeof() directly.
- */
-
-#define SIZEOF(object) ((size_t) sizeof(object))
-
-/*
- * The modules that use fread() and fwrite() always invoke them through
- * these macros. On some systems you may need to twiddle the argument casts.
- * CAUTION: argument order is different from underlying functions!
- */
-
-#define JFREAD(file,buf,sizeofbuf) \
- ((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
-#define JFWRITE(file,buf,sizeofbuf) \
- ((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
+/*
+ * jinclude.h
+ *
+ * Copyright (C) 1991-1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file exists to provide a single place to fix any problems with
+ * including the wrong system include files. (Common problems are taken
+ * care of by the standard jconfig symbols, but on really weird systems
+ * you may have to edit this file.)
+ *
+ * NOTE: this file is NOT intended to be included by applications using the
+ * JPEG library. Most applications need only include jpeglib.h.
+ */
+
+
+/* Include auto-config file to find out which system include files we need. */
+
+#include "jconfig.h" /* auto configuration options */
+#define JCONFIG_INCLUDED /* so that jpeglib.h doesn't do it again */
+
+/*
+ * We need the NULL macro and size_t typedef.
+ * On an ANSI-conforming system it is sufficient to include <stddef.h>.
+ * Otherwise, we get them from <stdlib.h> or <stdio.h>; we may have to
+ * pull in <sys/types.h> as well.
+ * Note that the core JPEG library does not require <stdio.h>;
+ * only the default error handler and data source/destination modules do.
+ * But we must pull it in because of the references to FILE in jpeglib.h.
+ * You can remove those references if you want to compile without <stdio.h>.
+ */
+
+#ifdef HAVE_STDDEF_H
+#include <stddef.h>
+#endif
+
+#ifdef HAVE_STDLIB_H
+#include <stdlib.h>
+#endif
+
+#ifdef NEED_SYS_TYPES_H
+#include <sys/types.h>
+#endif
+
+#include <stdio.h>
+
+/*
+ * We need memory copying and zeroing functions, plus strncpy().
+ * ANSI and System V implementations declare these in <string.h>.
+ * BSD doesn't have the mem() functions, but it does have bcopy()/bzero().
+ * Some systems may declare memset and memcpy in <memory.h>.
+ *
+ * NOTE: we assume the size parameters to these functions are of type size_t.
+ * Change the casts in these macros if not!
+ */
+
+#ifdef NEED_BSD_STRINGS
+
+#include <strings.h>
+#define MEMZERO(target,size) bzero((void *)(target), (size_t)(size))
+#define MEMCOPY(dest,src,size) bcopy((const void *)(src), (void *)(dest), (size_t)(size))
+
+#else /* not BSD, assume ANSI/SysV string lib */
+
+#include <string.h>
+#define MEMZERO(target,size) memset((void *)(target), 0, (size_t)(size))
+#define MEMCOPY(dest,src,size) memcpy((void *)(dest), (const void *)(src), (size_t)(size))
+
+#endif
+
+/*
+ * In ANSI C, and indeed any rational implementation, size_t is also the
+ * type returned by sizeof(). However, it seems there are some irrational
+ * implementations out there, in which sizeof() returns an int even though
+ * size_t is defined as long or unsigned long. To ensure consistent results
+ * we always use this SIZEOF() macro in place of using sizeof() directly.
+ */
+
+#define SIZEOF(object) ((size_t) sizeof(object))
+
+/*
+ * The modules that use fread() and fwrite() always invoke them through
+ * these macros. On some systems you may need to twiddle the argument casts.
+ * CAUTION: argument order is different from underlying functions!
+ */
+
+#define JFREAD(file,buf,sizeofbuf) \
+ ((size_t) fread((void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
+#define JFWRITE(file,buf,sizeofbuf) \
+ ((size_t) fwrite((const void *) (buf), (size_t) 1, (size_t) (sizeofbuf), (file)))
diff --git a/libs/jpeg6/jmemmgr.cpp b/libs/jpeg6/jmemmgr.cpp
index 61045f9..dc3e1c7 100755
--- a/libs/jpeg6/jmemmgr.cpp
+++ b/libs/jpeg6/jmemmgr.cpp
@@ -1,1115 +1,1115 @@
-/*
- * jmemmgr.c
- *
- * Copyright (C) 1991-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains the JPEG system-independent memory management
- * routines. This code is usable across a wide variety of machines; most
- * of the system dependencies have been isolated in a separate file.
- * The major functions provided here are:
- * * pool-based allocation and freeing of memory;
- * * policy decisions about how to divide available memory among the
- * virtual arrays;
- * * control logic for swapping virtual arrays between main memory and
- * backing storage.
- * The separate system-dependent file provides the actual backing-storage
- * access code, and it contains the policy decision about how much total
- * main memory to use.
- * This file is system-dependent in the sense that some of its functions
- * are unnecessary in some systems. For example, if there is enough virtual
- * memory so that backing storage will never be used, much of the virtual
- * array control logic could be removed. (Of course, if you have that much
- * memory then you shouldn't care about a little bit of unused code...)
- */
-
-#define JPEG_INTERNALS
-#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jmemsys.h" /* import the system-dependent declarations */
-
-#ifndef NO_GETENV
-#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
-extern char * getenv JPP((const char * name));
-#endif
-#endif
-
-
-/*
- * Some important notes:
- * The allocation routines provided here must never return NULL.
- * They should exit to error_exit if unsuccessful.
- *
- * It's not a good idea to try to merge the sarray and barray routines,
- * even though they are textually almost the same, because samples are
- * usually stored as bytes while coefficients are shorts or ints. Thus,
- * in machines where byte pointers have a different representation from
- * word pointers, the resulting machine code could not be the same.
- */
-
-
-/*
- * Many machines require storage alignment: longs must start on 4-byte
- * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
- * always returns pointers that are multiples of the worst-case alignment
- * requirement, and we had better do so too.
- * There isn't any really portable way to determine the worst-case alignment
- * requirement. This module assumes that the alignment requirement is
- * multiples of sizeof(ALIGN_TYPE).
- * By default, we define ALIGN_TYPE as double. This is necessary on some
- * workstations (where doubles really do need 8-byte alignment) and will work
- * fine on nearly everything. If your machine has lesser alignment needs,
- * you can save a few bytes by making ALIGN_TYPE smaller.
- * The only place I know of where this will NOT work is certain Macintosh
- * 680x0 compilers that define double as a 10-byte IEEE extended float.
- * Doing 10-byte alignment is counterproductive because longwords won't be
- * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
- * such a compiler.
- */
-
-#ifndef ALIGN_TYPE /* so can override from jconfig.h */
-#define ALIGN_TYPE double
-#endif
-
-
-/*
- * We allocate objects from "pools", where each pool is gotten with a single
- * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
- * overhead within a pool, except for alignment padding. Each pool has a
- * header with a link to the next pool of the same class.
- * Small and large pool headers are identical except that the latter's
- * link pointer must be FAR on 80x86 machines.
- * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
- * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
- * of the alignment requirement of ALIGN_TYPE.
- */
-
-typedef union small_pool_struct * small_pool_ptr;
-
-typedef union small_pool_struct {
- struct {
- small_pool_ptr next; /* next in list of pools */
- size_t bytes_used; /* how many bytes already used within pool */
- size_t bytes_left; /* bytes still available in this pool */
- } hdr;
- ALIGN_TYPE dummy; /* included in union to ensure alignment */
-} small_pool_hdr;
-
-typedef union large_pool_struct FAR * large_pool_ptr;
-
-typedef union large_pool_struct {
- struct {
- large_pool_ptr next; /* next in list of pools */
- size_t bytes_used; /* how many bytes already used within pool */
- size_t bytes_left; /* bytes still available in this pool */
- } hdr;
- ALIGN_TYPE dummy; /* included in union to ensure alignment */
-} large_pool_hdr;
-
-
-/*
- * Here is the full definition of a memory manager object.
- */
-
-typedef struct {
- struct jpeg_memory_mgr pub; /* public fields */
-
- /* Each pool identifier (lifetime class) names a linked list of pools. */
- small_pool_ptr small_list[JPOOL_NUMPOOLS];
- large_pool_ptr large_list[JPOOL_NUMPOOLS];
-
- /* Since we only have one lifetime class of virtual arrays, only one
- * linked list is necessary (for each datatype). Note that the virtual
- * array control blocks being linked together are actually stored somewhere
- * in the small-pool list.
- */
- jvirt_sarray_ptr virt_sarray_list;
- jvirt_barray_ptr virt_barray_list;
-
- /* This counts total space obtained from jpeg_get_small/large */
- long total_space_allocated;
-
- /* alloc_sarray and alloc_barray set this value for use by virtual
- * array routines.
- */
- JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
-} my_memory_mgr;
-
-typedef my_memory_mgr * my_mem_ptr;
-
-
-/*
- * The control blocks for virtual arrays.
- * Note that these blocks are allocated in the "small" pool area.
- * System-dependent info for the associated backing store (if any) is hidden
- * inside the backing_store_info struct.
- */
-
-struct jvirt_sarray_control {
- JSAMPARRAY mem_buffer; /* => the in-memory buffer */
- JDIMENSION rows_in_array; /* total virtual array height */
- JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
- JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
- JDIMENSION rows_in_mem; /* height of memory buffer */
- JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
- JDIMENSION cur_start_row; /* first logical row # in the buffer */
- JDIMENSION first_undef_row; /* row # of first uninitialized row */
- boolean pre_zero; /* pre-zero mode requested? */
- boolean dirty; /* do current buffer contents need written? */
- boolean b_s_open; /* is backing-store data valid? */
- jvirt_sarray_ptr next; /* link to next virtual sarray control block */
- backing_store_info b_s_info; /* System-dependent control info */
-};
-
-struct jvirt_barray_control {
- JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
- JDIMENSION rows_in_array; /* total virtual array height */
- JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
- JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
- JDIMENSION rows_in_mem; /* height of memory buffer */
- JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
- JDIMENSION cur_start_row; /* first logical row # in the buffer */
- JDIMENSION first_undef_row; /* row # of first uninitialized row */
- boolean pre_zero; /* pre-zero mode requested? */
- boolean dirty; /* do current buffer contents need written? */
- boolean b_s_open; /* is backing-store data valid? */
- jvirt_barray_ptr next; /* link to next virtual barray control block */
- backing_store_info b_s_info; /* System-dependent control info */
-};
-
-
-#ifdef MEM_STATS /* optional extra stuff for statistics */
-
-LOCAL void
-print_mem_stats (j_common_ptr cinfo, int pool_id)
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- small_pool_ptr shdr_ptr;
- large_pool_ptr lhdr_ptr;
-
- /* Since this is only a debugging stub, we can cheat a little by using
- * fprintf directly rather than going through the trace message code.
- * This is helpful because message parm array can't handle longs.
- */
- fprintf(stderr, "Freeing pool %d, total space = %ld\n",
- pool_id, mem->total_space_allocated);
-
- for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
- lhdr_ptr = lhdr_ptr->hdr.next) {
- fprintf(stderr, " Large chunk used %ld\n",
- (long) lhdr_ptr->hdr.bytes_used);
- }
-
- for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
- shdr_ptr = shdr_ptr->hdr.next) {
- fprintf(stderr, " Small chunk used %ld free %ld\n",
- (long) shdr_ptr->hdr.bytes_used,
- (long) shdr_ptr->hdr.bytes_left);
- }
-}
-
-#endif /* MEM_STATS */
-
-
-LOCAL void
-out_of_memory (j_common_ptr cinfo, int which)
-/* Report an out-of-memory error and stop execution */
-/* If we compiled MEM_STATS support, report alloc requests before dying */
-{
-#ifdef MEM_STATS
- cinfo->err->trace_level = 2; /* force self_destruct to report stats */
-#endif
- ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
-}
-
-
-/*
- * Allocation of "small" objects.
- *
- * For these, we use pooled storage. When a new pool must be created,
- * we try to get enough space for the current request plus a "slop" factor,
- * where the slop will be the amount of leftover space in the new pool.
- * The speed vs. space tradeoff is largely determined by the slop values.
- * A different slop value is provided for each pool class (lifetime),
- * and we also distinguish the first pool of a class from later ones.
- * NOTE: the values given work fairly well on both 16- and 32-bit-int
- * machines, but may be too small if longs are 64 bits or more.
- */
-
-static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
-{
- 1600, /* first PERMANENT pool */
- 16000 /* first IMAGE pool */
-};
-
-static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
-{
- 0, /* additional PERMANENT pools */
- 5000 /* additional IMAGE pools */
-};
-
-#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
-
-
-METHODDEF void *
-alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
-/* Allocate a "small" object */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- small_pool_ptr hdr_ptr, prev_hdr_ptr;
- char * data_ptr;
- size_t odd_bytes, min_request, slop;
-
- /* Check for unsatisfiable request (do now to ensure no overflow below) */
- if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
- out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
-
- /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
- odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
- if (odd_bytes > 0)
- sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
-
- /* See if space is available in any existing pool */
- if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
- prev_hdr_ptr = NULL;
- hdr_ptr = mem->small_list[pool_id];
- while (hdr_ptr != NULL) {
- if (hdr_ptr->hdr.bytes_left >= sizeofobject)
- break; /* found pool with enough space */
- prev_hdr_ptr = hdr_ptr;
- hdr_ptr = hdr_ptr->hdr.next;
- }
-
- /* Time to make a new pool? */
- if (hdr_ptr == NULL) {
- /* min_request is what we need now, slop is what will be leftover */
- min_request = sizeofobject + SIZEOF(small_pool_hdr);
- if (prev_hdr_ptr == NULL) /* first pool in class? */
- slop = first_pool_slop[pool_id];
- else
- slop = extra_pool_slop[pool_id];
- /* Don't ask for more than MAX_ALLOC_CHUNK */
- if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
- slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
- /* Try to get space, if fail reduce slop and try again */
- for (;;) {
- hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
- if (hdr_ptr != NULL)
- break;
- slop /= 2;
- if (slop < MIN_SLOP) /* give up when it gets real small */
- out_of_memory(cinfo, 2); /* jpeg_get_small failed */
- }
- mem->total_space_allocated += min_request + slop;
- /* Success, initialize the new pool header and add to end of list */
- hdr_ptr->hdr.next = NULL;
- hdr_ptr->hdr.bytes_used = 0;
- hdr_ptr->hdr.bytes_left = sizeofobject + slop;
- if (prev_hdr_ptr == NULL) /* first pool in class? */
- mem->small_list[pool_id] = hdr_ptr;
- else
- prev_hdr_ptr->hdr.next = hdr_ptr;
- }
-
- /* OK, allocate the object from the current pool */
- data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
- data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
- hdr_ptr->hdr.bytes_used += sizeofobject;
- hdr_ptr->hdr.bytes_left -= sizeofobject;
-
- return (void *) data_ptr;
-}
-
-
-/*
- * Allocation of "large" objects.
- *
- * The external semantics of these are the same as "small" objects,
- * except that FAR pointers are used on 80x86. However the pool
- * management heuristics are quite different. We assume that each
- * request is large enough that it may as well be passed directly to
- * jpeg_get_large; the pool management just links everything together
- * so that we can free it all on demand.
- * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
- * structures. The routines that create these structures (see below)
- * deliberately bunch rows together to ensure a large request size.
- */
-
-METHODDEF void FAR *
-alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
-/* Allocate a "large" object */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- large_pool_ptr hdr_ptr;
- size_t odd_bytes;
-
- /* Check for unsatisfiable request (do now to ensure no overflow below) */
- if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
- out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
-
- /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
- odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
- if (odd_bytes > 0)
- sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
-
- /* Always make a new pool */
- if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
-
- hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
- SIZEOF(large_pool_hdr));
- if (hdr_ptr == NULL)
- out_of_memory(cinfo, 4); /* jpeg_get_large failed */
- mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
-
- /* Success, initialize the new pool header and add to list */
- hdr_ptr->hdr.next = mem->large_list[pool_id];
- /* We maintain space counts in each pool header for statistical purposes,
- * even though they are not needed for allocation.
- */
- hdr_ptr->hdr.bytes_used = sizeofobject;
- hdr_ptr->hdr.bytes_left = 0;
- mem->large_list[pool_id] = hdr_ptr;
-
- return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
-}
-
-
-/*
- * Creation of 2-D sample arrays.
- * The pointers are in near heap, the samples themselves in FAR heap.
- *
- * To minimize allocation overhead and to allow I/O of large contiguous
- * blocks, we allocate the sample rows in groups of as many rows as possible
- * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
- * NB: the virtual array control routines, later in this file, know about
- * this chunking of rows. The rowsperchunk value is left in the mem manager
- * object so that it can be saved away if this sarray is the workspace for
- * a virtual array.
- */
-
-METHODDEF JSAMPARRAY
-alloc_sarray (j_common_ptr cinfo, int pool_id,
- JDIMENSION samplesperrow, JDIMENSION numrows)
-/* Allocate a 2-D sample array */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- JSAMPARRAY result;
- JSAMPROW workspace;
- JDIMENSION rowsperchunk, currow, i;
- long ltemp;
-
- /* Calculate max # of rows allowed in one allocation chunk */
- ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
- ((long) samplesperrow * SIZEOF(JSAMPLE));
- if (ltemp <= 0)
- ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
- if (ltemp < (long) numrows)
- rowsperchunk = (JDIMENSION) ltemp;
- else
- rowsperchunk = numrows;
- mem->last_rowsperchunk = rowsperchunk;
-
- /* Get space for row pointers (small object) */
- result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
- (size_t) (numrows * SIZEOF(JSAMPROW)));
-
- /* Get the rows themselves (large objects) */
- currow = 0;
- while (currow < numrows) {
- rowsperchunk = MIN(rowsperchunk, numrows - currow);
- workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
- (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
- * SIZEOF(JSAMPLE)));
- for (i = rowsperchunk; i > 0; i--) {
- result[currow++] = workspace;
- workspace += samplesperrow;
- }
- }
-
- return result;
-}
-
-
-/*
- * Creation of 2-D coefficient-block arrays.
- * This is essentially the same as the code for sample arrays, above.
- */
-
-METHODDEF JBLOCKARRAY
-alloc_barray (j_common_ptr cinfo, int pool_id,
- JDIMENSION blocksperrow, JDIMENSION numrows)
-/* Allocate a 2-D coefficient-block array */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- JBLOCKARRAY result;
- JBLOCKROW workspace;
- JDIMENSION rowsperchunk, currow, i;
- long ltemp;
-
- /* Calculate max # of rows allowed in one allocation chunk */
- ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
- ((long) blocksperrow * SIZEOF(JBLOCK));
- if (ltemp <= 0)
- ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
- if (ltemp < (long) numrows)
- rowsperchunk = (JDIMENSION) ltemp;
- else
- rowsperchunk = numrows;
- mem->last_rowsperchunk = rowsperchunk;
-
- /* Get space for row pointers (small object) */
- result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
- (size_t) (numrows * SIZEOF(JBLOCKROW)));
-
- /* Get the rows themselves (large objects) */
- currow = 0;
- while (currow < numrows) {
- rowsperchunk = MIN(rowsperchunk, numrows - currow);
- workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
- (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
- * SIZEOF(JBLOCK)));
- for (i = rowsperchunk; i > 0; i--) {
- result[currow++] = workspace;
- workspace += blocksperrow;
- }
- }
-
- return result;
-}
-
-
-/*
- * About virtual array management:
- *
- * The above "normal" array routines are only used to allocate strip buffers
- * (as wide as the image, but just a few rows high). Full-image-sized buffers
- * are handled as "virtual" arrays. The array is still accessed a strip at a
- * time, but the memory manager must save the whole array for repeated
- * accesses. The intended implementation is that there is a strip buffer in
- * memory (as high as is possible given the desired memory limit), plus a
- * backing file that holds the rest of the array.
- *
- * The request_virt_array routines are told the total size of the image and
- * the maximum number of rows that will be accessed at once. The in-memory
- * buffer must be at least as large as the maxaccess value.
- *
- * The request routines create control blocks but not the in-memory buffers.
- * That is postponed until realize_virt_arrays is called. At that time the
- * total amount of space needed is known (approximately, anyway), so free
- * memory can be divided up fairly.
- *
- * The access_virt_array routines are responsible for making a specific strip
- * area accessible (after reading or writing the backing file, if necessary).
- * Note that the access routines are told whether the caller intends to modify
- * the accessed strip; during a read-only pass this saves having to rewrite
- * data to disk. The access routines are also responsible for pre-zeroing
- * any newly accessed rows, if pre-zeroing was requested.
- *
- * In current usage, the access requests are usually for nonoverlapping
- * strips; that is, successive access start_row numbers differ by exactly
- * num_rows = maxaccess. This means we can get good performance with simple
- * buffer dump/reload logic, by making the in-memory buffer be a multiple
- * of the access height; then there will never be accesses across bufferload
- * boundaries. The code will still work with overlapping access requests,
- * but it doesn't handle bufferload overlaps very efficiently.
- */
-
-
-METHODDEF jvirt_sarray_ptr
-request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
- JDIMENSION samplesperrow, JDIMENSION numrows,
- JDIMENSION maxaccess)
-/* Request a virtual 2-D sample array */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- jvirt_sarray_ptr result;
-
- /* Only IMAGE-lifetime virtual arrays are currently supported */
- if (pool_id != JPOOL_IMAGE)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
-
- /* get control block */
- result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
- SIZEOF(struct jvirt_sarray_control));
-
- result->mem_buffer = NULL; /* marks array not yet realized */
- result->rows_in_array = numrows;
- result->samplesperrow = samplesperrow;
- result->maxaccess = maxaccess;
- result->pre_zero = pre_zero;
- result->b_s_open = FALSE; /* no associated backing-store object */
- result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
- mem->virt_sarray_list = result;
-
- return result;
-}
-
-
-METHODDEF jvirt_barray_ptr
-request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
- JDIMENSION blocksperrow, JDIMENSION numrows,
- JDIMENSION maxaccess)
-/* Request a virtual 2-D coefficient-block array */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- jvirt_barray_ptr result;
-
- /* Only IMAGE-lifetime virtual arrays are currently supported */
- if (pool_id != JPOOL_IMAGE)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
-
- /* get control block */
- result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
- SIZEOF(struct jvirt_barray_control));
-
- result->mem_buffer = NULL; /* marks array not yet realized */
- result->rows_in_array = numrows;
- result->blocksperrow = blocksperrow;
- result->maxaccess = maxaccess;
- result->pre_zero = pre_zero;
- result->b_s_open = FALSE; /* no associated backing-store object */
- result->next = mem->virt_barray_list; /* add to list of virtual arrays */
- mem->virt_barray_list = result;
-
- return result;
-}
-
-
-METHODDEF void
-realize_virt_arrays (j_common_ptr cinfo)
-/* Allocate the in-memory buffers for any unrealized virtual arrays */
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- long space_per_minheight, maximum_space, avail_mem;
- long minheights, max_minheights;
- jvirt_sarray_ptr sptr;
- jvirt_barray_ptr bptr;
-
- /* Compute the minimum space needed (maxaccess rows in each buffer)
- * and the maximum space needed (full image height in each buffer).
- * These may be of use to the system-dependent jpeg_mem_available routine.
