diff options
Diffstat (limited to 'common/mathlib.c')
| -rwxr-xr-x | common/mathlib.c | 826 | 
1 files changed, 413 insertions, 413 deletions
| diff --git a/common/mathlib.c b/common/mathlib.c index 1435024..353cd25 100755 --- a/common/mathlib.c +++ b/common/mathlib.c @@ -19,416 +19,416 @@ along with Foobar; if not, write to the Free Software  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA  ===========================================================================  */ -// mathlib.c -- math primitives
 -
 -#include "cmdlib.h"
 -#include "mathlib.h"
 -
 -#ifdef _WIN32
 -//Improve floating-point consistency.
 -//without this option weird floating point issues occur
 -#pragma optimize( "p", on )
 -#endif
 -
 -
 -vec3_t vec3_origin = {0,0,0};
 -
 -/*
 -** NormalToLatLong
 -**
 -** We use two byte encoded normals in some space critical applications.
 -** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format
 -** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format
 -**
 -*/
 -void NormalToLatLong( const vec3_t normal, byte bytes[2] ) {
 -	// check for singularities
 -	if ( normal[0] == 0 && normal[1] == 0 ) {
 -		if ( normal[2] > 0 ) {
 -			bytes[0] = 0;
 -			bytes[1] = 0;		// lat = 0, long = 0
 -		} else {
 -			bytes[0] = 128;
 -			bytes[1] = 0;		// lat = 0, long = 128
 -		}
 -	} else {
 -		int	a, b;
 -
 -		a = RAD2DEG( atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f );
 -		a &= 0xff;
 -
 -		b = RAD2DEG( acos( normal[2] ) ) * ( 255.0f / 360.0f );
 -		b &= 0xff;
 -
 -		bytes[0] = b;	// longitude
 -		bytes[1] = a;	// lattitude
 -	}
 -}
 -
 -/*
 -=====================
 -PlaneFromPoints
 -
 -Returns false if the triangle is degenrate.
 -The normal will point out of the clock for clockwise ordered points
 -=====================
 -*/
 -qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) {
 -	vec3_t	d1, d2;
 -
 -	VectorSubtract( b, a, d1 );
 -	VectorSubtract( c, a, d2 );
 -	CrossProduct( d2, d1, plane );
 -	if ( VectorNormalize( plane, plane ) == 0 ) {
 -		return qfalse;
 -	}
 -
 -	plane[3] = DotProduct( a, plane );
 -	return qtrue;
 -}
 -
 -/*
 -================
 -MakeNormalVectors
 -
 -Given a normalized forward vector, create two
 -other perpendicular vectors
 -================
 -*/
 -void MakeNormalVectors (vec3_t forward, vec3_t right, vec3_t up)
 -{
 -	float		d;
 -
 -	// this rotate and negate guarantees a vector
 -	// not colinear with the original
 -	right[1] = -forward[0];
 -	right[2] = forward[1];
 -	right[0] = forward[2];
 -
 -	d = DotProduct (right, forward);
 -	VectorMA (right, -d, forward, right);
 -	VectorNormalize (right, right);
 -	CrossProduct (right, forward, up);
 -}
 -
 -
 -void Vec10Copy( vec_t *in, vec_t *out ) {
 -	out[0] = in[0];
 -	out[1] = in[1];
 -	out[2] = in[2];
 -	out[3] = in[3];
 -	out[4] = in[4];
 -	out[5] = in[5];
 -	out[6] = in[6];
 -	out[7] = in[7];
 -	out[8] = in[8];
 -	out[9] = in[9];
 -}
 -
 -
 -void VectorRotate3x3( vec3_t v, float r[3][3], vec3_t d )
 -{
 -	d[0] = v[0] * r[0][0] + v[1] * r[1][0] + v[2] * r[2][0];
 -	d[1] = v[0] * r[0][1] + v[1] * r[1][1] + v[2] * r[2][1];
 -	d[2] = v[0] * r[0][2] + v[1] * r[1][2] + v[2] * r[2][2];
 -}
 -
 -double VectorLength( const vec3_t v ) {
 -	int		i;
 -	double	length;
 -	
 -	length = 0;
 -	for (i=0 ; i< 3 ; i++)
 -		length += v[i]*v[i];
 -	length = sqrt (length);		// FIXME
 -
 -	return length;
 -}
 -
 -qboolean VectorCompare( const vec3_t v1, const vec3_t v2 ) {
 -	int		i;
 -	
 -	for (i=0 ; i<3 ; i++)
 -		if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON)
 -			return qfalse;
 -			
 -	return qtrue;
 -}
 -
 -vec_t Q_rint (vec_t in)
 -{
 -	return floor (in + 0.5);
 -}
 -
 -void VectorMA( const vec3_t va, double scale, const vec3_t vb, vec3_t vc ) {
 -	vc[0] = va[0] + scale*vb[0];
 -	vc[1] = va[1] + scale*vb[1];
 -	vc[2] = va[2] + scale*vb[2];
 -}
 -
 -void CrossProduct( const vec3_t v1, const vec3_t v2, vec3_t cross ) {
 -	cross[0] = v1[1]*v2[2] - v1[2]*v2[1];
 -	cross[1] = v1[2]*v2[0] - v1[0]*v2[2];
 -	cross[2] = v1[0]*v2[1] - v1[1]*v2[0];
 -}
 -
 -vec_t _DotProduct (vec3_t v1, vec3_t v2)
 -{
 -	return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
 -}
 -
 -void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out)
 -{
 -	out[0] = va[0]-vb[0];
 -	out[1] = va[1]-vb[1];
 -	out[2] = va[2]-vb[2];
 -}
 -
 -void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out)
 -{
 -	out[0] = va[0]+vb[0];
 -	out[1] = va[1]+vb[1];
 -	out[2] = va[2]+vb[2];
 -}
 -
 -void _VectorCopy (vec3_t in, vec3_t out)
 -{
 -	out[0] = in[0];
 -	out[1] = in[1];
 -	out[2] = in[2];
 -}
 -
 -void _VectorScale (vec3_t v, vec_t scale, vec3_t out)
 -{
 -	out[0] = v[0] * scale;
 -	out[1] = v[1] * scale;
 -	out[2] = v[2] * scale;
 -}
 -
 -vec_t VectorNormalize( const vec3_t in, vec3_t out ) {
 -	vec_t	length, ilength;
 -
 -	length = sqrt (in[0]*in[0] + in[1]*in[1] + in[2]*in[2]);
 -	if (length == 0)
 