- */
- space_per_minheight = 0;
- maximum_space = 0;
- for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
- if (sptr->mem_buffer == NULL) { /* if not realized yet */
- space_per_minheight += (long) sptr->maxaccess *
- (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
- maximum_space += (long) sptr->rows_in_array *
- (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
- }
- }
- for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
- if (bptr->mem_buffer == NULL) { /* if not realized yet */
- space_per_minheight += (long) bptr->maxaccess *
- (long) bptr->blocksperrow * SIZEOF(JBLOCK);
- maximum_space += (long) bptr->rows_in_array *
- (long) bptr->blocksperrow * SIZEOF(JBLOCK);
- }
- }
-
- if (space_per_minheight <= 0)
- return; /* no unrealized arrays, no work */
-
- /* Determine amount of memory to actually use; this is system-dependent. */
- avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
- mem->total_space_allocated);
-
- /* If the maximum space needed is available, make all the buffers full
- * height; otherwise parcel it out with the same number of minheights
- * in each buffer.
- */
- if (avail_mem >= maximum_space)
- max_minheights = 1000000000L;
- else {
- max_minheights = avail_mem / space_per_minheight;
- /* If there doesn't seem to be enough space, try to get the minimum
- * anyway. This allows a "stub" implementation of jpeg_mem_available().
- */
- if (max_minheights <= 0)
- max_minheights = 1;
- }
-
- /* Allocate the in-memory buffers and initialize backing store as needed. */
-
- for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
- if (sptr->mem_buffer == NULL) { /* if not realized yet */
- minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
- if (minheights <= max_minheights) {
- /* This buffer fits in memory */
- sptr->rows_in_mem = sptr->rows_in_array;
- } else {
- /* It doesn't fit in memory, create backing store. */
- sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
- jpeg_open_backing_store(cinfo, & sptr->b_s_info,
- (long) sptr->rows_in_array *
- (long) sptr->samplesperrow *
- (long) SIZEOF(JSAMPLE));
- sptr->b_s_open = TRUE;
- }
- sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
- sptr->samplesperrow, sptr->rows_in_mem);
- sptr->rowsperchunk = mem->last_rowsperchunk;
- sptr->cur_start_row = 0;
- sptr->first_undef_row = 0;
- sptr->dirty = FALSE;
- }
- }
-
- for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
- if (bptr->mem_buffer == NULL) { /* if not realized yet */
- minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
- if (minheights <= max_minheights) {
- /* This buffer fits in memory */
- bptr->rows_in_mem = bptr->rows_in_array;
- } else {
- /* It doesn't fit in memory, create backing store. */
- bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
- jpeg_open_backing_store(cinfo, & bptr->b_s_info,
- (long) bptr->rows_in_array *
- (long) bptr->blocksperrow *
- (long) SIZEOF(JBLOCK));
- bptr->b_s_open = TRUE;
- }
- bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
- bptr->blocksperrow, bptr->rows_in_mem);
- bptr->rowsperchunk = mem->last_rowsperchunk;
- bptr->cur_start_row = 0;
- bptr->first_undef_row = 0;
- bptr->dirty = FALSE;
- }
- }
-}
-
-
-LOCAL void
-do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
-/* Do backing store read or write of a virtual sample array */
-{
- long bytesperrow, file_offset, byte_count, rows, thisrow, i;
-
- bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
- file_offset = ptr->cur_start_row * bytesperrow;
- /* Loop to read or write each allocation chunk in mem_buffer */
- for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
- /* One chunk, but check for short chunk at end of buffer */
- rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
- /* Transfer no more than is currently defined */
- thisrow = (long) ptr->cur_start_row + i;
- rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
- /* Transfer no more than fits in file */
- rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
- if (rows <= 0) /* this chunk might be past end of file! */
- break;
- byte_count = rows * bytesperrow;
- if (writing)
- (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- else
- (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- file_offset += byte_count;
- }
-}
-
-
-LOCAL void
-do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
-/* Do backing store read or write of a virtual coefficient-block array */
-{
- long bytesperrow, file_offset, byte_count, rows, thisrow, i;
-
- bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
- file_offset = ptr->cur_start_row * bytesperrow;
- /* Loop to read or write each allocation chunk in mem_buffer */
- for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
- /* One chunk, but check for short chunk at end of buffer */
- rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
- /* Transfer no more than is currently defined */
- thisrow = (long) ptr->cur_start_row + i;
- rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
- /* Transfer no more than fits in file */
- rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
- if (rows <= 0) /* this chunk might be past end of file! */
- break;
- byte_count = rows * bytesperrow;
- if (writing)
- (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- else
- (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
- (void FAR *) ptr->mem_buffer[i],
- file_offset, byte_count);
- file_offset += byte_count;
- }
-}
-
-
-METHODDEF JSAMPARRAY
-access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
- JDIMENSION start_row, JDIMENSION num_rows,
- boolean writable)
-/* Access the part of a virtual sample array starting at start_row */
-/* and extending for num_rows rows. writable is true if */
-/* caller intends to modify the accessed area. */
-{
- JDIMENSION end_row = start_row + num_rows;
- JDIMENSION undef_row;
-
- /* debugging check */
- if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
- ptr->mem_buffer == NULL)
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
-
- /* Make the desired part of the virtual array accessible */
- if (start_row < ptr->cur_start_row ||
- end_row > ptr->cur_start_row+ptr->rows_in_mem) {
- if (! ptr->b_s_open)
- ERREXIT(cinfo, JERR_VIRTUAL_BUG);
- /* Flush old buffer contents if necessary */
- if (ptr->dirty) {
- do_sarray_io(cinfo, ptr, TRUE);
- ptr->dirty = FALSE;
- }
- /* Decide what part of virtual array to access.
- * Algorithm: if target address > current window, assume forward scan,
- * load starting at target address. If target address < current window,
- * assume backward scan, load so that target area is top of window.
- * Note that when switching from forward write to forward read, will have
- * start_row = 0, so the limiting case applies and we load from 0 anyway.
- */
- if (start_row > ptr->cur_start_row) {
- ptr->cur_start_row = start_row;
- } else {
- /* use long arithmetic here to avoid overflow & unsigned problems */
- long ltemp;
-
- ltemp = (long) end_row - (long) ptr->rows_in_mem;
- if (ltemp < 0)
- ltemp = 0; /* don't fall off front end of file */
- ptr->cur_start_row = (JDIMENSION) ltemp;
- }
- /* Read in the selected part of the array.
- * During the initial write pass, we will do no actual read
- * because the selected part is all undefined.
- */
- do_sarray_io(cinfo, ptr, FALSE);
- }
- /* Ensure the accessed part of the array is defined; prezero if needed.
- * To improve locality of access, we only prezero the part of the array
- * that the caller is about to access, not the entire in-memory array.
- */
- if (ptr->first_undef_row < end_row) {
- if (ptr->first_undef_row < start_row) {
- if (writable) /* writer skipped over a section of array */
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
- undef_row = start_row; /* but reader is allowed to read ahead */
- } else {
- undef_row = ptr->first_undef_row;
- }
- if (writable)
- ptr->first_undef_row = end_row;
- if (ptr->pre_zero) {
- size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
- undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
- end_row -= ptr->cur_start_row;
- while (undef_row < end_row) {
- jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
- undef_row++;
- }
- } else {
- if (! writable) /* reader looking at undefined data */
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
- }
- }
- /* Flag the buffer dirty if caller will write in it */
- if (writable)
- ptr->dirty = TRUE;
- /* Return address of proper part of the buffer */
- return ptr->mem_buffer + (start_row - ptr->cur_start_row);
-}
-
-
-METHODDEF JBLOCKARRAY
-access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
- JDIMENSION start_row, JDIMENSION num_rows,
- boolean writable)
-/* Access the part of a virtual block array starting at start_row */
-/* and extending for num_rows rows. writable is true if */
-/* caller intends to modify the accessed area. */
-{
- JDIMENSION end_row = start_row + num_rows;
- JDIMENSION undef_row;
-
- /* debugging check */
- if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
- ptr->mem_buffer == NULL)
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
-
- /* Make the desired part of the virtual array accessible */
- if (start_row < ptr->cur_start_row ||
- end_row > ptr->cur_start_row+ptr->rows_in_mem) {
- if (! ptr->b_s_open)
- ERREXIT(cinfo, JERR_VIRTUAL_BUG);
- /* Flush old buffer contents if necessary */
- if (ptr->dirty) {
- do_barray_io(cinfo, ptr, TRUE);
- ptr->dirty = FALSE;
- }
- /* Decide what part of virtual array to access.
- * Algorithm: if target address > current window, assume forward scan,
- * load starting at target address. If target address < current window,
- * assume backward scan, load so that target area is top of window.
- * Note that when switching from forward write to forward read, will have
- * start_row = 0, so the limiting case applies and we load from 0 anyway.
- */
- if (start_row > ptr->cur_start_row) {
- ptr->cur_start_row = start_row;
- } else {
- /* use long arithmetic here to avoid overflow & unsigned problems */
- long ltemp;
-
- ltemp = (long) end_row - (long) ptr->rows_in_mem;
- if (ltemp < 0)
- ltemp = 0; /* don't fall off front end of file */
- ptr->cur_start_row = (JDIMENSION) ltemp;
- }
- /* Read in the selected part of the array.
- * During the initial write pass, we will do no actual read
- * because the selected part is all undefined.
- */
- do_barray_io(cinfo, ptr, FALSE);
- }
- /* Ensure the accessed part of the array is defined; prezero if needed.
- * To improve locality of access, we only prezero the part of the array
- * that the caller is about to access, not the entire in-memory array.
- */
- if (ptr->first_undef_row < end_row) {
- if (ptr->first_undef_row < start_row) {
- if (writable) /* writer skipped over a section of array */
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
- undef_row = start_row; /* but reader is allowed to read ahead */
- } else {
- undef_row = ptr->first_undef_row;
- }
- if (writable)
- ptr->first_undef_row = end_row;
- if (ptr->pre_zero) {
- size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
- undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
- end_row -= ptr->cur_start_row;
- while (undef_row < end_row) {
- jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
- undef_row++;
- }
- } else {
- if (! writable) /* reader looking at undefined data */
- ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
- }
- }
- /* Flag the buffer dirty if caller will write in it */
- if (writable)
- ptr->dirty = TRUE;
- /* Return address of proper part of the buffer */
- return ptr->mem_buffer + (start_row - ptr->cur_start_row);
-}
-
-
-/*
- * Release all objects belonging to a specified pool.
- */
-
-METHODDEF void
-free_pool (j_common_ptr cinfo, int pool_id)
-{
- my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
- small_pool_ptr shdr_ptr;
- large_pool_ptr lhdr_ptr;
- size_t space_freed;
-
- if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
- ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
-
-#ifdef MEM_STATS
- if (cinfo->err->trace_level > 1)
- print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
-#endif
-
- /* If freeing IMAGE pool, close any virtual arrays first */
- if (pool_id == JPOOL_IMAGE) {
- jvirt_sarray_ptr sptr;
- jvirt_barray_ptr bptr;
-
- for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
- if (sptr->b_s_open) { /* there may be no backing store */
- sptr->b_s_open = FALSE; /* prevent recursive close if error */
- (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
- }
- }
- mem->virt_sarray_list = NULL;
- for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
- if (bptr->b_s_open) { /* there may be no backing store */
- bptr->b_s_open = FALSE; /* prevent recursive close if error */
- (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
- }
- }
- mem->virt_barray_list = NULL;
- }
-
- /* Release large objects */
- lhdr_ptr = mem->large_list[pool_id];
- mem->large_list[pool_id] = NULL;
-
- while (lhdr_ptr != NULL) {
- large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
- space_freed = lhdr_ptr->hdr.bytes_used +
- lhdr_ptr->hdr.bytes_left +
- SIZEOF(large_pool_hdr);
- jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
- mem->total_space_allocated -= space_freed;
- lhdr_ptr = next_lhdr_ptr;
- }
-
- /* Release small objects */
- shdr_ptr = mem->small_list[pool_id];
- mem->small_list[pool_id] = NULL;
-
- while (shdr_ptr != NULL) {
- small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
- space_freed = shdr_ptr->hdr.bytes_used +
- shdr_ptr->hdr.bytes_left +
- SIZEOF(small_pool_hdr);
- jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
- mem->total_space_allocated -= space_freed;
- shdr_ptr = next_shdr_ptr;
- }
-}
-
-
-/*
- * Close up shop entirely.
- * Note that this cannot be called unless cinfo->mem is non-NULL.
- */
-
-METHODDEF void
-self_destruct (j_common_ptr cinfo)
-{
- int pool;
-
- /* Close all backing store, release all memory.
- * Releasing pools in reverse order might help avoid fragmentation
- * with some (brain-damaged) malloc libraries.
- */
- for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
- free_pool(cinfo, pool);
- }
-
- /* Release the memory manager control block too. */
- jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
- cinfo->mem = NULL; /* ensures I will be called only once */
-
- jpeg_mem_term(cinfo); /* system-dependent cleanup */
-}
-
-
-/*
- * Memory manager initialization.
- * When this is called, only the error manager pointer is valid in cinfo!
- */
-
-GLOBAL void
-jinit_memory_mgr (j_common_ptr cinfo)
-{
- my_mem_ptr mem;
- long max_to_use;
- int pool;
- size_t test_mac;
-
- cinfo->mem = NULL; /* for safety if init fails */
-
- /* Check for configuration errors.
- * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
- * doesn't reflect any real hardware alignment requirement.
- * The test is a little tricky: for X>0, X and X-1 have no one-bits
- * in common if and only if X is a power of 2, ie has only one one-bit.
- * Some compilers may give an "unreachable code" warning here; ignore it.
- */
- if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
- ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
- /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
- * a multiple of SIZEOF(ALIGN_TYPE).
- * Again, an "unreachable code" warning may be ignored here.
- * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
- */
- test_mac = (size_t) MAX_ALLOC_CHUNK;
- if ((long) test_mac != MAX_ALLOC_CHUNK ||
- (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
- ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
-
- max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
-
- /* Attempt to allocate memory manager's control block */
- mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
-
- if (mem == NULL) {
- jpeg_mem_term(cinfo); /* system-dependent cleanup */
- ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
- }
-
- /* OK, fill in the method pointers */
- mem->pub.alloc_small = alloc_small;
- mem->pub.alloc_large = alloc_large;
- mem->pub.alloc_sarray = alloc_sarray;
- mem->pub.alloc_barray = alloc_barray;
- mem->pub.request_virt_sarray = request_virt_sarray;
- mem->pub.request_virt_barray = request_virt_barray;
- mem->pub.realize_virt_arrays = realize_virt_arrays;
- mem->pub.access_virt_sarray = access_virt_sarray;
- mem->pub.access_virt_barray = access_virt_barray;
- mem->pub.free_pool = free_pool;
- mem->pub.self_destruct = self_destruct;
-
- /* Initialize working state */
- mem->pub.max_memory_to_use = max_to_use;
-
- for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
- mem->small_list[pool] = NULL;
- mem->large_list[pool] = NULL;
- }
- mem->virt_sarray_list = NULL;
- mem->virt_barray_list = NULL;
-
- mem->total_space_allocated = SIZEOF(my_memory_mgr);
-
- /* Declare ourselves open for business */
- cinfo->mem = & mem->pub;
-
- /* Check for an environment variable JPEGMEM; if found, override the
- * default max_memory setting from jpeg_mem_init. Note that the
- * surrounding application may again override this value.
- * If your system doesn't support getenv(), define NO_GETENV to disable
- * this feature.
- */
-#ifndef NO_GETENV
- { char * memenv;
-
- if ((memenv = getenv("JPEGMEM")) != NULL) {
- char ch = 'x';
-
- if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
- if (ch == 'm' || ch == 'M')
- max_to_use *= 1000L;
- mem->pub.max_memory_to_use = max_to_use * 1000L;
- }
- }
- }
-#endif
-
-}
+/*
+ * jmemmgr.c
+ *
+ * Copyright (C) 1991-1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains the JPEG system-independent memory management
+ * routines. This code is usable across a wide variety of machines; most
+ * of the system dependencies have been isolated in a separate file.
+ * The major functions provided here are:
+ * * pool-based allocation and freeing of memory;
+ * * policy decisions about how to divide available memory among the
+ * virtual arrays;
+ * * control logic for swapping virtual arrays between main memory and
+ * backing storage.
+ * The separate system-dependent file provides the actual backing-storage
+ * access code, and it contains the policy decision about how much total
+ * main memory to use.
+ * This file is system-dependent in the sense that some of its functions
+ * are unnecessary in some systems. For example, if there is enough virtual
+ * memory so that backing storage will never be used, much of the virtual
+ * array control logic could be removed. (Of course, if you have that much
+ * memory then you shouldn't care about a little bit of unused code...)
+ */
+
+#define JPEG_INTERNALS
+#define AM_MEMORY_MANAGER /* we define jvirt_Xarray_control structs */
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jmemsys.h" /* import the system-dependent declarations */
+
+#ifndef NO_GETENV
+#ifndef HAVE_STDLIB_H /* <stdlib.h> should declare getenv() */
+extern char * getenv JPP((const char * name));
+#endif
+#endif
+
+
+/*
+ * Some important notes:
+ * The allocation routines provided here must never return NULL.
+ * They should exit to error_exit if unsuccessful.
+ *
+ * It's not a good idea to try to merge the sarray and barray routines,
+ * even though they are textually almost the same, because samples are
+ * usually stored as bytes while coefficients are shorts or ints. Thus,
+ * in machines where byte pointers have a different representation from
+ * word pointers, the resulting machine code could not be the same.
+ */
+
+
+/*
+ * Many machines require storage alignment: longs must start on 4-byte
+ * boundaries, doubles on 8-byte boundaries, etc. On such machines, malloc()
+ * always returns pointers that are multiples of the worst-case alignment
+ * requirement, and we had better do so too.
+ * There isn't any really portable way to determine the worst-case alignment
+ * requirement. This module assumes that the alignment requirement is
+ * multiples of sizeof(ALIGN_TYPE).
+ * By default, we define ALIGN_TYPE as double. This is necessary on some
+ * workstations (where doubles really do need 8-byte alignment) and will work
+ * fine on nearly everything. If your machine has lesser alignment needs,
+ * you can save a few bytes by making ALIGN_TYPE smaller.
+ * The only place I know of where this will NOT work is certain Macintosh
+ * 680x0 compilers that define double as a 10-byte IEEE extended float.
+ * Doing 10-byte alignment is counterproductive because longwords won't be
+ * aligned well. Put "#define ALIGN_TYPE long" in jconfig.h if you have
+ * such a compiler.
+ */
+
+#ifndef ALIGN_TYPE /* so can override from jconfig.h */
+#define ALIGN_TYPE double
+#endif
+
+
+/*
+ * We allocate objects from "pools", where each pool is gotten with a single
+ * request to jpeg_get_small() or jpeg_get_large(). There is no per-object
+ * overhead within a pool, except for alignment padding. Each pool has a
+ * header with a link to the next pool of the same class.
+ * Small and large pool headers are identical except that the latter's
+ * link pointer must be FAR on 80x86 machines.
+ * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE
+ * field. This forces the compiler to make SIZEOF(small_pool_hdr) a multiple
+ * of the alignment requirement of ALIGN_TYPE.
+ */
+
+typedef union small_pool_struct * small_pool_ptr;
+
+typedef union small_pool_struct {
+ struct {
+ small_pool_ptr next; /* next in list of pools */
+ size_t bytes_used; /* how many bytes already used within pool */
+ size_t bytes_left; /* bytes still available in this pool */
+ } hdr;
+ ALIGN_TYPE dummy; /* included in union to ensure alignment */
+} small_pool_hdr;
+
+typedef union large_pool_struct FAR * large_pool_ptr;
+
+typedef union large_pool_struct {
+ struct {
+ large_pool_ptr next; /* next in list of pools */
+ size_t bytes_used; /* how many bytes already used within pool */
+ size_t bytes_left; /* bytes still available in this pool */
+ } hdr;
+ ALIGN_TYPE dummy; /* included in union to ensure alignment */
+} large_pool_hdr;
+
+
+/*
+ * Here is the full definition of a memory manager object.
+ */
+
+typedef struct {
+ struct jpeg_memory_mgr pub; /* public fields */
+
+ /* Each pool identifier (lifetime class) names a linked list of pools. */
+ small_pool_ptr small_list[JPOOL_NUMPOOLS];
+ large_pool_ptr large_list[JPOOL_NUMPOOLS];
+
+ /* Since we only have one lifetime class of virtual arrays, only one
+ * linked list is necessary (for each datatype). Note that the virtual
+ * array control blocks being linked together are actually stored somewhere
+ * in the small-pool list.
+ */
+ jvirt_sarray_ptr virt_sarray_list;
+ jvirt_barray_ptr virt_barray_list;
+
+ /* This counts total space obtained from jpeg_get_small/large */
+ long total_space_allocated;
+
+ /* alloc_sarray and alloc_barray set this value for use by virtual
+ * array routines.
+ */
+ JDIMENSION last_rowsperchunk; /* from most recent alloc_sarray/barray */
+} my_memory_mgr;
+
+typedef my_memory_mgr * my_mem_ptr;
+
+
+/*
+ * The control blocks for virtual arrays.
+ * Note that these blocks are allocated in the "small" pool area.
+ * System-dependent info for the associated backing store (if any) is hidden
+ * inside the backing_store_info struct.
+ */
+
+struct jvirt_sarray_control {
+ JSAMPARRAY mem_buffer; /* => the in-memory buffer */
+ JDIMENSION rows_in_array; /* total virtual array height */
+ JDIMENSION samplesperrow; /* width of array (and of memory buffer) */
+ JDIMENSION maxaccess; /* max rows accessed by access_virt_sarray */
+ JDIMENSION rows_in_mem; /* height of memory buffer */
+ JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
+ JDIMENSION cur_start_row; /* first logical row # in the buffer */
+ JDIMENSION first_undef_row; /* row # of first uninitialized row */
+ boolean pre_zero; /* pre-zero mode requested? */
+ boolean dirty; /* do current buffer contents need written? */
+ boolean b_s_open; /* is backing-store data valid? */
+ jvirt_sarray_ptr next; /* link to next virtual sarray control block */
+ backing_store_info b_s_info; /* System-dependent control info */
+};
+
+struct jvirt_barray_control {
+ JBLOCKARRAY mem_buffer; /* => the in-memory buffer */
+ JDIMENSION rows_in_array; /* total virtual array height */
+ JDIMENSION blocksperrow; /* width of array (and of memory buffer) */
+ JDIMENSION maxaccess; /* max rows accessed by access_virt_barray */
+ JDIMENSION rows_in_mem; /* height of memory buffer */
+ JDIMENSION rowsperchunk; /* allocation chunk size in mem_buffer */
+ JDIMENSION cur_start_row; /* first logical row # in the buffer */
+ JDIMENSION first_undef_row; /* row # of first uninitialized row */
+ boolean pre_zero; /* pre-zero mode requested? */
+ boolean dirty; /* do current buffer contents need written? */
+ boolean b_s_open; /* is backing-store data valid? */
+ jvirt_barray_ptr next; /* link to next virtual barray control block */
+ backing_store_info b_s_info; /* System-dependent control info */
+};
+
+
+#ifdef MEM_STATS /* optional extra stuff for statistics */
+
+LOCAL void
+print_mem_stats (j_common_ptr cinfo, int pool_id)
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ small_pool_ptr shdr_ptr;
+ large_pool_ptr lhdr_ptr;
+
+ /* Since this is only a debugging stub, we can cheat a little by using
+ * fprintf directly rather than going through the trace message code.
+ * This is helpful because message parm array can't handle longs.
+ */
+ fprintf(stderr, "Freeing pool %d, total space = %ld\n",
+ pool_id, mem->total_space_allocated);
+
+ for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL;
+ lhdr_ptr = lhdr_ptr->hdr.next) {
+ fprintf(stderr, " Large chunk used %ld\n",
+ (long) lhdr_ptr->hdr.bytes_used);
+ }
+
+ for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL;
+ shdr_ptr = shdr_ptr->hdr.next) {
+ fprintf(stderr, " Small chunk used %ld free %ld\n",
+ (long) shdr_ptr->hdr.bytes_used,
+ (long) shdr_ptr->hdr.bytes_left);
+ }
+}
+
+#endif /* MEM_STATS */
+
+
+LOCAL void
+out_of_memory (j_common_ptr cinfo, int which)
+/* Report an out-of-memory error and stop execution */
+/* If we compiled MEM_STATS support, report alloc requests before dying */
+{
+#ifdef MEM_STATS
+ cinfo->err->trace_level = 2; /* force self_destruct to report stats */
+#endif
+ ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which);
+}
+
+
+/*
+ * Allocation of "small" objects.
+ *
+ * For these, we use pooled storage. When a new pool must be created,
+ * we try to get enough space for the current request plus a "slop" factor,
+ * where the slop will be the amount of leftover space in the new pool.
+ * The speed vs. space tradeoff is largely determined by the slop values.
+ * A different slop value is provided for each pool class (lifetime),
+ * and we also distinguish the first pool of a class from later ones.
+ * NOTE: the values given work fairly well on both 16- and 32-bit-int
+ * machines, but may be too small if longs are 64 bits or more.
+ */
+
+static const size_t first_pool_slop[JPOOL_NUMPOOLS] =
+{
+ 1600, /* first PERMANENT pool */
+ 16000 /* first IMAGE pool */
+};
+
+static const size_t extra_pool_slop[JPOOL_NUMPOOLS] =
+{
+ 0, /* additional PERMANENT pools */
+ 5000 /* additional IMAGE pools */
+};
+
+#define MIN_SLOP 50 /* greater than 0 to avoid futile looping */
+
+
+METHODDEF void *
+alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
+/* Allocate a "small" object */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ small_pool_ptr hdr_ptr, prev_hdr_ptr;
+ char * data_ptr;
+ size_t odd_bytes, min_request, slop;
+
+ /* Check for unsatisfiable request (do now to ensure no overflow below) */
+ if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr)))
+ out_of_memory(cinfo, 1); /* request exceeds malloc's ability */
+
+ /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
+ odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
+ if (odd_bytes > 0)
+ sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
+
+ /* See if space is available in any existing pool */
+ if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
+ prev_hdr_ptr = NULL;
+ hdr_ptr = mem->small_list[pool_id];
+ while (hdr_ptr != NULL) {
+ if (hdr_ptr->hdr.bytes_left >= sizeofobject)
+ break; /* found pool with enough space */
+ prev_hdr_ptr = hdr_ptr;
+ hdr_ptr = hdr_ptr->hdr.next;
+ }
+
+ /* Time to make a new pool? */
+ if (hdr_ptr == NULL) {
+ /* min_request is what we need now, slop is what will be leftover */
+ min_request = sizeofobject + SIZEOF(small_pool_hdr);
+ if (prev_hdr_ptr == NULL) /* first pool in class? */
+ slop = first_pool_slop[pool_id];
+ else
+ slop = extra_pool_slop[pool_id];
+ /* Don't ask for more than MAX_ALLOC_CHUNK */
+ if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request))
+ slop = (size_t) (MAX_ALLOC_CHUNK-min_request);
+ /* Try to get space, if fail reduce slop and try again */
+ for (;;) {
+ hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop);
+ if (hdr_ptr != NULL)
+ break;
+ slop /= 2;
+ if (slop < MIN_SLOP) /* give up when it gets real small */
+ out_of_memory(cinfo, 2); /* jpeg_get_small failed */
+ }
+ mem->total_space_allocated += min_request + slop;
+ /* Success, initialize the new pool header and add to end of list */
+ hdr_ptr->hdr.next = NULL;
+ hdr_ptr->hdr.bytes_used = 0;
+ hdr_ptr->hdr.bytes_left = sizeofobject + slop;
+ if (prev_hdr_ptr == NULL) /* first pool in class? */
+ mem->small_list[pool_id] = hdr_ptr;
+ else
+ prev_hdr_ptr->hdr.next = hdr_ptr;
+ }
+
+ /* OK, allocate the object from the current pool */
+ data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */
+ data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */
+ hdr_ptr->hdr.bytes_used += sizeofobject;
+ hdr_ptr->hdr.bytes_left -= sizeofobject;
+
+ return (void *) data_ptr;
+}
+
+
+/*
+ * Allocation of "large" objects.
+ *
+ * The external semantics of these are the same as "small" objects,
+ * except that FAR pointers are used on 80x86. However the pool
+ * management heuristics are quite different. We assume that each
+ * request is large enough that it may as well be passed directly to
+ * jpeg_get_large; the pool management just links everything together
+ * so that we can free it all on demand.
+ * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY
+ * structures. The routines that create these structures (see below)
+ * deliberately bunch rows together to ensure a large request size.
+ */
+
+METHODDEF void FAR *
+alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject)
+/* Allocate a "large" object */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ large_pool_ptr hdr_ptr;
+ size_t odd_bytes;
+
+ /* Check for unsatisfiable request (do now to ensure no overflow below) */
+ if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)))
+ out_of_memory(cinfo, 3); /* request exceeds malloc's ability */
+
+ /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */
+ odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE);
+ if (odd_bytes > 0)
+ sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes;
+
+ /* Always make a new pool */
+ if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
+
+ hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject +
+ SIZEOF(large_pool_hdr));
+ if (hdr_ptr == NULL)
+ out_of_memory(cinfo, 4); /* jpeg_get_large failed */
+ mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr);
+
+ /* Success, initialize the new pool header and add to list */
+ hdr_ptr->hdr.next = mem->large_list[pool_id];
+ /* We maintain space counts in each pool header for statistical purposes,
+ * even though they are not needed for allocation.
+ */
+ hdr_ptr->hdr.bytes_used = sizeofobject;
+ hdr_ptr->hdr.bytes_left = 0;
+ mem->large_list[pool_id] = hdr_ptr;
+
+ return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */
+}
+
+
+/*
+ * Creation of 2-D sample arrays.
+ * The pointers are in near heap, the samples themselves in FAR heap.
+ *
+ * To minimize allocation overhead and to allow I/O of large contiguous
+ * blocks, we allocate the sample rows in groups of as many rows as possible
+ * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request.
+ * NB: the virtual array control routines, later in this file, know about
+ * this chunking of rows. The rowsperchunk value is left in the mem manager
+ * object so that it can be saved away if this sarray is the workspace for
+ * a virtual array.
+ */
+
+METHODDEF JSAMPARRAY
+alloc_sarray (j_common_ptr cinfo, int pool_id,
+ JDIMENSION samplesperrow, JDIMENSION numrows)
+/* Allocate a 2-D sample array */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ JSAMPARRAY result;
+ JSAMPROW workspace;
+ JDIMENSION rowsperchunk, currow, i;
+ long ltemp;
+
+ /* Calculate max # of rows allowed in one allocation chunk */
+ ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
+ ((long) samplesperrow * SIZEOF(JSAMPLE));
+ if (ltemp <= 0)
+ ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+ if (ltemp < (long) numrows)
+ rowsperchunk = (JDIMENSION) ltemp;
+ else
+ rowsperchunk = numrows;
+ mem->last_rowsperchunk = rowsperchunk;
+
+ /* Get space for row pointers (small object) */
+ result = (JSAMPARRAY) alloc_small(cinfo, pool_id,
+ (size_t) (numrows * SIZEOF(JSAMPROW)));
+
+ /* Get the rows themselves (large objects) */
+ currow = 0;
+ while (currow < numrows) {
+ rowsperchunk = MIN(rowsperchunk, numrows - currow);
+ workspace = (JSAMPROW) alloc_large(cinfo, pool_id,
+ (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow
+ * SIZEOF(JSAMPLE)));
+ for (i = rowsperchunk; i > 0; i--) {
+ result[currow++] = workspace;
+ workspace += samplesperrow;
+ }
+ }
+
+ return result;
+}
+
+
+/*
+ * Creation of 2-D coefficient-block arrays.
+ * This is essentially the same as the code for sample arrays, above.
+ */
+
+METHODDEF JBLOCKARRAY
+alloc_barray (j_common_ptr cinfo, int pool_id,
+ JDIMENSION blocksperrow, JDIMENSION numrows)
+/* Allocate a 2-D coefficient-block array */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ JBLOCKARRAY result;
+ JBLOCKROW workspace;
+ JDIMENSION rowsperchunk, currow, i;
+ long ltemp;
+
+ /* Calculate max # of rows allowed in one allocation chunk */
+ ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) /
+ ((long) blocksperrow * SIZEOF(JBLOCK));
+ if (ltemp <= 0)
+ ERREXIT(cinfo, JERR_WIDTH_OVERFLOW);
+ if (ltemp < (long) numrows)
+ rowsperchunk = (JDIMENSION) ltemp;
+ else
+ rowsperchunk = numrows;
+ mem->last_rowsperchunk = rowsperchunk;
+
+ /* Get space for row pointers (small object) */
+ result = (JBLOCKARRAY) alloc_small(cinfo, pool_id,
+ (size_t) (numrows * SIZEOF(JBLOCKROW)));
+
+ /* Get the rows themselves (large objects) */
+ currow = 0;
+ while (currow < numrows) {
+ rowsperchunk = MIN(rowsperchunk, numrows - currow);
+ workspace = (JBLOCKROW) alloc_large(cinfo, pool_id,
+ (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow
+ * SIZEOF(JBLOCK)));
+ for (i = rowsperchunk; i > 0; i--) {
+ result[currow++] = workspace;
+ workspace += blocksperrow;
+ }
+ }
+
+ return result;
+}
+
+
+/*
+ * About virtual array management:
+ *
+ * The above "normal" array routines are only used to allocate strip buffers
+ * (as wide as the image, but just a few rows high). Full-image-sized buffers
+ * are handled as "virtual" arrays. The array is still accessed a strip at a
+ * time, but the memory manager must save the whole array for repeated
+ * accesses. The intended implementation is that there is a strip buffer in
+ * memory (as high as is possible given the desired memory limit), plus a
+ * backing file that holds the rest of the array.
+ *
+ * The request_virt_array routines are told the total size of the image and
+ * the maximum number of rows that will be accessed at once. The in-memory
+ * buffer must be at least as large as the maxaccess value.
+ *
+ * The request routines create control blocks but not the in-memory buffers.
+ * That is postponed until realize_virt_arrays is called. At that time the
+ * total amount of space needed is known (approximately, anyway), so free
+ * memory can be divided up fairly.
+ *
+ * The access_virt_array routines are responsible for making a specific strip
+ * area accessible (after reading or writing the backing file, if necessary).
+ * Note that the access routines are told whether the caller intends to modify
+ * the accessed strip; during a read-only pass this saves having to rewrite
+ * data to disk. The access routines are also responsible for pre-zeroing
+ * any newly accessed rows, if pre-zeroing was requested.
+ *
+ * In current usage, the access requests are usually for nonoverlapping
+ * strips; that is, successive access start_row numbers differ by exactly
+ * num_rows = maxaccess. This means we can get good performance with simple
+ * buffer dump/reload logic, by making the in-memory buffer be a multiple
+ * of the access height; then there will never be accesses across bufferload
+ * boundaries. The code will still work with overlapping access requests,
+ * but it doesn't handle bufferload overlaps very efficiently.
+ */
+
+
+METHODDEF jvirt_sarray_ptr
+request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
+ JDIMENSION samplesperrow, JDIMENSION numrows,
+ JDIMENSION maxaccess)
+/* Request a virtual 2-D sample array */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ jvirt_sarray_ptr result;
+
+ /* Only IMAGE-lifetime virtual arrays are currently supported */
+ if (pool_id != JPOOL_IMAGE)
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
+
+ /* get control block */
+ result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id,
+ SIZEOF(struct jvirt_sarray_control));
+
+ result->mem_buffer = NULL; /* marks array not yet realized */
+ result->rows_in_array = numrows;
+ result->samplesperrow = samplesperrow;
+ result->maxaccess = maxaccess;
+ result->pre_zero = pre_zero;
+ result->b_s_open = FALSE; /* no associated backing-store object */
+ result->next = mem->virt_sarray_list; /* add to list of virtual arrays */
+ mem->virt_sarray_list = result;
+
+ return result;
+}
+
+
+METHODDEF jvirt_barray_ptr
+request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero,
+ JDIMENSION blocksperrow, JDIMENSION numrows,
+ JDIMENSION maxaccess)
+/* Request a virtual 2-D coefficient-block array */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ jvirt_barray_ptr result;
+
+ /* Only IMAGE-lifetime virtual arrays are currently supported */
+ if (pool_id != JPOOL_IMAGE)
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
+
+ /* get control block */
+ result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id,
+ SIZEOF(struct jvirt_barray_control));
+
+ result->mem_buffer = NULL; /* marks array not yet realized */
+ result->rows_in_array = numrows;
+ result->blocksperrow = blocksperrow;
+ result->maxaccess = maxaccess;
+ result->pre_zero = pre_zero;
+ result->b_s_open = FALSE; /* no associated backing-store object */
+ result->next = mem->virt_barray_list; /* add to list of virtual arrays */
+ mem->virt_barray_list = result;
+
+ return result;
+}
+
+
+METHODDEF void
+realize_virt_arrays (j_common_ptr cinfo)
+/* Allocate the in-memory buffers for any unrealized virtual arrays */
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ long space_per_minheight, maximum_space, avail_mem;
+ long minheights, max_minheights;
+ jvirt_sarray_ptr sptr;
+ jvirt_barray_ptr bptr;
+
+ /* Compute the minimum space needed (maxaccess rows in each buffer)
+ * and the maximum space needed (full image height in each buffer).
+ * These may be of use to the system-dependent jpeg_mem_available routine.
+ */
+ space_per_minheight = 0;
+ maximum_space = 0;
+ for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
+ if (sptr->mem_buffer == NULL) { /* if not realized yet */
+ space_per_minheight += (long) sptr->maxaccess *
+ (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
+ maximum_space += (long) sptr->rows_in_array *
+ (long) sptr->samplesperrow * SIZEOF(JSAMPLE);
+ }
+ }
+ for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
+ if (bptr->mem_buffer == NULL) { /* if not realized yet */
+ space_per_minheight += (long) bptr->maxaccess *
+ (long) bptr->blocksperrow * SIZEOF(JBLOCK);
+ maximum_space += (long) bptr->rows_in_array *
+ (long) bptr->blocksperrow * SIZEOF(JBLOCK);
+ }
+ }
+
+ if (space_per_minheight <= 0)
+ return; /* no unrealized arrays, no work */
+
+ /* Determine amount of memory to actually use; this is system-dependent. */
+ avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space,
+ mem->total_space_allocated);
+
+ /* If the maximum space needed is available, make all the buffers full
+ * height; otherwise parcel it out with the same number of minheights
+ * in each buffer.
+ */
+ if (avail_mem >= maximum_space)
+ max_minheights = 1000000000L;
+ else {
+ max_minheights = avail_mem / space_per_minheight;
+ /* If there doesn't seem to be enough space, try to get the minimum
+ * anyway. This allows a "stub" implementation of jpeg_mem_available().
+ */
+ if (max_minheights <= 0)
+ max_minheights = 1;
+ }
+
+ /* Allocate the in-memory buffers and initialize backing store as needed. */
+
+ for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
+ if (sptr->mem_buffer == NULL) { /* if not realized yet */
+ minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L;
+ if (minheights <= max_minheights) {
+ /* This buffer fits in memory */
+ sptr->rows_in_mem = sptr->rows_in_array;
+ } else {
+ /* It doesn't fit in memory, create backing store. */
+ sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess);
+ jpeg_open_backing_store(cinfo, & sptr->b_s_info,
+ (long) sptr->rows_in_array *
+ (long) sptr->samplesperrow *
+ (long) SIZEOF(JSAMPLE));
+ sptr->b_s_open = TRUE;
+ }
+ sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE,
+ sptr->samplesperrow, sptr->rows_in_mem);
+ sptr->rowsperchunk = mem->last_rowsperchunk;
+ sptr->cur_start_row = 0;
+ sptr->first_undef_row = 0;
+ sptr->dirty = FALSE;
+ }
+ }
+
+ for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
+ if (bptr->mem_buffer == NULL) { /* if not realized yet */
+ minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L;
+ if (minheights <= max_minheights) {
+ /* This buffer fits in memory */
+ bptr->rows_in_mem = bptr->rows_in_array;
+ } else {
+ /* It doesn't fit in memory, create backing store. */
+ bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess);
+ jpeg_open_backing_store(cinfo, & bptr->b_s_info,
+ (long) bptr->rows_in_array *
+ (long) bptr->blocksperrow *
+ (long) SIZEOF(JBLOCK));
+ bptr->b_s_open = TRUE;
+ }
+ bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE,
+ bptr->blocksperrow, bptr->rows_in_mem);
+ bptr->rowsperchunk = mem->last_rowsperchunk;
+ bptr->cur_start_row = 0;
+ bptr->first_undef_row = 0;
+ bptr->dirty = FALSE;
+ }
+ }
+}
+
+
+LOCAL void
+do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing)
+/* Do backing store read or write of a virtual sample array */
+{
+ long bytesperrow, file_offset, byte_count, rows, thisrow, i;
+
+ bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE);
+ file_offset = ptr->cur_start_row * bytesperrow;
+ /* Loop to read or write each allocation chunk in mem_buffer */
+ for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
+ /* One chunk, but check for short chunk at end of buffer */
+ rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
+ /* Transfer no more than is currently defined */
+ thisrow = (long) ptr->cur_start_row + i;
+ rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
+ /* Transfer no more than fits in file */
+ rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
+ if (rows <= 0) /* this chunk might be past end of file! */
+ break;
+ byte_count = rows * bytesperrow;
+ if (writing)
+ (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
+ (void FAR *) ptr->mem_buffer[i],
+ file_offset, byte_count);
+ else
+ (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
+ (void FAR *) ptr->mem_buffer[i],
+ file_offset, byte_count);
+ file_offset += byte_count;
+ }
+}
+
+
+LOCAL void
+do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing)
+/* Do backing store read or write of a virtual coefficient-block array */
+{
+ long bytesperrow, file_offset, byte_count, rows, thisrow, i;
+
+ bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK);
+ file_offset = ptr->cur_start_row * bytesperrow;
+ /* Loop to read or write each allocation chunk in mem_buffer */
+ for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) {
+ /* One chunk, but check for short chunk at end of buffer */
+ rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i);
+ /* Transfer no more than is currently defined */
+ thisrow = (long) ptr->cur_start_row + i;
+ rows = MIN(rows, (long) ptr->first_undef_row - thisrow);
+ /* Transfer no more than fits in file */
+ rows = MIN(rows, (long) ptr->rows_in_array - thisrow);
+ if (rows <= 0) /* this chunk might be past end of file! */
+ break;
+ byte_count = rows * bytesperrow;
+ if (writing)
+ (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info,
+ (void FAR *) ptr->mem_buffer[i],
+ file_offset, byte_count);
+ else
+ (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info,
+ (void FAR *) ptr->mem_buffer[i],
+ file_offset, byte_count);
+ file_offset += byte_count;
+ }
+}
+
+
+METHODDEF JSAMPARRAY
+access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr,
+ JDIMENSION start_row, JDIMENSION num_rows,
+ boolean writable)
+/* Access the part of a virtual sample array starting at start_row */
+/* and extending for num_rows rows. writable is true if */
+/* caller intends to modify the accessed area. */
+{
+ JDIMENSION end_row = start_row + num_rows;
+ JDIMENSION undef_row;
+
+ /* debugging check */
+ if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
+ ptr->mem_buffer == NULL)
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+
+ /* Make the desired part of the virtual array accessible */
+ if (start_row < ptr->cur_start_row ||
+ end_row > ptr->cur_start_row+ptr->rows_in_mem) {
+ if (! ptr->b_s_open)
+ ERREXIT(cinfo, JERR_VIRTUAL_BUG);
+ /* Flush old buffer contents if necessary */
+ if (ptr->dirty) {
+ do_sarray_io(cinfo, ptr, TRUE);
+ ptr->dirty = FALSE;
+ }
+ /* Decide what part of virtual array to access.
+ * Algorithm: if target address > current window, assume forward scan,
+ * load starting at target address. If target address < current window,
+ * assume backward scan, load so that target area is top of window.
+ * Note that when switching from forward write to forward read, will have
+ * start_row = 0, so the limiting case applies and we load from 0 anyway.
+ */
+ if (start_row > ptr->cur_start_row) {
+ ptr->cur_start_row = start_row;
+ } else {
+ /* use long arithmetic here to avoid overflow & unsigned problems */
+ long ltemp;
+
+ ltemp = (long) end_row - (long) ptr->rows_in_mem;
+ if (ltemp < 0)
+ ltemp = 0; /* don't fall off front end of file */
+ ptr->cur_start_row = (JDIMENSION) ltemp;
+ }
+ /* Read in the selected part of the array.
+ * During the initial write pass, we will do no actual read
+ * because the selected part is all undefined.
+ */
+ do_sarray_io(cinfo, ptr, FALSE);
+ }
+ /* Ensure the accessed part of the array is defined; prezero if needed.
+ * To improve locality of access, we only prezero the part of the array
+ * that the caller is about to access, not the entire in-memory array.
+ */
+ if (ptr->first_undef_row < end_row) {
+ if (ptr->first_undef_row < start_row) {
+ if (writable) /* writer skipped over a section of array */
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+ undef_row = start_row; /* but reader is allowed to read ahead */
+ } else {
+ undef_row = ptr->first_undef_row;
+ }
+ if (writable)
+ ptr->first_undef_row = end_row;
+ if (ptr->pre_zero) {
+ size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE);
+ undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
+ end_row -= ptr->cur_start_row;
+ while (undef_row < end_row) {
+ jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
+ undef_row++;
+ }
+ } else {
+ if (! writable) /* reader looking at undefined data */
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+ }
+ }
+ /* Flag the buffer dirty if caller will write in it */
+ if (writable)
+ ptr->dirty = TRUE;
+ /* Return address of proper part of the buffer */
+ return ptr->mem_buffer + (start_row - ptr->cur_start_row);
+}
+
+
+METHODDEF JBLOCKARRAY
+access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr,
+ JDIMENSION start_row, JDIMENSION num_rows,
+ boolean writable)
+/* Access the part of a virtual block array starting at start_row */
+/* and extending for num_rows rows. writable is true if */
+/* caller intends to modify the accessed area. */
+{
+ JDIMENSION end_row = start_row + num_rows;
+ JDIMENSION undef_row;
+
+ /* debugging check */
+ if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess ||
+ ptr->mem_buffer == NULL)
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+
+ /* Make the desired part of the virtual array accessible */
+ if (start_row < ptr->cur_start_row ||
+ end_row > ptr->cur_start_row+ptr->rows_in_mem) {
+ if (! ptr->b_s_open)
+ ERREXIT(cinfo, JERR_VIRTUAL_BUG);
+ /* Flush old buffer contents if necessary */
+ if (ptr->dirty) {
+ do_barray_io(cinfo, ptr, TRUE);
+ ptr->dirty = FALSE;
+ }
+ /* Decide what part of virtual array to access.
+ * Algorithm: if target address > current window, assume forward scan,
+ * load starting at target address. If target address < current window,
+ * assume backward scan, load so that target area is top of window.
+ * Note that when switching from forward write to forward read, will have
+ * start_row = 0, so the limiting case applies and we load from 0 anyway.
+ */
+ if (start_row > ptr->cur_start_row) {
+ ptr->cur_start_row = start_row;
+ } else {
+ /* use long arithmetic here to avoid overflow & unsigned problems */
+ long ltemp;
+
+ ltemp = (long) end_row - (long) ptr->rows_in_mem;
+ if (ltemp < 0)
+ ltemp = 0; /* don't fall off front end of file */
+ ptr->cur_start_row = (JDIMENSION) ltemp;
+ }
+ /* Read in the selected part of the array.
+ * During the initial write pass, we will do no actual read
+ * because the selected part is all undefined.
+ */
+ do_barray_io(cinfo, ptr, FALSE);
+ }
+ /* Ensure the accessed part of the array is defined; prezero if needed.
+ * To improve locality of access, we only prezero the part of the array
+ * that the caller is about to access, not the entire in-memory array.
+ */
+ if (ptr->first_undef_row < end_row) {
+ if (ptr->first_undef_row < start_row) {
+ if (writable) /* writer skipped over a section of array */
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+ undef_row = start_row; /* but reader is allowed to read ahead */
+ } else {
+ undef_row = ptr->first_undef_row;
+ }
+ if (writable)
+ ptr->first_undef_row = end_row;
+ if (ptr->pre_zero) {
+ size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK);
+ undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */
+ end_row -= ptr->cur_start_row;
+ while (undef_row < end_row) {
+ jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow);
+ undef_row++;
+ }
+ } else {
+ if (! writable) /* reader looking at undefined data */
+ ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS);
+ }
+ }
+ /* Flag the buffer dirty if caller will write in it */
+ if (writable)
+ ptr->dirty = TRUE;
+ /* Return address of proper part of the buffer */
+ return ptr->mem_buffer + (start_row - ptr->cur_start_row);
+}
+
+
+/*
+ * Release all objects belonging to a specified pool.
+ */
+
+METHODDEF void
+free_pool (j_common_ptr cinfo, int pool_id)
+{
+ my_mem_ptr mem = (my_mem_ptr) cinfo->mem;
+ small_pool_ptr shdr_ptr;
+ large_pool_ptr lhdr_ptr;
+ size_t space_freed;
+
+ if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS)
+ ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id); /* safety check */
+
+#ifdef MEM_STATS
+ if (cinfo->err->trace_level > 1)
+ print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */
+#endif
+
+ /* If freeing IMAGE pool, close any virtual arrays first */
+ if (pool_id == JPOOL_IMAGE) {
+ jvirt_sarray_ptr sptr;
+ jvirt_barray_ptr bptr;
+
+ for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) {
+ if (sptr->b_s_open) { /* there may be no backing store */
+ sptr->b_s_open = FALSE; /* prevent recursive close if error */
+ (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info);
+ }
+ }
+ mem->virt_sarray_list = NULL;
+ for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) {
+ if (bptr->b_s_open) { /* there may be no backing store */
+ bptr->b_s_open = FALSE; /* prevent recursive close if error */
+ (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info);
+ }
+ }
+ mem->virt_barray_list = NULL;
+ }
+
+ /* Release large objects */
+ lhdr_ptr = mem->large_list[pool_id];
+ mem->large_list[pool_id] = NULL;
+
+ while (lhdr_ptr != NULL) {
+ large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next;
+ space_freed = lhdr_ptr->hdr.bytes_used +
+ lhdr_ptr->hdr.bytes_left +
+ SIZEOF(large_pool_hdr);
+ jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed);
+ mem->total_space_allocated -= space_freed;
+ lhdr_ptr = next_lhdr_ptr;
+ }
+
+ /* Release small objects */
+ shdr_ptr = mem->small_list[pool_id];
+ mem->small_list[pool_id] = NULL;
+
+ while (shdr_ptr != NULL) {
+ small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next;
+ space_freed = shdr_ptr->hdr.bytes_used +
+ shdr_ptr->hdr.bytes_left +
+ SIZEOF(small_pool_hdr);
+ jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed);
+ mem->total_space_allocated -= space_freed;
+ shdr_ptr = next_shdr_ptr;
+ }
+}
+
+
+/*
+ * Close up shop entirely.
+ * Note that this cannot be called unless cinfo->mem is non-NULL.
+ */
+
+METHODDEF void
+self_destruct (j_common_ptr cinfo)
+{
+ int pool;
+
+ /* Close all backing store, release all memory.
+ * Releasing pools in reverse order might help avoid fragmentation
+ * with some (brain-damaged) malloc libraries.
+ */
+ for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
+ free_pool(cinfo, pool);
+ }
+
+ /* Release the memory manager control block too. */
+ jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr));
+ cinfo->mem = NULL; /* ensures I will be called only once */
+
+ jpeg_mem_term(cinfo); /* system-dependent cleanup */
+}
+
+
+/*
+ * Memory manager initialization.
+ * When this is called, only the error manager pointer is valid in cinfo!
+ */
+
+GLOBAL void
+jinit_memory_mgr (j_common_ptr cinfo)
+{
+ my_mem_ptr mem;
+ long max_to_use;
+ int pool;
+ size_t test_mac;
+
+ cinfo->mem = NULL; /* for safety if init fails */
+
+ /* Check for configuration errors.
+ * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably
+ * doesn't reflect any real hardware alignment requirement.
+ * The test is a little tricky: for X>0, X and X-1 have no one-bits
+ * in common if and only if X is a power of 2, ie has only one one-bit.
+ * Some compilers may give an "unreachable code" warning here; ignore it.
+ */
+ if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0)
+ ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE);
+ /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be
+ * a multiple of SIZEOF(ALIGN_TYPE).
+ * Again, an "unreachable code" warning may be ignored here.
+ * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK.
+ */
+ test_mac = (size_t) MAX_ALLOC_CHUNK;
+ if ((long) test_mac != MAX_ALLOC_CHUNK ||
+ (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0)
+ ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK);
+
+ max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */
+
+ /* Attempt to allocate memory manager's control block */
+ mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr));
+
+ if (mem == NULL) {
+ jpeg_mem_term(cinfo); /* system-dependent cleanup */
+ ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0);
+ }
+
+ /* OK, fill in the method pointers */
+ mem->pub.alloc_small = alloc_small;
+ mem->pub.alloc_large = alloc_large;
+ mem->pub.alloc_sarray = alloc_sarray;
+ mem->pub.alloc_barray = alloc_barray;
+ mem->pub.request_virt_sarray = request_virt_sarray;
+ mem->pub.request_virt_barray = request_virt_barray;
+ mem->pub.realize_virt_arrays = realize_virt_arrays;
+ mem->pub.access_virt_sarray = access_virt_sarray;
+ mem->pub.access_virt_barray = access_virt_barray;
+ mem->pub.free_pool = free_pool;
+ mem->pub.self_destruct = self_destruct;
+
+ /* Initialize working state */
+ mem->pub.max_memory_to_use = max_to_use;
+
+ for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) {
+ mem->small_list[pool] = NULL;
+ mem->large_list[pool] = NULL;
+ }
+ mem->virt_sarray_list = NULL;
+ mem->virt_barray_list = NULL;
+
+ mem->total_space_allocated = SIZEOF(my_memory_mgr);
+
+ /* Declare ourselves open for business */
+ cinfo->mem = & mem->pub;
+
+ /* Check for an environment variable JPEGMEM; if found, override the
+ * default max_memory setting from jpeg_mem_init. Note that the
+ * surrounding application may again override this value.
+ * If your system doesn't support getenv(), define NO_GETENV to disable
+ * this feature.
+ */
+#ifndef NO_GETENV
+ { char * memenv;
+
+ if ((memenv = getenv("JPEGMEM")) != NULL) {
+ char ch = 'x';
+
+ if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) {
+ if (ch == 'm' || ch == 'M')
+ max_to_use *= 1000L;
+ mem->pub.max_memory_to_use = max_to_use * 1000L;
+ }
+ }
+ }
+#endif
+
+}
diff --git a/libs/jpeg6/jmemnobs.cpp b/libs/jpeg6/jmemnobs.cpp
index e63e5e4..9bafed5 100755
--- a/libs/jpeg6/jmemnobs.cpp
+++ b/libs/jpeg6/jmemnobs.cpp
@@ -1,103 +1,103 @@
-/*
- * jmemnobs.c
- *
- * Copyright (C) 1992-1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file provides a really simple implementation of the system-
- * dependent portion of the JPEG memory manager. This implementation
- * assumes that no backing-store files are needed: all required space
- * can be obtained from ri.Malloc().
- * This is very portable in the sense that it'll compile on almost anything,
- * but you'd better have lots of main memory (or virtual memory) if you want
- * to process big images.
- * Note that the max_memory_to_use option is ignored by this implementation.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jmemsys.h" /* import the system-dependent declarations */
-
-/*
- * Memory allocation and ri.Freeing are controlled by the regular library
- * routines ri.Malloc() and ri.Free().
- */
-
-GLOBAL void *
-jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
-{
- return (void *) malloc(sizeofobject);
-}
-
-GLOBAL void
-jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
-{
- free(object);
-}
-
-
-/*
- * "Large" objects are treated the same as "small" ones.
- * NB: although we include FAR keywords in the routine declarations,
- * this file won't actually work in 80x86 small/medium model; at least,
- * you probably won't be able to process useful-size images in only 64KB.
- */
-
-GLOBAL void FAR *
-jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
-{
- return (void FAR *) malloc(sizeofobject);
-}
-
-GLOBAL void
-jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
-{
- free(object);
-}
-
-
-/*
- * This routine computes the total memory space available for allocation.
- * Here we always say, "we got all you want bud!"
- */
-
-GLOBAL long
-jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
- long max_bytes_needed, long already_allocated)
-{
- return max_bytes_needed;
-}
-
-
-/*
- * Backing store (temporary file) management.
- * Since jpeg_mem_available always promised the moon,
- * this should never be called and we can just error out.
- */
-
-GLOBAL void
-jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
- long total_bytes_needed)
-{
- ERREXIT(cinfo, JERR_NO_BACKING_STORE);
-}
-
-
-/*
- * These routines take care of any system-dependent initialization and
- * cleanup required. Here, there isn't any.
- */
-
-GLOBAL long
-jpeg_mem_init (j_common_ptr cinfo)
-{
- return 0; /* just set max_memory_to_use to 0 */
-}
-
-GLOBAL void
-jpeg_mem_term (j_common_ptr cinfo)
-{
- /* no work */
-}
+/*
+ * jmemnobs.c
+ *
+ * Copyright (C) 1992-1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file provides a really simple implementation of the system-
+ * dependent portion of the JPEG memory manager. This implementation
+ * assumes that no backing-store files are needed: all required space
+ * can be obtained from ri.Malloc().
+ * This is very portable in the sense that it'll compile on almost anything,
+ * but you'd better have lots of main memory (or virtual memory) if you want
+ * to process big images.
+ * Note that the max_memory_to_use option is ignored by this implementation.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jmemsys.h" /* import the system-dependent declarations */
+
+/*
+ * Memory allocation and ri.Freeing are controlled by the regular library
+ * routines ri.Malloc() and ri.Free().
+ */
+
+GLOBAL void *
+jpeg_get_small (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void *) malloc(sizeofobject);
+}
+
+GLOBAL void
+jpeg_free_small (j_common_ptr cinfo, void * object, size_t sizeofobject)
+{
+ free(object);
+}
+
+
+/*
+ * "Large" objects are treated the same as "small" ones.
+ * NB: although we include FAR keywords in the routine declarations,
+ * this file won't actually work in 80x86 small/medium model; at least,
+ * you probably won't be able to process useful-size images in only 64KB.
+ */
+
+GLOBAL void FAR *
+jpeg_get_large (j_common_ptr cinfo, size_t sizeofobject)
+{
+ return (void FAR *) malloc(sizeofobject);
+}
+
+GLOBAL void
+jpeg_free_large (j_common_ptr cinfo, void FAR * object, size_t sizeofobject)
+{
+ free(object);
+}
+
+
+/*
+ * This routine computes the total memory space available for allocation.
+ * Here we always say, "we got all you want bud!"
+ */
+
+GLOBAL long
+jpeg_mem_available (j_common_ptr cinfo, long min_bytes_needed,
+ long max_bytes_needed, long already_allocated)
+{
+ return max_bytes_needed;
+}
+
+
+/*
+ * Backing store (temporary file) management.
+ * Since jpeg_mem_available always promised the moon,
+ * this should never be called and we can just error out.
+ */
+
+GLOBAL void
+jpeg_open_backing_store (j_common_ptr cinfo, backing_store_ptr info,
+ long total_bytes_needed)
+{
+ ERREXIT(cinfo, JERR_NO_BACKING_STORE);
+}
+
+
+/*
+ * These routines take care of any system-dependent initialization and
+ * cleanup required. Here, there isn't any.
+ */
+
+GLOBAL long
+jpeg_mem_init (j_common_ptr cinfo)
+{
+ return 0; /* just set max_memory_to_use to 0 */
+}
+
+GLOBAL void
+jpeg_mem_term (j_common_ptr cinfo)
+{
+ /* no work */
+}
diff --git a/libs/jpeg6/jmemsys.h b/libs/jpeg6/jmemsys.h
index 0c7d7c1..033d29a 100755
--- a/libs/jpeg6/jmemsys.h
+++ b/libs/jpeg6/jmemsys.h
@@ -1,182 +1,182 @@
-/*
- * jmemsys.h
- *
- * Copyright (C) 1992-1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This include file defines the interface between the system-independent
- * and system-dependent portions of the JPEG memory manager. No other
- * modules need include it. (The system-independent portion is jmemmgr.c;
- * there are several different versions of the system-dependent portion.)
- *
- * This file works as-is for the system-dependent memory managers supplied
- * in the IJG distribution. You may need to modify it if you write a
- * custom memory manager. If system-dependent changes are needed in
- * this file, the best method is to #ifdef them based on a configuration
- * symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR.
- */
-
-
-/* Short forms of external names for systems with brain-damaged linkers. */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jpeg_get_small jGetSmall
-#define jpeg_free_small jFreeSmall
-#define jpeg_get_large jGetLarge
-#define jpeg_free_large jFreeLarge
-#define jpeg_mem_available jMemAvail
-#define jpeg_open_backing_store jOpenBackStore
-#define jpeg_mem_init jMemInit
-#define jpeg_mem_term jMemTerm
-#endif /* NEED_SHORT_EXTERNAL_NAMES */
-
-
-/*
- * These two functions are used to allocate and release small chunks of
- * memory. (Typically the total amount requested through jpeg_get_small is
- * no more than 20K or so; this will be requested in chunks of a few K each.)
- * Behavior should be the same as for the standard library functions malloc
- * and free; in particular, jpeg_get_small must return NULL on failure.
- * On most systems, these ARE malloc and free. jpeg_free_small is passed the
- * size of the object being freed, just in case it's needed.
- * On an 80x86 machine using small-data memory model, these manage near heap.
- */
-
-EXTERN void * jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject));
-EXTERN void jpeg_free_small JPP((j_common_ptr cinfo, void * object,
- size_t sizeofobject));
-
-/*
- * These two functions are used to allocate and release large chunks of
- * memory (up to the total free space designated by jpeg_mem_available).
- * The interface is the same as above, except that on an 80x86 machine,
- * far pointers are used. On most other machines these are identical to
- * the jpeg_get/free_small routines; but we keep them separate anyway,
- * in case a different allocation strategy is desirable for large chunks.
- */
-
-EXTERN void FAR * jpeg_get_large JPP((j_common_ptr cinfo,size_t sizeofobject));
-EXTERN void jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object,
- size_t sizeofobject));
-
-/*
- * The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may
- * be requested in a single call to jpeg_get_large (and jpeg_get_small for that
- * matter, but that case should never come into play). This macro is needed
- * to model the 64Kb-segment-size limit of far addressing on 80x86 machines.
- * On those machines, we expect that jconfig.h will provide a proper value.
- * On machines with 32-bit flat address spaces, any large constant may be used.
- *
- * NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type
- * size_t and will be a multiple of sizeof(align_type).
- */
-
-#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */
-#define MAX_ALLOC_CHUNK 1000000000L
-#endif
-
-/*
- * This routine computes the total space still available for allocation by
- * jpeg_get_large. If more space than this is needed, backing store will be
- * used. NOTE: any memory already allocated must not be counted.
- *
- * There is a minimum space requirement, corresponding to the minimum
- * feasible buffer sizes; jmemmgr.c will request that much space even if
- * jpeg_mem_available returns zero. The maximum space needed, enough to hold
- * all working storage in memory, is also passed in case it is useful.
- * Finally, the total space already allocated is passed. If no better
- * method is available, cinfo->mem->max_memory_to_use - already_allocated
- * is often a suitable calculation.
- *
- * It is OK for jpeg_mem_available to underestimate the space available
- * (that'll just lead to more backing-store access than is really necessary).
- * However, an overestimate will lead to failure. Hence it's wise to subtract
- * a slop factor from the true available space. 5% should be enough.
- *
- * On machines with lots of virtual memory, any large constant may be returned.
- * Conversely, zero may be returned to always use the minimum amount of memory.
- */
-
-EXTERN long jpeg_mem_available JPP((j_common_ptr cinfo,
- long min_bytes_needed,
- long max_bytes_needed,
- long already_allocated));
-
-
-/*
- * This structure holds whatever state is needed to access a single
- * backing-store object. The read/write/close method pointers are called
- * by jmemmgr.c to manipulate the backing-store object; all other fields
- * are private to the system-dependent backing store routines.
- */
-
-#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */
-
-#ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */
-
-typedef unsigned short XMSH; /* type of extended-memory handles */
-typedef unsigned short EMSH; /* type of expanded-memory handles */
-
-typedef union {
- short file_handle; /* DOS file handle if it's a temp file */
- XMSH xms_handle; /* handle if it's a chunk of XMS */
- EMSH ems_handle; /* handle if it's a chunk of EMS */
-} handle_union;
-
-#endif /* USE_MSDOS_MEMMGR */
-
-typedef struct backing_store_struct * backing_store_ptr;
-
-typedef struct backing_store_struct {
- /* Methods for reading/writing/closing this backing-store object */
- JMETHOD(void, read_backing_store, (j_common_ptr cinfo,
- backing_store_ptr info,
- void FAR * buffer_address,
- long file_offset, long byte_count));
- JMETHOD(void, write_backing_store, (j_common_ptr cinfo,
- backing_store_ptr info,
- void FAR * buffer_address,
- long file_offset, long byte_count));
- JMETHOD(void, close_backing_store, (j_common_ptr cinfo,
- backing_store_ptr info));
-
- /* Private fields for system-dependent backing-store management */
-#ifdef USE_MSDOS_MEMMGR
- /* For the MS-DOS manager (jmemdos.c), we need: */
- handle_union handle; /* reference to backing-store storage object */
- char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
-#else
- /* For a typical implementation with temp files, we need: */
- FILE * temp_file; /* stdio reference to temp file */
- char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */
-#endif
-} backing_store_info;
-
-/*
- * Initial opening of a backing-store object. This must fill in the
- * read/write/close pointers in the object. The read/write routines
- * may take an error exit if the specified maximum file size is exceeded.
- * (If jpeg_mem_available always returns a large value, this routine can
- * just take an error exit.)
- */
-
-EXTERN void jpeg_open_backing_store JPP((j_common_ptr cinfo,
- backing_store_ptr info,
- long total_bytes_needed));
-
-
-/*
- * These routines take care of any system-dependent initialization and
- * cleanup required. jpeg_mem_init will be called before anything is
- * allocated (and, therefore, nothing in cinfo is of use except the error
- * manager pointer). It should return a suitable default value for
- * max_memory_to_use; this may subsequently be overridden by the surrounding
- * application. (Note that max_memory_to_use is only important if
- * jpeg_mem_available chooses to consult it ... no one else will.)
- * jpeg_mem_term may assume that all requested memory has been freed and that
- * all opened backing-store objects have been closed.
- */
-
-EXTERN long jpeg_mem_init JPP((j_common_ptr cinfo));
-EXTERN void jpeg_mem_term JPP((j_common_ptr cinfo));
+/*
+ * jmemsys.h
+ *
+ * Copyright (C) 1992-1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This include file defines the interface between the system-independent
+ * and system-dependent portions of the JPEG memory manager. No other
+ * modules need include it. (The system-independent portion is jmemmgr.c;
+ * there are several different versions of the system-dependent portion.)
+ *
+ * This file works as-is for the system-dependent memory managers supplied
+ * in the IJG distribution. You may need to modify it if you write a
+ * custom memory manager. If system-dependent changes are needed in
+ * this file, the best method is to #ifdef them based on a configuration
+ * symbol supplied in jconfig.h, as we have done with USE_MSDOS_MEMMGR.
+ */
+
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jpeg_get_small jGetSmall
+#define jpeg_free_small jFreeSmall
+#define jpeg_get_large jGetLarge
+#define jpeg_free_large jFreeLarge
+#define jpeg_mem_available jMemAvail
+#define jpeg_open_backing_store jOpenBackStore
+#define jpeg_mem_init jMemInit
+#define jpeg_mem_term jMemTerm
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+
+/*
+ * These two functions are used to allocate and release small chunks of
+ * memory. (Typically the total amount requested through jpeg_get_small is
+ * no more than 20K or so; this will be requested in chunks of a few K each.)
+ * Behavior should be the same as for the standard library functions malloc
+ * and free; in particular, jpeg_get_small must return NULL on failure.
+ * On most systems, these ARE malloc and free. jpeg_free_small is passed the
+ * size of the object being freed, just in case it's needed.
+ * On an 80x86 machine using small-data memory model, these manage near heap.
+ */
+
+EXTERN void * jpeg_get_small JPP((j_common_ptr cinfo, size_t sizeofobject));
+EXTERN void jpeg_free_small JPP((j_common_ptr cinfo, void * object,
+ size_t sizeofobject));
+
+/*
+ * These two functions are used to allocate and release large chunks of
+ * memory (up to the total free space designated by jpeg_mem_available).
+ * The interface is the same as above, except that on an 80x86 machine,
+ * far pointers are used. On most other machines these are identical to
+ * the jpeg_get/free_small routines; but we keep them separate anyway,
+ * in case a different allocation strategy is desirable for large chunks.
+ */
+
+EXTERN void FAR * jpeg_get_large JPP((j_common_ptr cinfo,size_t sizeofobject));
+EXTERN void jpeg_free_large JPP((j_common_ptr cinfo, void FAR * object,
+ size_t sizeofobject));
+
+/*
+ * The macro MAX_ALLOC_CHUNK designates the maximum number of bytes that may
+ * be requested in a single call to jpeg_get_large (and jpeg_get_small for that
+ * matter, but that case should never come into play). This macro is needed
+ * to model the 64Kb-segment-size limit of far addressing on 80x86 machines.
+ * On those machines, we expect that jconfig.h will provide a proper value.
+ * On machines with 32-bit flat address spaces, any large constant may be used.
+ *
+ * NB: jmemmgr.c expects that MAX_ALLOC_CHUNK will be representable as type
+ * size_t and will be a multiple of sizeof(align_type).
+ */
+
+#ifndef MAX_ALLOC_CHUNK /* may be overridden in jconfig.h */
+#define MAX_ALLOC_CHUNK 1000000000L
+#endif
+
+/*
+ * This routine computes the total space still available for allocation by
+ * jpeg_get_large. If more space than this is needed, backing store will be
+ * used. NOTE: any memory already allocated must not be counted.
+ *
+ * There is a minimum space requirement, corresponding to the minimum
+ * feasible buffer sizes; jmemmgr.c will request that much space even if
+ * jpeg_mem_available returns zero. The maximum space needed, enough to hold
+ * all working storage in memory, is also passed in case it is useful.
+ * Finally, the total space already allocated is passed. If no better
+ * method is available, cinfo->mem->max_memory_to_use - already_allocated
+ * is often a suitable calculation.
+ *
+ * It is OK for jpeg_mem_available to underestimate the space available
+ * (that'll just lead to more backing-store access than is really necessary).
+ * However, an overestimate will lead to failure. Hence it's wise to subtract
+ * a slop factor from the true available space. 5% should be enough.
+ *
+ * On machines with lots of virtual memory, any large constant may be returned.
+ * Conversely, zero may be returned to always use the minimum amount of memory.
+ */
+
+EXTERN long jpeg_mem_available JPP((j_common_ptr cinfo,
+ long min_bytes_needed,
+ long max_bytes_needed,
+ long already_allocated));
+
+
+/*
+ * This structure holds whatever state is needed to access a single
+ * backing-store object. The read/write/close method pointers are called
+ * by jmemmgr.c to manipulate the backing-store object; all other fields
+ * are private to the system-dependent backing store routines.
+ */
+
+#define TEMP_NAME_LENGTH 64 /* max length of a temporary file's name */
+
+#ifdef USE_MSDOS_MEMMGR /* DOS-specific junk */
+
+typedef unsigned short XMSH; /* type of extended-memory handles */
+typedef unsigned short EMSH; /* type of expanded-memory handles */
+
+typedef union {
+ short file_handle; /* DOS file handle if it's a temp file */
+ XMSH xms_handle; /* handle if it's a chunk of XMS */
+ EMSH ems_handle; /* handle if it's a chunk of EMS */
+} handle_union;
+
+#endif /* USE_MSDOS_MEMMGR */
+
+typedef struct backing_store_struct * backing_store_ptr;
+
+typedef struct backing_store_struct {
+ /* Methods for reading/writing/closing this backing-store object */
+ JMETHOD(void, read_backing_store, (j_common_ptr cinfo,
+ backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count));
+ JMETHOD(void, write_backing_store, (j_common_ptr cinfo,
+ backing_store_ptr info,
+ void FAR * buffer_address,
+ long file_offset, long byte_count));
+ JMETHOD(void, close_backing_store, (j_common_ptr cinfo,
+ backing_store_ptr info));
+
+ /* Private fields for system-dependent backing-store management */
+#ifdef USE_MSDOS_MEMMGR
+ /* For the MS-DOS manager (jmemdos.c), we need: */
+ handle_union handle; /* reference to backing-store storage object */
+ char temp_name[TEMP_NAME_LENGTH]; /* name if it's a file */
+#else
+ /* For a typical implementation with temp files, we need: */
+ FILE * temp_file; /* stdio reference to temp file */
+ char temp_name[TEMP_NAME_LENGTH]; /* name of temp file */
+#endif
+} backing_store_info;
+
+/*
+ * Initial opening of a backing-store object. This must fill in the
+ * read/write/close pointers in the object. The read/write routines
+ * may take an error exit if the specified maximum file size is exceeded.
+ * (If jpeg_mem_available always returns a large value, this routine can
+ * just take an error exit.)
+ */
+
+EXTERN void jpeg_open_backing_store JPP((j_common_ptr cinfo,
+ backing_store_ptr info,
+ long total_bytes_needed));
+
+
+/*
+ * These routines take care of any system-dependent initialization and
+ * cleanup required. jpeg_mem_init will be called before anything is
+ * allocated (and, therefore, nothing in cinfo is of use except the error
+ * manager pointer). It should return a suitable default value for
+ * max_memory_to_use; this may subsequently be overridden by the surrounding
+ * application. (Note that max_memory_to_use is only important if
+ * jpeg_mem_available chooses to consult it ... no one else will.)
+ * jpeg_mem_term may assume that all requested memory has been freed and that
+ * all opened backing-store objects have been closed.
+ */
+
+EXTERN long jpeg_mem_init JPP((j_common_ptr cinfo));
+EXTERN void jpeg_mem_term JPP((j_common_ptr cinfo));
diff --git a/libs/jpeg6/jmorecfg.h b/libs/jpeg6/jmorecfg.h
index d451399..7e83fec 100755
--- a/libs/jpeg6/jmorecfg.h
+++ b/libs/jpeg6/jmorecfg.h
@@ -1,346 +1,346 @@
-/*
- * jmorecfg.h
- *
- * Copyright (C) 1991-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains additional configuration options that customize the
- * JPEG software for special applications or support machine-dependent
- * optimizations. Most users will not need to touch this file.
- */
-
-
-/*
- * Define BITS_IN_JSAMPLE as either
- * 8 for 8-bit sample values (the usual setting)
- * 12 for 12-bit sample values
- * Only 8 and 12 are legal data precisions for lossy JPEG according to the
- * JPEG standard, and the IJG code does not support anything else!
- * We do not support run-time selection of data precision, sorry.
- */
-
-#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */
-
-
-/*
- * Maximum number of components (color channels) allowed in JPEG image.
- * To meet the letter of the JPEG spec, set this to 255. However, darn
- * few applications need more than 4 channels (maybe 5 for CMYK + alpha
- * mask). We recommend 10 as a reasonable compromise; use 4 if you are
- * really short on memory. (Each allowed component costs a hundred or so
- * bytes of storage, whether actually used in an image or not.)
- */
-
-#define MAX_COMPONENTS 10 /* maximum number of image components */
-
-
-/*
- * Basic data types.
- * You may need to change these if you have a machine with unusual data
- * type sizes; for example, "char" not 8 bits, "short" not 16 bits,
- * or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits,
- * but it had better be at least 16.
- */
-
-/* Representation of a single sample (pixel element value).
- * We frequently allocate large arrays of these, so it's important to keep
- * them small. But if you have memory to burn and access to char or short
- * arrays is very slow on your hardware, you might want to change these.
- */
-
-#if BITS_IN_JSAMPLE == 8
-/* JSAMPLE should be the smallest type that will hold the values 0..255.
- * You can use a signed char by having GETJSAMPLE mask it with 0xFF.
- */
-
-#ifdef HAVE_UNSIGNED_CHAR
-
-typedef unsigned char JSAMPLE;
-#define GETJSAMPLE(value) ((int) (value))
-
-#else /* not HAVE_UNSIGNED_CHAR */
-
-typedef char JSAMPLE;
-#ifdef CHAR_IS_UNSIGNED
-#define GETJSAMPLE(value) ((int) (value))
-#else
-#define GETJSAMPLE(value) ((int) (value) & 0xFF)
-#endif /* CHAR_IS_UNSIGNED */
-
-#endif /* HAVE_UNSIGNED_CHAR */
-
-#define MAXJSAMPLE 255
-#define CENTERJSAMPLE 128
-
-#endif /* BITS_IN_JSAMPLE == 8 */
-
-
-#if BITS_IN_JSAMPLE == 12
-/* JSAMPLE should be the smallest type that will hold the values 0..4095.
- * On nearly all machines "short" will do nicely.
- */
-
-typedef short JSAMPLE;
-#define GETJSAMPLE(value) ((int) (value))
-
-#define MAXJSAMPLE 4095
-#define CENTERJSAMPLE 2048
-
-#endif /* BITS_IN_JSAMPLE == 12 */
-
-
-/* Representation of a DCT frequency coefficient.
- * This should be a signed value of at least 16 bits; "short" is usually OK.
- * Again, we allocate large arrays of these, but you can change to int
- * if you have memory to burn and "short" is really slow.
- */
-
-typedef short JCOEF;
-
-
-/* Compressed datastreams are represented as arrays of JOCTET.
- * These must be EXACTLY 8 bits wide, at least once they are written to
- * external storage. Note that when using the stdio data source/destination
- * managers, this is also the data type passed to fread/fwrite.
- */
-
-#ifdef HAVE_UNSIGNED_CHAR
-
-typedef unsigned char JOCTET;
-#define GETJOCTET(value) (value)
-
-#else /* not HAVE_UNSIGNED_CHAR */
-
-typedef char JOCTET;
-#ifdef CHAR_IS_UNSIGNED
-#define GETJOCTET(value) (value)
-#else
-#define GETJOCTET(value) ((value) & 0xFF)
-#endif /* CHAR_IS_UNSIGNED */
-
-#endif /* HAVE_UNSIGNED_CHAR */
-
-
-/* These typedefs are used for various table entries and so forth.
- * They must be at least as wide as specified; but making them too big
- * won't cost a huge amount of memory, so we don't provide special
- * extraction code like we did for JSAMPLE. (In other words, these
- * typedefs live at a different point on the speed/space tradeoff curve.)
- */
-
-/* UINT8 must hold at least the values 0..255. */
-
-#ifdef HAVE_UNSIGNED_CHAR
-typedef unsigned char UINT8;
-#else /* not HAVE_UNSIGNED_CHAR */
-#ifdef CHAR_IS_UNSIGNED
-typedef char UINT8;
-#else /* not CHAR_IS_UNSIGNED */
-typedef short UINT8;
-#endif /* CHAR_IS_UNSIGNED */
-#endif /* HAVE_UNSIGNED_CHAR */
-
-/* UINT16 must hold at least the values 0..65535. */
-
-#ifdef HAVE_UNSIGNED_SHORT
-typedef unsigned short UINT16;
-#else /* not HAVE_UNSIGNED_SHORT */
-typedef unsigned int UINT16;
-#endif /* HAVE_UNSIGNED_SHORT */
-
-/* INT16 must hold at least the values -32768..32767. */
-
-#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */
-typedef short INT16;
-#endif
-
-/* INT32 must hold at least signed 32-bit values. */
-
-//#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */
-//typedef long INT32;
-//#endif
-
-/* Datatype used for image dimensions. The JPEG standard only supports
- * images up to 64K*64K due to 16-bit fields in SOF markers. Therefore
- * "unsigned int" is sufficient on all machines. However, if you need to
- * handle larger images and you don't mind deviating from the spec, you
- * can change this datatype.
- */
-
-typedef unsigned int JDIMENSION;
-
-#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */
-
-
-/* These defines are used in all function definitions and extern declarations.
- * You could modify them if you need to change function linkage conventions.
- * Another application is to make all functions global for use with debuggers
- * or code profilers that require it.
- */
-
-#define METHODDEF static /* a function called through method pointers */
-#define LOCAL static /* a function used only in its module */
-#define GLOBAL /* a function referenced thru EXTERNs */
-#define EXTERN extern /* a reference to a GLOBAL function */
-
-
-/* Here is the pseudo-keyword for declaring pointers that must be "far"
- * on 80x86 machines. Most of the specialized coding for 80x86 is handled
- * by just saying "FAR *" where such a pointer is needed. In a few places
- * explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol.
- */
-
-#ifdef NEED_FAR_POINTERS
-#undef FAR
-#define FAR far
-#else
-#undef FAR
-#define FAR
-#endif
-
-
-/*
- * On a few systems, type boolean and/or its values FALSE, TRUE may appear
- * in standard header files. Or you may have conflicts with application-
- * specific header files that you want to include together with these files.
- * Defining HAVE_BOOLEAN before including jpeglib.h should make it work.
- */
-
-//#ifndef HAVE_BOOLEAN
-//typedef int boolean;
-//#endif
-#ifndef FALSE /* in case these macros already exist */
-#define FALSE 0 /* values of boolean */
-#endif
-#ifndef TRUE
-#define TRUE 1
-#endif
-
-
-/*
- * The remaining options affect code selection within the JPEG library,
- * but they don't need to be visible to most applications using the library.
- * To minimize application namespace pollution, the symbols won't be
- * defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined.
- */
-
-#ifdef JPEG_INTERNALS
-#define JPEG_INTERNAL_OPTIONS
-#endif
-
-#ifdef JPEG_INTERNAL_OPTIONS
-
-
-/*
- * These defines indicate whether to include various optional functions.
- * Undefining some of these symbols will produce a smaller but less capable
- * library. Note that you can leave certain source files out of the
- * compilation/linking process if you've #undef'd the corresponding symbols.
- * (You may HAVE to do that if your compiler doesn't like null source files.)
- */
-
-/* Arithmetic coding is unsupported for legal reasons. Complaints to IBM. */
-
-/* Capability options common to encoder and decoder: */
-
-#undef DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */
-#undef DCT_IFAST_SUPPORTED /* faster, less accurate integer method */
-#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */
-
-/* Encoder capability options: */
-
-#undef C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
-#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
-#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
-#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
-/* Note: if you selected 12-bit data precision, it is dangerous to turn off
- * ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit
- * precision, so jchuff.c normally uses entropy optimization to compute
- * usable tables for higher precision. If you don't want to do optimization,
- * you'll have to supply different default Huffman tables.
- * The exact same statements apply for progressive JPEG: the default tables
- * don't work for progressive mode. (This may get fixed, however.)
- */
-#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */
-
-/* Decoder capability options: */
-
-#undef D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
-#undef D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
-#undef D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
-#undef BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */
-#undef IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */
-#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */
-#undef UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */
-#undef QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */
-#undef QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */
-
-/* more capability options later, no doubt */
-
-
-/*
- * Ordering of RGB data in scanlines passed to or from the application.
- * If your application wants to deal with data in the order B,G,R, just
- * change these macros. You can also deal with formats such as R,G,B,X
- * (one extra byte per pixel) by changing RGB_PIXELSIZE. Note that changing
- * the offsets will also change the order in which colormap data is organized.
- * RESTRICTIONS:
- * 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats.
- * 2. These macros only affect RGB<=>YCbCr color conversion, so they are not
- * useful if you are using JPEG color spaces other than YCbCr or grayscale.
- * 3. The color quantizer modules will not behave desirably if RGB_PIXELSIZE
- * is not 3 (they don't understand about dummy color components!). So you
- * can't use color quantization if you change that value.
- */
-
-#define RGB_RED 0 /* Offset of Red in an RGB scanline element */
-#define RGB_GREEN 1 /* Offset of Green */
-#define RGB_BLUE 2 /* Offset of Blue */
-#define RGB_PIXELSIZE 4 /* JSAMPLEs per RGB scanline element */
-
-
-/* Definitions for speed-related optimizations. */
-
-
-/* If your compiler supports inline functions, define INLINE
- * as the inline keyword; otherwise define it as empty.
- */
-
-#ifndef INLINE
-#ifdef __GNUC__ /* for instance, GNU C knows about inline */
-#define INLINE __inline__
-#endif
-#ifndef INLINE
-#define INLINE /* default is to define it as empty */
-#endif
-#endif
-
-
-/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
- * two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER
- * as short on such a machine. MULTIPLIER must be at least 16 bits wide.
- */
-
-#ifndef MULTIPLIER
-#define MULTIPLIER int /* type for fastest integer multiply */
-#endif
-
-
-/* FAST_FLOAT should be either float or double, whichever is done faster
- * by your compiler. (Note that this type is only used in the floating point
- * DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.)
- * Typically, float is faster in ANSI C compilers, while double is faster in
- * pre-ANSI compilers (because they insist on converting to double anyway).
- * The code below therefore chooses float if we have ANSI-style prototypes.
- */
-
-#ifndef FAST_FLOAT
-#ifdef HAVE_PROTOTYPES
-#define FAST_FLOAT float
-#else
-#define FAST_FLOAT double
-#endif
-#endif
-
-#endif /* JPEG_INTERNAL_OPTIONS */
+/*
+ * jmorecfg.h
+ *
+ * Copyright (C) 1991-1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains additional configuration options that customize the
+ * JPEG software for special applications or support machine-dependent
+ * optimizations. Most users will not need to touch this file.
+ */
+
+
+/*
+ * Define BITS_IN_JSAMPLE as either
+ * 8 for 8-bit sample values (the usual setting)
+ * 12 for 12-bit sample values
+ * Only 8 and 12 are legal data precisions for lossy JPEG according to the
+ * JPEG standard, and the IJG code does not support anything else!
+ * We do not support run-time selection of data precision, sorry.
+ */
+
+#define BITS_IN_JSAMPLE 8 /* use 8 or 12 */
+
+
+/*
+ * Maximum number of components (color channels) allowed in JPEG image.
+ * To meet the letter of the JPEG spec, set this to 255. However, darn
+ * few applications need more than 4 channels (maybe 5 for CMYK + alpha
+ * mask). We recommend 10 as a reasonable compromise; use 4 if you are
+ * really short on memory. (Each allowed component costs a hundred or so
+ * bytes of storage, whether actually used in an image or not.)
+ */
+
+#define MAX_COMPONENTS 10 /* maximum number of image components */
+
+
+/*
+ * Basic data types.
+ * You may need to change these if you have a machine with unusual data
+ * type sizes; for example, "char" not 8 bits, "short" not 16 bits,
+ * or "long" not 32 bits. We don't care whether "int" is 16 or 32 bits,
+ * but it had better be at least 16.
+ */
+
+/* Representation of a single sample (pixel element value).
+ * We frequently allocate large arrays of these, so it's important to keep
+ * them small. But if you have memory to burn and access to char or short
+ * arrays is very slow on your hardware, you might want to change these.
+ */
+
+#if BITS_IN_JSAMPLE == 8
+/* JSAMPLE should be the smallest type that will hold the values 0..255.
+ * You can use a signed char by having GETJSAMPLE mask it with 0xFF.
+ */
+
+#ifdef HAVE_UNSIGNED_CHAR
+
+typedef unsigned char JSAMPLE;
+#define GETJSAMPLE(value) ((int) (value))
+
+#else /* not HAVE_UNSIGNED_CHAR */
+
+typedef char JSAMPLE;
+#ifdef CHAR_IS_UNSIGNED
+#define GETJSAMPLE(value) ((int) (value))
+#else
+#define GETJSAMPLE(value) ((int) (value) & 0xFF)
+#endif /* CHAR_IS_UNSIGNED */
+
+#endif /* HAVE_UNSIGNED_CHAR */
+
+#define MAXJSAMPLE 255
+#define CENTERJSAMPLE 128
+
+#endif /* BITS_IN_JSAMPLE == 8 */
+
+
+#if BITS_IN_JSAMPLE == 12
+/* JSAMPLE should be the smallest type that will hold the values 0..4095.
+ * On nearly all machines "short" will do nicely.
+ */
+
+typedef short JSAMPLE;
+#define GETJSAMPLE(value) ((int) (value))
+
+#define MAXJSAMPLE 4095
+#define CENTERJSAMPLE 2048
+
+#endif /* BITS_IN_JSAMPLE == 12 */
+
+
+/* Representation of a DCT frequency coefficient.
+ * This should be a signed value of at least 16 bits; "short" is usually OK.
+ * Again, we allocate large arrays of these, but you can change to int
+ * if you have memory to burn and "short" is really slow.
+ */
+
+typedef short JCOEF;
+
+
+/* Compressed datastreams are represented as arrays of JOCTET.
+ * These must be EXACTLY 8 bits wide, at least once they are written to
+ * external storage. Note that when using the stdio data source/destination
+ * managers, this is also the data type passed to fread/fwrite.
+ */
+
+#ifdef HAVE_UNSIGNED_CHAR
+
+typedef unsigned char JOCTET;
+#define GETJOCTET(value) (value)
+
+#else /* not HAVE_UNSIGNED_CHAR */
+
+typedef char JOCTET;
+#ifdef CHAR_IS_UNSIGNED
+#define GETJOCTET(value) (value)
+#else
+#define GETJOCTET(value) ((value) & 0xFF)
+#endif /* CHAR_IS_UNSIGNED */
+
+#endif /* HAVE_UNSIGNED_CHAR */
+
+
+/* These typedefs are used for various table entries and so forth.
+ * They must be at least as wide as specified; but making them too big
+ * won't cost a huge amount of memory, so we don't provide special
+ * extraction code like we did for JSAMPLE. (In other words, these
+ * typedefs live at a different point on the speed/space tradeoff curve.)
+ */
+
+/* UINT8 must hold at least the values 0..255. */
+
+#ifdef HAVE_UNSIGNED_CHAR
+typedef unsigned char UINT8;
+#else /* not HAVE_UNSIGNED_CHAR */
+#ifdef CHAR_IS_UNSIGNED
+typedef char UINT8;
+#else /* not CHAR_IS_UNSIGNED */
+typedef short UINT8;
+#endif /* CHAR_IS_UNSIGNED */
+#endif /* HAVE_UNSIGNED_CHAR */
+
+/* UINT16 must hold at least the values 0..65535. */
+
+#ifdef HAVE_UNSIGNED_SHORT
+typedef unsigned short UINT16;
+#else /* not HAVE_UNSIGNED_SHORT */
+typedef unsigned int UINT16;
+#endif /* HAVE_UNSIGNED_SHORT */
+
+/* INT16 must hold at least the values -32768..32767. */
+
+#ifndef XMD_H /* X11/xmd.h correctly defines INT16 */
+typedef short INT16;
+#endif
+
+/* INT32 must hold at least signed 32-bit values. */
+
+//#ifndef XMD_H /* X11/xmd.h correctly defines INT32 */
+//typedef long INT32;
+//#endif
+
+/* Datatype used for image dimensions. The JPEG standard only supports
+ * images up to 64K*64K due to 16-bit fields in SOF markers. Therefore
+ * "unsigned int" is sufficient on all machines. However, if you need to
+ * handle larger images and you don't mind deviating from the spec, you
+ * can change this datatype.
+ */
+
+typedef unsigned int JDIMENSION;
+
+#define JPEG_MAX_DIMENSION 65500L /* a tad under 64K to prevent overflows */
+
+
+/* These defines are used in all function definitions and extern declarations.
+ * You could modify them if you need to change function linkage conventions.
+ * Another application is to make all functions global for use with debuggers
+ * or code profilers that require it.
+ */
+
+#define METHODDEF static /* a function called through method pointers */
+#define LOCAL static /* a function used only in its module */
+#define GLOBAL /* a function referenced thru EXTERNs */
+#define EXTERN extern /* a reference to a GLOBAL function */
+
+
+/* Here is the pseudo-keyword for declaring pointers that must be "far"
+ * on 80x86 machines. Most of the specialized coding for 80x86 is handled
+ * by just saying "FAR *" where such a pointer is needed. In a few places
+ * explicit coding is needed; see uses of the NEED_FAR_POINTERS symbol.
+ */
+
+#ifdef NEED_FAR_POINTERS
+#undef FAR
+#define FAR far
+#else
+#undef FAR
+#define FAR
+#endif
+
+
+/*
+ * On a few systems, type boolean and/or its values FALSE, TRUE may appear
+ * in standard header files. Or you may have conflicts with application-
+ * specific header files that you want to include together with these files.
+ * Defining HAVE_BOOLEAN before including jpeglib.h should make it work.
+ */
+
+//#ifndef HAVE_BOOLEAN
+//typedef int boolean;
+//#endif
+#ifndef FALSE /* in case these macros already exist */
+#define FALSE 0 /* values of boolean */
+#endif
+#ifndef TRUE
+#define TRUE 1
+#endif
+
+
+/*
+ * The remaining options affect code selection within the JPEG library,
+ * but they don't need to be visible to most applications using the library.
+ * To minimize application namespace pollution, the symbols won't be
+ * defined unless JPEG_INTERNALS or JPEG_INTERNAL_OPTIONS has been defined.
+ */
+
+#ifdef JPEG_INTERNALS
+#define JPEG_INTERNAL_OPTIONS
+#endif
+
+#ifdef JPEG_INTERNAL_OPTIONS
+
+
+/*
+ * These defines indicate whether to include various optional functions.
+ * Undefining some of these symbols will produce a smaller but less capable
+ * library. Note that you can leave certain source files out of the
+ * compilation/linking process if you've #undef'd the corresponding symbols.
+ * (You may HAVE to do that if your compiler doesn't like null source files.)
+ */
+
+/* Arithmetic coding is unsupported for legal reasons. Complaints to IBM. */
+
+/* Capability options common to encoder and decoder: */
+
+#undef DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */
+#undef DCT_IFAST_SUPPORTED /* faster, less accurate integer method */
+#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */
+
+/* Encoder capability options: */
+
+#undef C_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
+#define C_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
+#define C_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
+#define ENTROPY_OPT_SUPPORTED /* Optimization of entropy coding parms? */
+/* Note: if you selected 12-bit data precision, it is dangerous to turn off
+ * ENTROPY_OPT_SUPPORTED. The standard Huffman tables are only good for 8-bit
+ * precision, so jchuff.c normally uses entropy optimization to compute
+ * usable tables for higher precision. If you don't want to do optimization,
+ * you'll have to supply different default Huffman tables.
+ * The exact same statements apply for progressive JPEG: the default tables
+ * don't work for progressive mode. (This may get fixed, however.)
+ */
+#define INPUT_SMOOTHING_SUPPORTED /* Input image smoothing option? */
+
+/* Decoder capability options: */
+
+#undef D_ARITH_CODING_SUPPORTED /* Arithmetic coding back end? */
+#undef D_MULTISCAN_FILES_SUPPORTED /* Multiple-scan JPEG files? */
+#undef D_PROGRESSIVE_SUPPORTED /* Progressive JPEG? (Requires MULTISCAN)*/
+#undef BLOCK_SMOOTHING_SUPPORTED /* Block smoothing? (Progressive only) */
+#undef IDCT_SCALING_SUPPORTED /* Output rescaling via IDCT? */
+#undef UPSAMPLE_SCALING_SUPPORTED /* Output rescaling at upsample stage? */
+#undef UPSAMPLE_MERGING_SUPPORTED /* Fast path for sloppy upsampling? */
+#undef QUANT_1PASS_SUPPORTED /* 1-pass color quantization? */
+#undef QUANT_2PASS_SUPPORTED /* 2-pass color quantization? */
+
+/* more capability options later, no doubt */
+
+
+/*
+ * Ordering of RGB data in scanlines passed to or from the application.
+ * If your application wants to deal with data in the order B,G,R, just
+ * change these macros. You can also deal with formats such as R,G,B,X
+ * (one extra byte per pixel) by changing RGB_PIXELSIZE. Note that changing
+ * the offsets will also change the order in which colormap data is organized.
+ * RESTRICTIONS:
+ * 1. The sample applications cjpeg,djpeg do NOT support modified RGB formats.
+ * 2. These macros only affect RGB<=>YCbCr color conversion, so they are not
+ * useful if you are using JPEG color spaces other than YCbCr or grayscale.
+ * 3. The color quantizer modules will not behave desirably if RGB_PIXELSIZE
+ * is not 3 (they don't understand about dummy color components!). So you
+ * can't use color quantization if you change that value.
+ */
+
+#define RGB_RED 0 /* Offset of Red in an RGB scanline element */
+#define RGB_GREEN 1 /* Offset of Green */
+#define RGB_BLUE 2 /* Offset of Blue */
+#define RGB_PIXELSIZE 4 /* JSAMPLEs per RGB scanline element */
+
+
+/* Definitions for speed-related optimizations. */
+
+
+/* If your compiler supports inline functions, define INLINE
+ * as the inline keyword; otherwise define it as empty.
+ */
+
+#ifndef INLINE
+#ifdef __GNUC__ /* for instance, GNU C knows about inline */
+#define INLINE __inline__
+#endif
+#ifndef INLINE
+#define INLINE /* default is to define it as empty */
+#endif
+#endif
+
+
+/* On some machines (notably 68000 series) "int" is 32 bits, but multiplying
+ * two 16-bit shorts is faster than multiplying two ints. Define MULTIPLIER
+ * as short on such a machine. MULTIPLIER must be at least 16 bits wide.
+ */
+
+#ifndef MULTIPLIER
+#define MULTIPLIER int /* type for fastest integer multiply */
+#endif
+
+
+/* FAST_FLOAT should be either float or double, whichever is done faster
+ * by your compiler. (Note that this type is only used in the floating point
+ * DCT routines, so it only matters if you've defined DCT_FLOAT_SUPPORTED.)
+ * Typically, float is faster in ANSI C compilers, while double is faster in
+ * pre-ANSI compilers (because they insist on converting to double anyway).
+ * The code below therefore chooses float if we have ANSI-style prototypes.
+ */
+
+#ifndef FAST_FLOAT
+#ifdef HAVE_PROTOTYPES
+#define FAST_FLOAT float
+#else
+#define FAST_FLOAT double
+#endif
+#endif
+
+#endif /* JPEG_INTERNAL_OPTIONS */
diff --git a/libs/jpeg6/jpeg6.vcproj b/libs/jpeg6/jpeg6.vcproj
index f17e134..ef6f2ab 100755
--- a/libs/jpeg6/jpeg6.vcproj
+++ b/libs/jpeg6/jpeg6.vcproj
@@ -1,603 +1,603 @@
-<?xml version="1.0" encoding="Windows-1252"?>
-<VisualStudioProject
- ProjectType="Visual C++"
- Version="7.10"
- Name="jpeg6"
- SccProjectName="&quot;$/source/q3radiant&quot;, FEFAAAAA"
- SccLocalPath="..\..\q3radiant">
- <Platforms>
- <Platform
- Name="Win32"/>
- </Platforms>
- <Configurations>
- <Configuration
- Name="Release|Win32"
- OutputDirectory=".\Release"
- IntermediateDirectory=".\Release"
- ConfigurationType="4"
- UseOfMFC="0"
- ATLMinimizesCRunTimeLibraryUsage="FALSE"
- CharacterSet="2">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- InlineFunctionExpansion="1"
- AdditionalIncludeDirectories=".."
- PreprocessorDefinitions="WIN32;NDEBUG;_LIB"
- StringPooling="TRUE"
- RuntimeLibrary="0"
- EnableFunctionLevelLinking="TRUE"
- RuntimeTypeInfo="TRUE"
- UsePrecompiledHeader="2"
- PrecompiledHeaderFile=".\Release/jpeg6.pch"
- AssemblerListingLocation=".\Release/"
- ObjectFile=".\Release/"
- ProgramDataBaseFileName=".\Release/"
- WarningLevel="3"
- SuppressStartupBanner="TRUE"
- CompileAs="0"/>
- <Tool
- Name="VCCustomBuildTool"/>
- <Tool
- Name="VCLibrarianTool"
- OutputFile="..\jpeg6.lib"
- SuppressStartupBanner="TRUE"/>
- <Tool
- Name="VCMIDLTool"/>
- <Tool
- Name="VCPostBuildEventTool"/>
- <Tool
- Name="VCPreBuildEventTool"/>
- <Tool
- Name="VCPreLinkEventTool"/>
- <Tool
- Name="VCResourceCompilerTool"
- PreprocessorDefinitions="NDEBUG"
- Culture="1033"/>
- <Tool
- Name="VCWebServiceProxyGeneratorTool"/>
- <Tool
- Name="VCXMLDataGeneratorTool"/>
- <Tool
- Name="VCManagedWrapperGeneratorTool"/>
- <Tool
- Name="VCAuxiliaryManagedWrapperGeneratorTool"/>
- </Configuration>
- <Configuration
- Name="Debug|Win32"
- OutputDirectory=".\Debug"
- IntermediateDirectory=".\Debug"
- ConfigurationType="4"
- UseOfMFC="0"
- ATLMinimizesCRunTimeLibraryUsage="FALSE"
- CharacterSet="2">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=".."
- PreprocessorDefinitions="WIN32;_DEBUG;_LIB"
- BasicRuntimeChecks="3"
- RuntimeLibrary="1"
- RuntimeTypeInfo="TRUE"
- UsePrecompiledHeader="2"
- PrecompiledHeaderFile=".\Debug/jpeg6.pch"
- AssemblerListingLocation=".\Debug/"
- ObjectFile=".\Debug/"
- ProgramDataBaseFileName=".\Debug/"
- WarningLevel="3"
- SuppressStartupBanner="TRUE"
- DebugInformationFormat="4"
- CompileAs="0"/>
- <Tool
- Name="VCCustomBuildTool"/>
- <Tool
- Name="VCLibrarianTool"
- OutputFile="..\jpeg6d.lib"
- SuppressStartupBanner="TRUE"/>
- <Tool
- Name="VCMIDLTool"/>
- <Tool
- Name="VCPostBuildEventTool"/>
- <Tool
- Name="VCPreBuildEventTool"/>
- <Tool
- Name="VCPreLinkEventTool"/>
- <Tool
- Name="VCResourceCompilerTool"
- PreprocessorDefinitions="_DEBUG"
- Culture="1033"/>
- <Tool
- Name="VCWebServiceProxyGeneratorTool"/>
- <Tool
- Name="VCXMLDataGeneratorTool"/>
- <Tool
- Name="VCManagedWrapperGeneratorTool"/>
- <Tool
- Name="VCAuxiliaryManagedWrapperGeneratorTool"/>
- </Configuration>
- </Configurations>
- <References>
- </References>
- <Files>
- <Filter
- Name="Source Files"
- Filter="cpp;c;cxx;rc;def;r;odl;idl;hpj;bat">
- <File
- RelativePath="jcomapi.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jdapimin.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jdapistd.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jdatasrc.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jdcoefct.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jdcolor.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jddctmgr.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jdhuff.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jdinput.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jdmainct.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jdmarker.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jdmaster.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jdpostct.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jdsample.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jdtrans.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jerror.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jfdctflt.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jidctflt.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jmemmgr.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jmemnobs.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jpgload.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- <File
- RelativePath="jutils.cpp">
- <FileConfiguration
- Name="Release|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="2"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""/>
- </FileConfiguration>
- <FileConfiguration
- Name="Debug|Win32">
- <Tool
- Name="VCCLCompilerTool"
- Optimization="0"
- AdditionalIncludeDirectories=""
- PreprocessorDefinitions=""
- BasicRuntimeChecks="3"/>
- </FileConfiguration>
- </File>
- </Filter>
- <Filter
- Name="Header Files"
- Filter="h;hpp;hxx;hm;inl">
- <File
- RelativePath="jchuff.h">
- </File>
- <File
- RelativePath="jconfig.h">
- </File>
- <File
- RelativePath="jdct.h">
- </File>
- <File
- RelativePath="jdhuff.h">
- </File>
- <File
- RelativePath="jerror.h">
- </File>
- <File
- RelativePath="jinclude.h">
- </File>
- <File
- RelativePath="jmemsys.h">
- </File>
- <File
- RelativePath="jmorecfg.h">
- </File>
- <File
- RelativePath="jpegint.h">
- </File>
- <File
- RelativePath="jversion.h">
- </File>
- </Filter>
- </Files>
- <Globals>
- </Globals>
-</VisualStudioProject>
+<?xml version="1.0" encoding="Windows-1252"?>
+<VisualStudioProject
+ ProjectType="Visual C++"
+ Version="7.10"
+ Name="jpeg6"
+ SccProjectName="&quot;$/source/q3radiant&quot;, FEFAAAAA"
+ SccLocalPath="..\..\q3radiant">
+ <Platforms>
+ <Platform
+ Name="Win32"/>
+ </Platforms>
+ <Configurations>
+ <Configuration
+ Name="Release|Win32"
+ OutputDirectory=".\Release"
+ IntermediateDirectory=".\Release"
+ ConfigurationType="4"
+ UseOfMFC="0"
+ ATLMinimizesCRunTimeLibraryUsage="FALSE"
+ CharacterSet="2">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ InlineFunctionExpansion="1"
+ AdditionalIncludeDirectories=".."
+ PreprocessorDefinitions="WIN32;NDEBUG;_LIB"
+ StringPooling="TRUE"
+ RuntimeLibrary="0"
+ EnableFunctionLevelLinking="TRUE"
+ RuntimeTypeInfo="TRUE"
+ UsePrecompiledHeader="2"
+ PrecompiledHeaderFile=".\Release/jpeg6.pch"
+ AssemblerListingLocation=".\Release/"
+ ObjectFile=".\Release/"
+ ProgramDataBaseFileName=".\Release/"
+ WarningLevel="3"
+ SuppressStartupBanner="TRUE"
+ CompileAs="0"/>
+ <Tool
+ Name="VCCustomBuildTool"/>
+ <Tool
+ Name="VCLibrarianTool"
+ OutputFile="..\jpeg6.lib"
+ SuppressStartupBanner="TRUE"/>
+ <Tool
+ Name="VCMIDLTool"/>
+ <Tool
+ Name="VCPostBuildEventTool"/>
+ <Tool
+ Name="VCPreBuildEventTool"/>
+ <Tool
+ Name="VCPreLinkEventTool"/>
+ <Tool
+ Name="VCResourceCompilerTool"
+ PreprocessorDefinitions="NDEBUG"
+ Culture="1033"/>
+ <Tool
+ Name="VCWebServiceProxyGeneratorTool"/>
+ <Tool
+ Name="VCXMLDataGeneratorTool"/>
+ <Tool
+ Name="VCManagedWrapperGeneratorTool"/>
+ <Tool
+ Name="VCAuxiliaryManagedWrapperGeneratorTool"/>
+ </Configuration>
+ <Configuration
+ Name="Debug|Win32"
+ OutputDirectory=".\Debug"
+ IntermediateDirectory=".\Debug"
+ ConfigurationType="4"
+ UseOfMFC="0"
+ ATLMinimizesCRunTimeLibraryUsage="FALSE"
+ CharacterSet="2">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=".."
+ PreprocessorDefinitions="WIN32;_DEBUG;_LIB"
+ BasicRuntimeChecks="3"
+ RuntimeLibrary="1"
+ RuntimeTypeInfo="TRUE"
+ UsePrecompiledHeader="2"
+ PrecompiledHeaderFile=".\Debug/jpeg6.pch"
+ AssemblerListingLocation=".\Debug/"
+ ObjectFile=".\Debug/"
+ ProgramDataBaseFileName=".\Debug/"
+ WarningLevel="3"
+ SuppressStartupBanner="TRUE"
+ DebugInformationFormat="4"
+ CompileAs="0"/>
+ <Tool
+ Name="VCCustomBuildTool"/>
+ <Tool
+ Name="VCLibrarianTool"
+ OutputFile="..\jpeg6d.lib"
+ SuppressStartupBanner="TRUE"/>
+ <Tool
+ Name="VCMIDLTool"/>
+ <Tool
+ Name="VCPostBuildEventTool"/>
+ <Tool
+ Name="VCPreBuildEventTool"/>
+ <Tool
+ Name="VCPreLinkEventTool"/>
+ <Tool
+ Name="VCResourceCompilerTool"
+ PreprocessorDefinitions="_DEBUG"
+ Culture="1033"/>
+ <Tool
+ Name="VCWebServiceProxyGeneratorTool"/>
+ <Tool
+ Name="VCXMLDataGeneratorTool"/>
+ <Tool
+ Name="VCManagedWrapperGeneratorTool"/>
+ <Tool
+ Name="VCAuxiliaryManagedWrapperGeneratorTool"/>
+ </Configuration>
+ </Configurations>
+ <References>
+ </References>
+ <Files>
+ <Filter
+ Name="Source Files"
+ Filter="cpp;c;cxx;rc;def;r;odl;idl;hpj;bat">
+ <File
+ RelativePath="jcomapi.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jdapimin.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jdapistd.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jdatasrc.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jdcoefct.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jdcolor.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jddctmgr.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jdhuff.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jdinput.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jdmainct.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jdmarker.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jdmaster.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jdpostct.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jdsample.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jdtrans.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jerror.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jfdctflt.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jidctflt.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jmemmgr.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jmemnobs.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jpgload.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ <File
+ RelativePath="jutils.cpp">
+ <FileConfiguration
+ Name="Release|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="2"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""/>
+ </FileConfiguration>
+ <FileConfiguration
+ Name="Debug|Win32">
+ <Tool
+ Name="VCCLCompilerTool"
+ Optimization="0"
+ AdditionalIncludeDirectories=""
+ PreprocessorDefinitions=""
+ BasicRuntimeChecks="3"/>
+ </FileConfiguration>
+ </File>
+ </Filter>
+ <Filter
+ Name="Header Files"
+ Filter="h;hpp;hxx;hm;inl">
+ <File
+ RelativePath="jchuff.h">
+ </File>
+ <File
+ RelativePath="jconfig.h">
+ </File>
+ <File
+ RelativePath="jdct.h">
+ </File>
+ <File
+ RelativePath="jdhuff.h">
+ </File>
+ <File
+ RelativePath="jerror.h">
+ </File>
+ <File
+ RelativePath="jinclude.h">
+ </File>
+ <File
+ RelativePath="jmemsys.h">
+ </File>
+ <File
+ RelativePath="jmorecfg.h">
+ </File>
+ <File
+ RelativePath="jpegint.h">
+ </File>
+ <File
+ RelativePath="jversion.h">
+ </File>
+ </Filter>
+ </Files>
+ <Globals>
+ </Globals>
+</VisualStudioProject>
diff --git a/libs/jpeg6/jpegint.h b/libs/jpeg6/jpegint.h
index b3b6a6d..ab5bee2 100755
--- a/libs/jpeg6/jpegint.h
+++ b/libs/jpeg6/jpegint.h
@@ -1,388 +1,388 @@
-/*
- * jpegint.h
- *
- * Copyright (C) 1991-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file provides common declarations for the various JPEG modules.
- * These declarations are considered internal to the JPEG library; most
- * applications using the library shouldn't need to include this file.
- */
-
-
-/* Declarations for both compression & decompression */
-
-typedef enum { /* Operating modes for buffer controllers */
- JBUF_PASS_THRU, /* Plain stripwise operation */
- /* Remaining modes require a full-image buffer to have been created */
- JBUF_SAVE_SOURCE, /* Run source subobject only, save output */
- JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */
- JBUF_SAVE_AND_PASS /* Run both subobjects, save output */
-} J_BUF_MODE;
-
-/* Values of global_state field (jdapi.c has some dependencies on ordering!) */
-#define CSTATE_START 100 /* after create_compress */
-#define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */
-#define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */
-#define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */
-#define DSTATE_START 200 /* after create_decompress */
-#define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */
-#define DSTATE_READY 202 /* found SOS, ready for start_decompress */
-#define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/
-#define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */
-#define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */
-#define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */
-#define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */
-#define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */
-#define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */
-#define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */
-
-
-/* Declarations for compression modules */
-
-/* Master control module */
-struct jpeg_comp_master {
- JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo));
- JMETHOD(void, pass_startup, (j_compress_ptr cinfo));
- JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
-
- /* State variables made visible to other modules */
- boolean call_pass_startup; /* True if pass_startup must be called */
- boolean is_last_pass; /* True during last pass */
-};
-
-/* Main buffer control (downsampled-data buffer) */
-struct jpeg_c_main_controller {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
- JMETHOD(void, process_data, (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
- JDIMENSION in_rows_avail));
-};
-
-/* Compression preprocessing (downsampling input buffer control) */
-struct jpeg_c_prep_controller {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
- JMETHOD(void, pre_process_data, (j_compress_ptr cinfo,
- JSAMPARRAY input_buf,
- JDIMENSION *in_row_ctr,
- JDIMENSION in_rows_avail,
- JSAMPIMAGE output_buf,
- JDIMENSION *out_row_group_ctr,
- JDIMENSION out_row_groups_avail));
-};
-
-/* Coefficient buffer control */
-struct jpeg_c_coef_controller {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
- JMETHOD(boolean, compress_data, (j_compress_ptr cinfo,
- JSAMPIMAGE input_buf));
-};
-
-/* Colorspace conversion */
-struct jpeg_color_converter {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo));
- JMETHOD(void, color_convert, (j_compress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
- JDIMENSION output_row, int num_rows));
-};
-
-/* Downsampling */
-struct jpeg_downsampler {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo));
- JMETHOD(void, downsample, (j_compress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION in_row_index,
- JSAMPIMAGE output_buf,
- JDIMENSION out_row_group_index));
-
- boolean need_context_rows; /* TRUE if need rows above & below */
-};
-
-/* Forward DCT (also controls coefficient quantization) */
-struct jpeg_forward_dct {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo));
- /* perhaps this should be an array??? */
- JMETHOD(void, forward_DCT, (j_compress_ptr cinfo,
- jpeg_component_info * compptr,
- JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
- JDIMENSION start_row, JDIMENSION start_col,
- JDIMENSION num_blocks));
-};
-
-/* Entropy encoding */
-struct jpeg_entropy_encoder {
- JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics));
- JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKROW *MCU_data));
- JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
-};
-
-/* Marker writing */
-struct jpeg_marker_writer {
- /* write_any_marker is exported for use by applications */
- /* Probably only COM and APPn markers should be written */
- JMETHOD(void, write_any_marker, (j_compress_ptr cinfo, int marker,
- const JOCTET *dataptr, unsigned int datalen));
- JMETHOD(void, write_file_header, (j_compress_ptr cinfo));
- JMETHOD(void, write_frame_header, (j_compress_ptr cinfo));
- JMETHOD(void, write_scan_header, (j_compress_ptr cinfo));
- JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo));
- JMETHOD(void, write_tables_only, (j_compress_ptr cinfo));
-};
-
-
-/* Declarations for decompression modules */
-
-/* Master control module */
-struct jpeg_decomp_master {
- JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo));
- JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo));
-
- /* State variables made visible to other modules */
- boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */
-};
-
-/* Input control module */
-struct jpeg_input_controller {
- JMETHOD(int, consume_input, (j_decompress_ptr cinfo));
- JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo));
- JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
- JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo));
-
- /* State variables made visible to other modules */
- boolean has_multiple_scans; /* True if file has multiple scans */
- boolean eoi_reached; /* True when EOI has been consumed */
-};
-
-/* Main buffer control (downsampled-data buffer) */
-struct jpeg_d_main_controller {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
- JMETHOD(void, process_data, (j_decompress_ptr cinfo,
- JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail));
-};
-
-/* Coefficient buffer control */
-struct jpeg_d_coef_controller {
- JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
- JMETHOD(int, consume_data, (j_decompress_ptr cinfo));
- JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo));
- JMETHOD(int, decompress_data, (j_decompress_ptr cinfo,
- JSAMPIMAGE output_buf));
- /* Pointer to array of coefficient virtual arrays, or NULL if none */
- jvirt_barray_ptr *coef_arrays;
-};
-
-/* Decompression postprocessing (color quantization buffer control) */
-struct jpeg_d_post_controller {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
- JMETHOD(void, post_process_data, (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf,
- JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf,
- JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail));
-};
-
-/* Marker reading & parsing */
-struct jpeg_marker_reader {
- JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo));
- /* Read markers until SOS or EOI.
- * Returns same codes as are defined for jpeg_consume_input:
- * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
- */
- JMETHOD(int, read_markers, (j_decompress_ptr cinfo));
- /* Read a restart marker --- exported for use by entropy decoder only */
- jpeg_marker_parser_method read_restart_marker;
- /* Application-overridable marker processing methods */
- jpeg_marker_parser_method process_COM;
- jpeg_marker_parser_method process_APPn[16];
-
- /* State of marker reader --- nominally internal, but applications
- * supplying COM or APPn handlers might like to know the state.
- */
- boolean saw_SOI; /* found SOI? */
- boolean saw_SOF; /* found SOF? */
- int next_restart_num; /* next restart number expected (0-7) */
- unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */
-};
-
-/* Entropy decoding */
-struct jpeg_entropy_decoder {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
- JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo,
- JBLOCKROW *MCU_data));
-};
-
-/* Inverse DCT (also performs dequantization) */
-typedef JMETHOD(void, inverse_DCT_method_ptr,
- (j_decompress_ptr cinfo, jpeg_component_info * compptr,
- JCOEFPTR coef_block,
- JSAMPARRAY output_buf, JDIMENSION output_col));
-
-struct jpeg_inverse_dct {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
- /* It is useful to allow each component to have a separate IDCT method. */
- inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS];
-};
-
-/* Upsampling (note that upsampler must also call color converter) */
-struct jpeg_upsampler {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
- JMETHOD(void, upsample, (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf,
- JDIMENSION *in_row_group_ctr,
- JDIMENSION in_row_groups_avail,
- JSAMPARRAY output_buf,
- JDIMENSION *out_row_ctr,
- JDIMENSION out_rows_avail));
-
- boolean need_context_rows; /* TRUE if need rows above & below */
-};
-
-/* Colorspace conversion */
-struct jpeg_color_deconverter {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
- JMETHOD(void, color_convert, (j_decompress_ptr cinfo,
- JSAMPIMAGE input_buf, JDIMENSION input_row,
- JSAMPARRAY output_buf, int num_rows));
-};
-
-/* Color quantization or color precision reduction */
-struct jpeg_color_quantizer {
- JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan));
- JMETHOD(void, color_quantize, (j_decompress_ptr cinfo,
- JSAMPARRAY input_buf, JSAMPARRAY output_buf,
- int num_rows));
- JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
- JMETHOD(void, new_color_map, (j_decompress_ptr cinfo));
-};
-
-
-/* Miscellaneous useful macros */
-
-#undef MAX
-#define MAX(a,b) ((a) > (b) ? (a) : (b))
-#undef MIN
-#define MIN(a,b) ((a) < (b) ? (a) : (b))
-
-
-/* We assume that right shift corresponds to signed division by 2 with
- * rounding towards minus infinity. This is correct for typical "arithmetic
- * shift" instructions that shift in copies of the sign bit. But some
- * C compilers implement >> with an unsigned shift. For these machines you
- * must define RIGHT_SHIFT_IS_UNSIGNED.
- * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
- * It is only applied with constant shift counts. SHIFT_TEMPS must be
- * included in the variables of any routine using RIGHT_SHIFT.
- */
-
-#ifdef RIGHT_SHIFT_IS_UNSIGNED
-#define SHIFT_TEMPS INT32 shift_temp;
-#define RIGHT_SHIFT(x,shft) \
- ((shift_temp = (x)) < 0 ? \
- (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
- (shift_temp >> (shft)))
-#else
-#define SHIFT_TEMPS
-#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
-#endif
-
-
-/* Short forms of external names for systems with brain-damaged linkers. */
-
-#ifdef NEED_SHORT_EXTERNAL_NAMES
-#define jinit_compress_master jICompress
-#define jinit_c_master_control jICMaster
-#define jinit_c_main_controller jICMainC
-#define jinit_c_prep_controller jICPrepC
-#define jinit_c_coef_controller jICCoefC
-#define jinit_color_converter jICColor
-#define jinit_downsampler jIDownsampler
-#define jinit_forward_dct jIFDCT
-#define jinit_huff_encoder jIHEncoder
-#define jinit_phuff_encoder jIPHEncoder
-#define jinit_marker_writer jIMWriter
-#define jinit_master_decompress jIDMaster
-#define jinit_d_main_controller jIDMainC
-#define jinit_d_coef_controller jIDCoefC
-#define jinit_d_post_controller jIDPostC
-#define jinit_input_controller jIInCtlr
-#define jinit_marker_reader jIMReader
-#define jinit_huff_decoder jIHDecoder
-#define jinit_phuff_decoder jIPHDecoder
-#define jinit_inverse_dct jIIDCT
-#define jinit_upsampler jIUpsampler
-#define jinit_color_deconverter jIDColor
-#define jinit_1pass_quantizer jI1Quant
-#define jinit_2pass_quantizer jI2Quant
-#define jinit_merged_upsampler jIMUpsampler
-#define jinit_memory_mgr jIMemMgr
-#define jdiv_round_up jDivRound
-#define jround_up jRound
-#define jcopy_sample_rows jCopySamples
-#define jcopy_block_row jCopyBlocks
-#define jzero_far jZeroFar
-#define jpeg_zigzag_order jZIGTable
-#define jpeg_natural_order jZAGTable
-#endif /* NEED_SHORT_EXTERNAL_NAMES */
-
-
-/* Compression module initialization routines */
-EXTERN void jinit_compress_master JPP((j_compress_ptr cinfo));
-EXTERN void jinit_c_master_control JPP((j_compress_ptr cinfo,
- boolean transcode_only));
-EXTERN void jinit_c_main_controller JPP((j_compress_ptr cinfo,
- boolean need_full_buffer));
-EXTERN void jinit_c_prep_controller JPP((j_compress_ptr cinfo,
- boolean need_full_buffer));
-EXTERN void jinit_c_coef_controller JPP((j_compress_ptr cinfo,
- boolean need_full_buffer));
-EXTERN void jinit_color_converter JPP((j_compress_ptr cinfo));
-EXTERN void jinit_downsampler JPP((j_compress_ptr cinfo));
-EXTERN void jinit_forward_dct JPP((j_compress_ptr cinfo));
-EXTERN void jinit_huff_encoder JPP((j_compress_ptr cinfo));
-EXTERN void jinit_phuff_encoder JPP((j_compress_ptr cinfo));
-EXTERN void jinit_marker_writer JPP((j_compress_ptr cinfo));
-/* Decompression module initialization routines */
-EXTERN void jinit_master_decompress JPP((j_decompress_ptr cinfo));
-EXTERN void jinit_d_main_controller JPP((j_decompress_ptr cinfo,
- boolean need_full_buffer));
-EXTERN void jinit_d_coef_controller JPP((j_decompress_ptr cinfo,
- boolean need_full_buffer));
-EXTERN void jinit_d_post_controller JPP((j_decompress_ptr cinfo,
- boolean need_full_buffer));
-EXTERN void jinit_input_controller JPP((j_decompress_ptr cinfo));
-EXTERN void jinit_marker_reader JPP((j_decompress_ptr cinfo));
-EXTERN void jinit_huff_decoder JPP((j_decompress_ptr cinfo));
-EXTERN void jinit_phuff_decoder JPP((j_decompress_ptr cinfo));
-EXTERN void jinit_inverse_dct JPP((j_decompress_ptr cinfo));
-EXTERN void jinit_upsampler JPP((j_decompress_ptr cinfo));
-EXTERN void jinit_color_deconverter JPP((j_decompress_ptr cinfo));
-EXTERN void jinit_1pass_quantizer JPP((j_decompress_ptr cinfo));
-EXTERN void jinit_2pass_quantizer JPP((j_decompress_ptr cinfo));
-EXTERN void jinit_merged_upsampler JPP((j_decompress_ptr cinfo));
-/* Memory manager initialization */
-EXTERN void jinit_memory_mgr JPP((j_common_ptr cinfo));
-
-/* Utility routines in jutils.c */
-EXTERN long jdiv_round_up JPP((long a, long b));
-EXTERN long jround_up JPP((long a, long b));
-EXTERN void jcopy_sample_rows JPP((JSAMPARRAY input_array, int source_row,
- JSAMPARRAY output_array, int dest_row,
- int num_rows, JDIMENSION num_cols));
-EXTERN void jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row,
- JDIMENSION num_blocks));
-EXTERN void jzero_far JPP((void FAR * target, size_t bytestozero));
-/* Constant tables in jutils.c */
-extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */
-extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */
-
-/* Suppress undefined-structure complaints if necessary. */
-
-#ifdef INCOMPLETE_TYPES_BROKEN
-#ifndef AM_MEMORY_MANAGER /* only jmemmgr.c defines these */
-struct jvirt_sarray_control { long dummy; };
-struct jvirt_barray_control { long dummy; };
-#endif
-#endif /* INCOMPLETE_TYPES_BROKEN */
+/*
+ * jpegint.h
+ *
+ * Copyright (C) 1991-1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file provides common declarations for the various JPEG modules.
+ * These declarations are considered internal to the JPEG library; most
+ * applications using the library shouldn't need to include this file.
+ */
+
+
+/* Declarations for both compression & decompression */
+
+typedef enum { /* Operating modes for buffer controllers */
+ JBUF_PASS_THRU, /* Plain stripwise operation */
+ /* Remaining modes require a full-image buffer to have been created */
+ JBUF_SAVE_SOURCE, /* Run source subobject only, save output */
+ JBUF_CRANK_DEST, /* Run dest subobject only, using saved data */
+ JBUF_SAVE_AND_PASS /* Run both subobjects, save output */
+} J_BUF_MODE;
+
+/* Values of global_state field (jdapi.c has some dependencies on ordering!) */
+#define CSTATE_START 100 /* after create_compress */
+#define CSTATE_SCANNING 101 /* start_compress done, write_scanlines OK */
+#define CSTATE_RAW_OK 102 /* start_compress done, write_raw_data OK */
+#define CSTATE_WRCOEFS 103 /* jpeg_write_coefficients done */
+#define DSTATE_START 200 /* after create_decompress */
+#define DSTATE_INHEADER 201 /* reading header markers, no SOS yet */
+#define DSTATE_READY 202 /* found SOS, ready for start_decompress */
+#define DSTATE_PRELOAD 203 /* reading multiscan file in start_decompress*/
+#define DSTATE_PRESCAN 204 /* performing dummy pass for 2-pass quant */
+#define DSTATE_SCANNING 205 /* start_decompress done, read_scanlines OK */
+#define DSTATE_RAW_OK 206 /* start_decompress done, read_raw_data OK */
+#define DSTATE_BUFIMAGE 207 /* expecting jpeg_start_output */
+#define DSTATE_BUFPOST 208 /* looking for SOS/EOI in jpeg_finish_output */
+#define DSTATE_RDCOEFS 209 /* reading file in jpeg_read_coefficients */
+#define DSTATE_STOPPING 210 /* looking for EOI in jpeg_finish_decompress */
+
+
+/* Declarations for compression modules */
+
+/* Master control module */
+struct jpeg_comp_master {
+ JMETHOD(void, prepare_for_pass, (j_compress_ptr cinfo));
+ JMETHOD(void, pass_startup, (j_compress_ptr cinfo));
+ JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
+
+ /* State variables made visible to other modules */
+ boolean call_pass_startup; /* True if pass_startup must be called */
+ boolean is_last_pass; /* True during last pass */
+};
+
+/* Main buffer control (downsampled-data buffer) */
+struct jpeg_c_main_controller {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(void, process_data, (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JDIMENSION *in_row_ctr,
+ JDIMENSION in_rows_avail));
+};
+
+/* Compression preprocessing (downsampling input buffer control) */
+struct jpeg_c_prep_controller {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(void, pre_process_data, (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf,
+ JDIMENSION *in_row_ctr,
+ JDIMENSION in_rows_avail,
+ JSAMPIMAGE output_buf,
+ JDIMENSION *out_row_group_ctr,
+ JDIMENSION out_row_groups_avail));
+};
+
+/* Coefficient buffer control */
+struct jpeg_c_coef_controller {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(boolean, compress_data, (j_compress_ptr cinfo,
+ JSAMPIMAGE input_buf));
+};
+
+/* Colorspace conversion */
+struct jpeg_color_converter {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo));
+ JMETHOD(void, color_convert, (j_compress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPIMAGE output_buf,
+ JDIMENSION output_row, int num_rows));
+};
+
+/* Downsampling */
+struct jpeg_downsampler {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo));
+ JMETHOD(void, downsample, (j_compress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION in_row_index,
+ JSAMPIMAGE output_buf,
+ JDIMENSION out_row_group_index));
+
+ boolean need_context_rows; /* TRUE if need rows above & below */
+};
+
+/* Forward DCT (also controls coefficient quantization) */
+struct jpeg_forward_dct {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo));
+ /* perhaps this should be an array??? */
+ JMETHOD(void, forward_DCT, (j_compress_ptr cinfo,
+ jpeg_component_info * compptr,
+ JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
+ JDIMENSION start_row, JDIMENSION start_col,
+ JDIMENSION num_blocks));
+};
+
+/* Entropy encoding */
+struct jpeg_entropy_encoder {
+ JMETHOD(void, start_pass, (j_compress_ptr cinfo, boolean gather_statistics));
+ JMETHOD(boolean, encode_mcu, (j_compress_ptr cinfo, JBLOCKROW *MCU_data));
+ JMETHOD(void, finish_pass, (j_compress_ptr cinfo));
+};
+
+/* Marker writing */
+struct jpeg_marker_writer {
+ /* write_any_marker is exported for use by applications */
+ /* Probably only COM and APPn markers should be written */
+ JMETHOD(void, write_any_marker, (j_compress_ptr cinfo, int marker,
+ const JOCTET *dataptr, unsigned int datalen));
+ JMETHOD(void, write_file_header, (j_compress_ptr cinfo));
+ JMETHOD(void, write_frame_header, (j_compress_ptr cinfo));
+ JMETHOD(void, write_scan_header, (j_compress_ptr cinfo));
+ JMETHOD(void, write_file_trailer, (j_compress_ptr cinfo));
+ JMETHOD(void, write_tables_only, (j_compress_ptr cinfo));
+};
+
+
+/* Declarations for decompression modules */
+
+/* Master control module */
+struct jpeg_decomp_master {
+ JMETHOD(void, prepare_for_output_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, finish_output_pass, (j_decompress_ptr cinfo));
+
+ /* State variables made visible to other modules */
+ boolean is_dummy_pass; /* True during 1st pass for 2-pass quant */
+};
+
+/* Input control module */
+struct jpeg_input_controller {
+ JMETHOD(int, consume_input, (j_decompress_ptr cinfo));
+ JMETHOD(void, reset_input_controller, (j_decompress_ptr cinfo));
+ JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, finish_input_pass, (j_decompress_ptr cinfo));
+
+ /* State variables made visible to other modules */
+ boolean has_multiple_scans; /* True if file has multiple scans */
+ boolean eoi_reached; /* True when EOI has been consumed */
+};
+
+/* Main buffer control (downsampled-data buffer) */
+struct jpeg_d_main_controller {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(void, process_data, (j_decompress_ptr cinfo,
+ JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+};
+
+/* Coefficient buffer control */
+struct jpeg_d_coef_controller {
+ JMETHOD(void, start_input_pass, (j_decompress_ptr cinfo));
+ JMETHOD(int, consume_data, (j_decompress_ptr cinfo));
+ JMETHOD(void, start_output_pass, (j_decompress_ptr cinfo));
+ JMETHOD(int, decompress_data, (j_decompress_ptr cinfo,
+ JSAMPIMAGE output_buf));
+ /* Pointer to array of coefficient virtual arrays, or NULL if none */
+ jvirt_barray_ptr *coef_arrays;
+};
+
+/* Decompression postprocessing (color quantization buffer control) */
+struct jpeg_d_post_controller {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo, J_BUF_MODE pass_mode));
+ JMETHOD(void, post_process_data, (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf,
+ JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf,
+ JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+};
+
+/* Marker reading & parsing */
+struct jpeg_marker_reader {
+ JMETHOD(void, reset_marker_reader, (j_decompress_ptr cinfo));
+ /* Read markers until SOS or EOI.
+ * Returns same codes as are defined for jpeg_consume_input:
+ * JPEG_SUSPENDED, JPEG_REACHED_SOS, or JPEG_REACHED_EOI.
+ */
+ JMETHOD(int, read_markers, (j_decompress_ptr cinfo));
+ /* Read a restart marker --- exported for use by entropy decoder only */
+ jpeg_marker_parser_method read_restart_marker;
+ /* Application-overridable marker processing methods */
+ jpeg_marker_parser_method process_COM;
+ jpeg_marker_parser_method process_APPn[16];
+
+ /* State of marker reader --- nominally internal, but applications
+ * supplying COM or APPn handlers might like to know the state.
+ */
+ boolean saw_SOI; /* found SOI? */
+ boolean saw_SOF; /* found SOF? */
+ int next_restart_num; /* next restart number expected (0-7) */
+ unsigned int discarded_bytes; /* # of bytes skipped looking for a marker */
+};
+
+/* Entropy decoding */
+struct jpeg_entropy_decoder {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+ JMETHOD(boolean, decode_mcu, (j_decompress_ptr cinfo,
+ JBLOCKROW *MCU_data));
+};
+
+/* Inverse DCT (also performs dequantization) */
+typedef JMETHOD(void, inverse_DCT_method_ptr,
+ (j_decompress_ptr cinfo, jpeg_component_info * compptr,
+ JCOEFPTR coef_block,
+ JSAMPARRAY output_buf, JDIMENSION output_col));
+
+struct jpeg_inverse_dct {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+ /* It is useful to allow each component to have a separate IDCT method. */
+ inverse_DCT_method_ptr inverse_DCT[MAX_COMPONENTS];
+};
+
+/* Upsampling (note that upsampler must also call color converter) */
+struct jpeg_upsampler {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, upsample, (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf,
+ JDIMENSION *in_row_group_ctr,
+ JDIMENSION in_row_groups_avail,
+ JSAMPARRAY output_buf,
+ JDIMENSION *out_row_ctr,
+ JDIMENSION out_rows_avail));
+
+ boolean need_context_rows; /* TRUE if need rows above & below */
+};
+
+/* Colorspace conversion */
+struct jpeg_color_deconverter {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, color_convert, (j_decompress_ptr cinfo,
+ JSAMPIMAGE input_buf, JDIMENSION input_row,
+ JSAMPARRAY output_buf, int num_rows));
+};
+
+/* Color quantization or color precision reduction */
+struct jpeg_color_quantizer {
+ JMETHOD(void, start_pass, (j_decompress_ptr cinfo, boolean is_pre_scan));
+ JMETHOD(void, color_quantize, (j_decompress_ptr cinfo,
+ JSAMPARRAY input_buf, JSAMPARRAY output_buf,
+ int num_rows));
+ JMETHOD(void, finish_pass, (j_decompress_ptr cinfo));
+ JMETHOD(void, new_color_map, (j_decompress_ptr cinfo));
+};
+
+
+/* Miscellaneous useful macros */
+
+#undef MAX
+#define MAX(a,b) ((a) > (b) ? (a) : (b))
+#undef MIN
+#define MIN(a,b) ((a) < (b) ? (a) : (b))
+
+
+/* We assume that right shift corresponds to signed division by 2 with
+ * rounding towards minus infinity. This is correct for typical "arithmetic
+ * shift" instructions that shift in copies of the sign bit. But some
+ * C compilers implement >> with an unsigned shift. For these machines you
+ * must define RIGHT_SHIFT_IS_UNSIGNED.
+ * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity.
+ * It is only applied with constant shift counts. SHIFT_TEMPS must be
+ * included in the variables of any routine using RIGHT_SHIFT.
+ */
+
+#ifdef RIGHT_SHIFT_IS_UNSIGNED
+#define SHIFT_TEMPS INT32 shift_temp;
+#define RIGHT_SHIFT(x,shft) \
+ ((shift_temp = (x)) < 0 ? \
+ (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \
+ (shift_temp >> (shft)))
+#else
+#define SHIFT_TEMPS
+#define RIGHT_SHIFT(x,shft) ((x) >> (shft))
+#endif
+
+
+/* Short forms of external names for systems with brain-damaged linkers. */
+
+#ifdef NEED_SHORT_EXTERNAL_NAMES
+#define jinit_compress_master jICompress
+#define jinit_c_master_control jICMaster
+#define jinit_c_main_controller jICMainC
+#define jinit_c_prep_controller jICPrepC
+#define jinit_c_coef_controller jICCoefC
+#define jinit_color_converter jICColor
+#define jinit_downsampler jIDownsampler
+#define jinit_forward_dct jIFDCT
+#define jinit_huff_encoder jIHEncoder
+#define jinit_phuff_encoder jIPHEncoder
+#define jinit_marker_writer jIMWriter
+#define jinit_master_decompress jIDMaster
+#define jinit_d_main_controller jIDMainC
+#define jinit_d_coef_controller jIDCoefC
+#define jinit_d_post_controller jIDPostC
+#define jinit_input_controller jIInCtlr
+#define jinit_marker_reader jIMReader
+#define jinit_huff_decoder jIHDecoder
+#define jinit_phuff_decoder jIPHDecoder
+#define jinit_inverse_dct jIIDCT
+#define jinit_upsampler jIUpsampler
+#define jinit_color_deconverter jIDColor
+#define jinit_1pass_quantizer jI1Quant
+#define jinit_2pass_quantizer jI2Quant
+#define jinit_merged_upsampler jIMUpsampler
+#define jinit_memory_mgr jIMemMgr
+#define jdiv_round_up jDivRound
+#define jround_up jRound
+#define jcopy_sample_rows jCopySamples
+#define jcopy_block_row jCopyBlocks
+#define jzero_far jZeroFar
+#define jpeg_zigzag_order jZIGTable
+#define jpeg_natural_order jZAGTable
+#endif /* NEED_SHORT_EXTERNAL_NAMES */
+
+
+/* Compression module initialization routines */
+EXTERN void jinit_compress_master JPP((j_compress_ptr cinfo));
+EXTERN void jinit_c_master_control JPP((j_compress_ptr cinfo,
+ boolean transcode_only));
+EXTERN void jinit_c_main_controller JPP((j_compress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN void jinit_c_prep_controller JPP((j_compress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN void jinit_c_coef_controller JPP((j_compress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN void jinit_color_converter JPP((j_compress_ptr cinfo));
+EXTERN void jinit_downsampler JPP((j_compress_ptr cinfo));
+EXTERN void jinit_forward_dct JPP((j_compress_ptr cinfo));
+EXTERN void jinit_huff_encoder JPP((j_compress_ptr cinfo));
+EXTERN void jinit_phuff_encoder JPP((j_compress_ptr cinfo));
+EXTERN void jinit_marker_writer JPP((j_compress_ptr cinfo));
+/* Decompression module initialization routines */
+EXTERN void jinit_master_decompress JPP((j_decompress_ptr cinfo));
+EXTERN void jinit_d_main_controller JPP((j_decompress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN void jinit_d_coef_controller JPP((j_decompress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN void jinit_d_post_controller JPP((j_decompress_ptr cinfo,
+ boolean need_full_buffer));
+EXTERN void jinit_input_controller JPP((j_decompress_ptr cinfo));
+EXTERN void jinit_marker_reader JPP((j_decompress_ptr cinfo));
+EXTERN void jinit_huff_decoder JPP((j_decompress_ptr cinfo));
+EXTERN void jinit_phuff_decoder JPP((j_decompress_ptr cinfo));
+EXTERN void jinit_inverse_dct JPP((j_decompress_ptr cinfo));
+EXTERN void jinit_upsampler JPP((j_decompress_ptr cinfo));
+EXTERN void jinit_color_deconverter JPP((j_decompress_ptr cinfo));
+EXTERN void jinit_1pass_quantizer JPP((j_decompress_ptr cinfo));
+EXTERN void jinit_2pass_quantizer JPP((j_decompress_ptr cinfo));
+EXTERN void jinit_merged_upsampler JPP((j_decompress_ptr cinfo));
+/* Memory manager initialization */
+EXTERN void jinit_memory_mgr JPP((j_common_ptr cinfo));
+
+/* Utility routines in jutils.c */
+EXTERN long jdiv_round_up JPP((long a, long b));
+EXTERN long jround_up JPP((long a, long b));
+EXTERN void jcopy_sample_rows JPP((JSAMPARRAY input_array, int source_row,
+ JSAMPARRAY output_array, int dest_row,
+ int num_rows, JDIMENSION num_cols));
+EXTERN void jcopy_block_row JPP((JBLOCKROW input_row, JBLOCKROW output_row,
+ JDIMENSION num_blocks));
+EXTERN void jzero_far JPP((void FAR * target, size_t bytestozero));
+/* Constant tables in jutils.c */
+extern const int jpeg_zigzag_order[]; /* natural coef order to zigzag order */
+extern const int jpeg_natural_order[]; /* zigzag coef order to natural order */
+
+/* Suppress undefined-structure complaints if necessary. */
+
+#ifdef INCOMPLETE_TYPES_BROKEN
+#ifndef AM_MEMORY_MANAGER /* only jmemmgr.c defines these */
+struct jvirt_sarray_control { long dummy; };
+struct jvirt_barray_control { long dummy; };
+#endif
+#endif /* INCOMPLETE_TYPES_BROKEN */
diff --git a/libs/jpeg6/jpgload.cpp b/libs/jpeg6/jpgload.cpp
index 1006b99..ca64685 100755
--- a/libs/jpeg6/jpgload.cpp
+++ b/libs/jpeg6/jpgload.cpp
@@ -1,142 +1,142 @@
-
-
-#include "jpeglib.h"
-#include <memory.h>
-
-GLOBAL void LoadJPGBuff(unsigned char *fbuffer, unsigned char **pic, int *width, int *height )
-{
- /* This struct contains the JPEG decompression parameters and pointers to
- * working space (which is allocated as needed by the JPEG library).
- */
- struct jpeg_decompress_struct cinfo;
- /* We use our private extension JPEG error handler.
- * Note that this struct must live as long as the main JPEG parameter
- * struct, to avoid dangling-pointer problems.
- */
- /* This struct represents a JPEG error handler. It is declared separately
- * because applications often want to supply a specialized error handler
- * (see the second half of this file for an example). But here we just
- * take the easy way out and use the standard error handler, which will
- * print a message on stderr and call exit() if compression fails.
- * Note that this struct must live as long as the main JPEG parameter
- * struct, to avoid dangling-pointer problems.
- */
-
- struct jpeg_error_mgr jerr;
- /* More stuff */
- JSAMPARRAY buffer; /* Output row buffer */
- int row_stride; /* physical row width in output buffer */
- unsigned char *out;
- byte *bbuf;
- int nSize;
-
- /* Step 1: allocate and initialize JPEG decompression object */
-
- /* We have to set up the error handler first, in case the initialization
- * step fails. (Unlikely, but it could happen if you are out of memory.)
- * This routine fills in the contents of struct jerr, and returns jerr's
- * address which we place into the link field in cinfo.
- */
- cinfo.err = jpeg_std_error(&jerr);
-
- /* Now we can initialize the JPEG decompression object. */
- jpeg_create_decompress(&cinfo);
-
- /* Step 2: specify data source (eg, a file) */
-
- jpeg_stdio_src(&cinfo, fbuffer);
-
- /* Step 3: read file parameters with jpeg_read_header() */
-
- (void) jpeg_read_header(&cinfo, TRUE);
- /* We can ignore the return value from jpeg_read_header since
- * (a) suspension is not possible with the stdio data source, and
- * (b) we passed TRUE to reject a tables-only JPEG file as an error.
- * See libjpeg.doc for more info.
- */
-
- /* Step 4: set parameters for decompression */
-
- /* In this example, we don't need to change any of the defaults set by
- * jpeg_read_header(), so we do nothing here.
- */
-
- /* Step 5: Start decompressor */
-
- (void) jpeg_start_decompress(&cinfo);
- /* We can ignore the return value since suspension is not possible
- * with the stdio data source.
- */
-
- /* We may need to do some setup of our own at this point before reading
- * the data. After jpeg_start_decompress() we have the correct scaled
- * output image dimensions available, as well as the output colormap
- * if we asked for color quantization.
- * In this example, we need to make an output work buffer of the right size.
- */
- /* JSAMPLEs per row in output buffer */
- row_stride = cinfo.output_width * cinfo.output_components;
-
- nSize = cinfo.output_width*cinfo.output_height*cinfo.output_components;
- out = reinterpret_cast<unsigned char*>(malloc(nSize+1));
- memset(out, 0, nSize+1);
-
- *pic = out;
- *width = cinfo.output_width;
- *height = cinfo.output_height;
-
- /* Step 6: while (scan lines remain to be read) */
- /* jpeg_read_scanlines(...); */
-
- /* Here we use the library's state variable cinfo.output_scanline as the
- * loop counter, so that we don't have to keep track ourselves.
- */
- while (cinfo.output_scanline < cinfo.output_height) {
- /* jpeg_read_scanlines expects an array of pointers to scanlines.
- * Here the array is only one element long, but you could ask for
- * more than one scanline at a time if that's more convenient.
- */
- bbuf = ((out+(row_stride*cinfo.output_scanline)));
- buffer = &bbuf;
- (void) jpeg_read_scanlines(&cinfo, buffer, 1);
- }
-
- // clear all the alphas to 255
- {
- int i, j;
- byte *buf;
-
- buf = *pic;
-
- j = cinfo.output_width * cinfo.output_height * 4;
- for ( i = 3 ; i < j ; i+=4 ) {
- buf[i] = 255;
- }
- }
-
- /* Step 7: Finish decompression */
-
- (void) jpeg_finish_decompress(&cinfo);
- /* We can ignore the return value since suspension is not possible
- * with the stdio data source.
- */
-
- /* Step 8: Release JPEG decompression object */
-
- /* This is an important step since it will release a good deal of memory. */
- jpeg_destroy_decompress(&cinfo);
-
- /* After finish_decompress, we can close the input file.
- * Here we postpone it until after no more JPEG errors are possible,
- * so as to simplify the setjmp error logic above. (Actually, I don't
- * think that jpeg_destroy can do an error exit, but why assume anything...)
- */
- //free (fbuffer);
-
- /* At this point you may want to check to see whether any corrupt-data
- * warnings occurred (test whether jerr.pub.num_warnings is nonzero).
- */
-
- /* And we're done! */
-}
-
+
+
+#include "jpeglib.h"
+#include <memory.h>
+
+GLOBAL void LoadJPGBuff(unsigned char *fbuffer, unsigned char **pic, int *width, int *height )
+{
+ /* This struct contains the JPEG decompression parameters and pointers to
+ * working space (which is allocated as needed by the JPEG library).
+ */
+ struct jpeg_decompress_struct cinfo;
+ /* We use our private extension JPEG error handler.
+ * Note that this struct must live as long as the main JPEG parameter
+ * struct, to avoid dangling-pointer problems.
+ */
+ /* This struct represents a JPEG error handler. It is declared separately
+ * because applications often want to supply a specialized error handler
+ * (see the second half of this file for an example). But here we just
+ * take the easy way out and use the standard error handler, which will
+ * print a message on stderr and call exit() if compression fails.
+ * Note that this struct must live as long as the main JPEG parameter
+ * struct, to avoid dangling-pointer problems.
+ */
+
+ struct jpeg_error_mgr jerr;
+ /* More stuff */
+ JSAMPARRAY buffer; /* Output row buffer */
+ int row_stride; /* physical row width in output buffer */
+ unsigned char *out;
+ byte *bbuf;
+ int nSize;
+
+ /* Step 1: allocate and initialize JPEG decompression object */
+
+ /* We have to set up the error handler first, in case the initialization
+ * step fails. (Unlikely, but it could happen if you are out of memory.)
+ * This routine fills in the contents of struct jerr, and returns jerr's
+ * address which we place into the link field in cinfo.
+ */
+ cinfo.err = jpeg_std_error(&jerr);
+
+ /* Now we can initialize the JPEG decompression object. */
+ jpeg_create_decompress(&cinfo);
+
+ /* Step 2: specify data source (eg, a file) */
+
+ jpeg_stdio_src(&cinfo, fbuffer);
+
+ /* Step 3: read file parameters with jpeg_read_header() */
+
+ (void) jpeg_read_header(&cinfo, TRUE);
+ /* We can ignore the return value from jpeg_read_header since
+ * (a) suspension is not possible with the stdio data source, and
+ * (b) we passed TRUE to reject a tables-only JPEG file as an error.
+ * See libjpeg.doc for more info.
+ */
+
+ /* Step 4: set parameters for decompression */
+
+ /* In this example, we don't need to change any of the defaults set by
+ * jpeg_read_header(), so we do nothing here.
+ */
+
+ /* Step 5: Start decompressor */
+
+ (void) jpeg_start_decompress(&cinfo);
+ /* We can ignore the return value since suspension is not possible
+ * with the stdio data source.
+ */
+
+ /* We may need to do some setup of our own at this point before reading
+ * the data. After jpeg_start_decompress() we have the correct scaled
+ * output image dimensions available, as well as the output colormap
+ * if we asked for color quantization.
+ * In this example, we need to make an output work buffer of the right size.
+ */
+ /* JSAMPLEs per row in output buffer */
+ row_stride = cinfo.output_width * cinfo.output_components;
+
+ nSize = cinfo.output_width*cinfo.output_height*cinfo.output_components;
+ out = reinterpret_cast<unsigned char*>(malloc(nSize+1));
+ memset(out, 0, nSize+1);
+
+ *pic = out;
+ *width = cinfo.output_width;
+ *height = cinfo.output_height;
+
+ /* Step 6: while (scan lines remain to be read) */
+ /* jpeg_read_scanlines(...); */
+
+ /* Here we use the library's state variable cinfo.output_scanline as the
+ * loop counter, so that we don't have to keep track ourselves.
+ */
+ while (cinfo.output_scanline < cinfo.output_height) {
+ /* jpeg_read_scanlines expects an array of pointers to scanlines.
+ * Here the array is only one element long, but you could ask for
+ * more than one scanline at a time if that's more convenient.
+ */
+ bbuf = ((out+(row_stride*cinfo.output_scanline)));
+ buffer = &bbuf;
+ (void) jpeg_read_scanlines(&cinfo, buffer, 1);
+ }
+
+ // clear all the alphas to 255
+ {
+ int i, j;
+ byte *buf;
+
+ buf = *pic;
+
+ j = cinfo.output_width * cinfo.output_height * 4;
+ for ( i = 3 ; i < j ; i+=4 ) {
+ buf[i] = 255;
+ }
+ }
+
+ /* Step 7: Finish decompression */
+
+ (void) jpeg_finish_decompress(&cinfo);
+ /* We can ignore the return value since suspension is not possible
+ * with the stdio data source.
+ */
+
+ /* Step 8: Release JPEG decompression object */
+
+ /* This is an important step since it will release a good deal of memory. */
+ jpeg_destroy_decompress(&cinfo);
+
+ /* After finish_decompress, we can close the input file.
+ * Here we postpone it until after no more JPEG errors are possible,
+ * so as to simplify the setjmp error logic above. (Actually, I don't
+ * think that jpeg_destroy can do an error exit, but why assume anything...)
+ */
+ //free (fbuffer);
+
+ /* At this point you may want to check to see whether any corrupt-data
+ * warnings occurred (test whether jerr.pub.num_warnings is nonzero).
+ */
+
+ /* And we're done! */
+}
+
diff --git a/libs/jpeg6/jutils.cpp b/libs/jpeg6/jutils.cpp
index 8e8dc13..4ba2a54 100755
--- a/libs/jpeg6/jutils.cpp
+++ b/libs/jpeg6/jutils.cpp
@@ -1,175 +1,175 @@
-/*
- * jutils.c
- *
- * Copyright (C) 1991-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains tables and miscellaneous utility routines needed
- * for both compression and decompression.
- * Note we prefix all global names with "j" to minimize conflicts with
- * a surrounding application.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-
-
-/*
- * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
- * of a DCT block read in natural order (left to right, top to bottom).
- */
-
-const int jpeg_zigzag_order[DCTSIZE2] = {
- 0, 1, 5, 6, 14, 15, 27, 28,
- 2, 4, 7, 13, 16, 26, 29, 42,
- 3, 8, 12, 17, 25, 30, 41, 43,
- 9, 11, 18, 24, 31, 40, 44, 53,
- 10, 19, 23, 32, 39, 45, 52, 54,
- 20, 22, 33, 38, 46, 51, 55, 60,
- 21, 34, 37, 47, 50, 56, 59, 61,
- 35, 36, 48, 49, 57, 58, 62, 63
-};
-
-/*
- * jpeg_natural_order[i] is the natural-order position of the i'th element
- * of zigzag order.
- *
- * When reading corrupted data, the Huffman decoders could attempt
- * to reference an entry beyond the end of this array (if the decoded
- * zero run length reaches past the end of the block). To prevent
- * wild stores without adding an inner-loop test, we put some extra
- * "63"s after the real entries. This will cause the extra coefficient
- * to be stored in location 63 of the block, not somewhere random.
- * The worst case would be a run-length of 15, which means we need 16
- * fake entries.
- */
-
-const int jpeg_natural_order[DCTSIZE2+16] = {
- 0, 1, 8, 16, 9, 2, 3, 10,
- 17, 24, 32, 25, 18, 11, 4, 5,
- 12, 19, 26, 33, 40, 48, 41, 34,
- 27, 20, 13, 6, 7, 14, 21, 28,
- 35, 42, 49, 56, 57, 50, 43, 36,
- 29, 22, 15, 23, 30, 37, 44, 51,
- 58, 59, 52, 45, 38, 31, 39, 46,
- 53, 60, 61, 54, 47, 55, 62, 63,
- 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
- 63, 63, 63, 63, 63, 63, 63, 63
-};
-
-
-/*
- * Arithmetic utilities
- */
-
-GLOBAL long
-jdiv_round_up (long a, long b)
-/* Compute a/b rounded up to next integer, ie, ceil(a/b) */
-/* Assumes a >= 0, b > 0 */
-{
- return (a + b - 1L) / b;
-}
-
-
-GLOBAL long
-jround_up (long a, long b)
-/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
-/* Assumes a >= 0, b > 0 */
-{
- a += b - 1L;
- return a - (a % b);
-}
-
-
-/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
- * and coefficient-block arrays. This won't work on 80x86 because the arrays
- * are FAR and we're assuming a small-pointer memory model. However, some
- * DOS compilers provide far-pointer versions of memcpy() and memset() even
- * in the small-model libraries. These will be used if USE_FMEM is defined.
- * Otherwise, the routines below do it the hard way. (The performance cost
- * is not all that great, because these routines aren't very heavily used.)
- */
-
-#ifndef NEED_FAR_POINTERS /* normal case, same as regular macros */
-#define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size)
-#define FMEMZERO(target,size) MEMZERO(target,size)
-#else /* 80x86 case, define if we can */
-#ifdef USE_FMEM
-#define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size))
-#define FMEMZERO(target,size) _fmemset((void FAR *)(target), 0, (size_t)(size))
-#endif
-#endif
-
-
-GLOBAL void
-jcopy_sample_rows (JSAMPARRAY input_array, int source_row,
- JSAMPARRAY output_array, int dest_row,
- int num_rows, JDIMENSION num_cols)
-/* Copy some rows of samples from one place to another.
- * num_rows rows are copied from input_array[source_row++]
- * to output_array[dest_row++]; these areas may overlap for duplication.
- * The source and destination arrays must be at least as wide as num_cols.
- */
-{
- register JSAMPROW inptr, outptr;
-#ifdef FMEMCOPY
- register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE));
-#else
- register JDIMENSION count;
-#endif
- register int row;
-
- input_array += source_row;
- output_array += dest_row;
-
- for (row = num_rows; row > 0; row--) {
- inptr = *input_array++;
- outptr = *output_array++;
-#ifdef FMEMCOPY
- FMEMCOPY(outptr, inptr, count);
-#else
- for (count = num_cols; count > 0; count--)
- *outptr++ = *inptr++; /* needn't bother with GETJSAMPLE() here */
-#endif
- }
-}
-
-
-GLOBAL void
-jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row,
- JDIMENSION num_blocks)
-/* Copy a row of coefficient blocks from one place to another. */
-{
-#ifdef FMEMCOPY
- FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF)));
-#else
- register JCOEFPTR inptr, outptr;
- register long count;
-
- inptr = (JCOEFPTR) input_row;
- outptr = (JCOEFPTR) output_row;
- for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) {
- *outptr++ = *inptr++;
- }
-#endif
-}
-
-
-GLOBAL void
-jzero_far (void FAR * target, size_t bytestozero)
-/* Zero out a chunk of FAR memory. */
-/* This might be sample-array data, block-array data, or alloc_large data. */
-{
-#ifdef FMEMZERO
- FMEMZERO(target, bytestozero);
-#else
- register char FAR * ptr = (char FAR *) target;
- register size_t count;
-
- for (count = bytestozero; count > 0; count--) {
- *ptr++ = 0;
- }
-#endif
-}
+/*
+ * jutils.c
+ *
+ * Copyright (C) 1991-1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains tables and miscellaneous utility routines needed
+ * for both compression and decompression.
+ * Note we prefix all global names with "j" to minimize conflicts with
+ * a surrounding application.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+
+
+/*
+ * jpeg_zigzag_order[i] is the zigzag-order position of the i'th element
+ * of a DCT block read in natural order (left to right, top to bottom).
+ */
+
+const int jpeg_zigzag_order[DCTSIZE2] = {
+ 0, 1, 5, 6, 14, 15, 27, 28,
+ 2, 4, 7, 13, 16, 26, 29, 42,
+ 3, 8, 12, 17, 25, 30, 41, 43,
+ 9, 11, 18, 24, 31, 40, 44, 53,
+ 10, 19, 23, 32, 39, 45, 52, 54,
+ 20, 22, 33, 38, 46, 51, 55, 60,
+ 21, 34, 37, 47, 50, 56, 59, 61,
+ 35, 36, 48, 49, 57, 58, 62, 63
+};
+
+/*
+ * jpeg_natural_order[i] is the natural-order position of the i'th element
+ * of zigzag order.
+ *
+ * When reading corrupted data, the Huffman decoders could attempt
+ * to reference an entry beyond the end of this array (if the decoded
+ * zero run length reaches past the end of the block). To prevent
+ * wild stores without adding an inner-loop test, we put some extra
+ * "63"s after the real entries. This will cause the extra coefficient
+ * to be stored in location 63 of the block, not somewhere random.
+ * The worst case would be a run-length of 15, which means we need 16
+ * fake entries.
+ */
+
+const int jpeg_natural_order[DCTSIZE2+16] = {
+ 0, 1, 8, 16, 9, 2, 3, 10,
+ 17, 24, 32, 25, 18, 11, 4, 5,
+ 12, 19, 26, 33, 40, 48, 41, 34,
+ 27, 20, 13, 6, 7, 14, 21, 28,
+ 35, 42, 49, 56, 57, 50, 43, 36,
+ 29, 22, 15, 23, 30, 37, 44, 51,
+ 58, 59, 52, 45, 38, 31, 39, 46,
+ 53, 60, 61, 54, 47, 55, 62, 63,
+ 63, 63, 63, 63, 63, 63, 63, 63, /* extra entries for safety in decoder */
+ 63, 63, 63, 63, 63, 63, 63, 63
+};
+
+
+/*
+ * Arithmetic utilities
+ */
+
+GLOBAL long
+jdiv_round_up (long a, long b)
+/* Compute a/b rounded up to next integer, ie, ceil(a/b) */
+/* Assumes a >= 0, b > 0 */
+{
+ return (a + b - 1L) / b;
+}
+
+
+GLOBAL long
+jround_up (long a, long b)
+/* Compute a rounded up to next multiple of b, ie, ceil(a/b)*b */
+/* Assumes a >= 0, b > 0 */
+{
+ a += b - 1L;
+ return a - (a % b);
+}
+
+
+/* On normal machines we can apply MEMCOPY() and MEMZERO() to sample arrays
+ * and coefficient-block arrays. This won't work on 80x86 because the arrays
+ * are FAR and we're assuming a small-pointer memory model. However, some
+ * DOS compilers provide far-pointer versions of memcpy() and memset() even
+ * in the small-model libraries. These will be used if USE_FMEM is defined.
+ * Otherwise, the routines below do it the hard way. (The performance cost
+ * is not all that great, because these routines aren't very heavily used.)
+ */
+
+#ifndef NEED_FAR_POINTERS /* normal case, same as regular macros */
+#define FMEMCOPY(dest,src,size) MEMCOPY(dest,src,size)
+#define FMEMZERO(target,size) MEMZERO(target,size)
+#else /* 80x86 case, define if we can */
+#ifdef USE_FMEM
+#define FMEMCOPY(dest,src,size) _fmemcpy((void FAR *)(dest), (const void FAR *)(src), (size_t)(size))
+#define FMEMZERO(target,size) _fmemset((void FAR *)(target), 0, (size_t)(size))
+#endif
+#endif
+
+
+GLOBAL void
+jcopy_sample_rows (JSAMPARRAY input_array, int source_row,
+ JSAMPARRAY output_array, int dest_row,
+ int num_rows, JDIMENSION num_cols)
+/* Copy some rows of samples from one place to another.
+ * num_rows rows are copied from input_array[source_row++]
+ * to output_array[dest_row++]; these areas may overlap for duplication.
+ * The source and destination arrays must be at least as wide as num_cols.
+ */
+{
+ register JSAMPROW inptr, outptr;
+#ifdef FMEMCOPY
+ register size_t count = (size_t) (num_cols * SIZEOF(JSAMPLE));
+#else
+ register JDIMENSION count;
+#endif
+ register int row;
+
+ input_array += source_row;
+ output_array += dest_row;
+
+ for (row = num_rows; row > 0; row--) {
+ inptr = *input_array++;
+ outptr = *output_array++;
+#ifdef FMEMCOPY
+ FMEMCOPY(outptr, inptr, count);
+#else
+ for (count = num_cols; count > 0; count--)
+ *outptr++ = *inptr++; /* needn't bother with GETJSAMPLE() here */
+#endif
+ }
+}
+
+
+GLOBAL void
+jcopy_block_row (JBLOCKROW input_row, JBLOCKROW output_row,
+ JDIMENSION num_blocks)
+/* Copy a row of coefficient blocks from one place to another. */
+{
+#ifdef FMEMCOPY
+ FMEMCOPY(output_row, input_row, num_blocks * (DCTSIZE2 * SIZEOF(JCOEF)));
+#else
+ register JCOEFPTR inptr, outptr;
+ register long count;
+
+ inptr = (JCOEFPTR) input_row;
+ outptr = (JCOEFPTR) output_row;
+ for (count = (long) num_blocks * DCTSIZE2; count > 0; count--) {
+ *outptr++ = *inptr++;
+ }
+#endif
+}
+
+
+GLOBAL void
+jzero_far (void FAR * target, size_t bytestozero)
+/* Zero out a chunk of FAR memory. */
+/* This might be sample-array data, block-array data, or alloc_large data. */
+{
+#ifdef FMEMZERO
+ FMEMZERO(target, bytestozero);
+#else
+ register char FAR * ptr = (char FAR *) target;
+ register size_t count;
+
+ for (count = bytestozero; count > 0; count--) {
+ *ptr++ = 0;
+ }
+#endif
+}
diff --git a/libs/jpeg6/jversion.h b/libs/jpeg6/jversion.h
index 02083ac..f2f1b8d 100755
--- a/libs/jpeg6/jversion.h
+++ b/libs/jpeg6/jversion.h
@@ -1,14 +1,14 @@
-/*
- * jversion.h
- *
- * Copyright (C) 1991-1995, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains software version identification.
- */
-
-
-#define JVERSION "6 2-Aug-95"
-
-#define JCOPYRIGHT "Copyright (C) 1995, Thomas G. Lane"
+/*
+ * jversion.h
+ *
+ * Copyright (C) 1991-1995, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains software version identification.
+ */
+
+
+#define JVERSION "6 2-Aug-95"
+
+#define JCOPYRIGHT "Copyright (C) 1995, Thomas G. Lane"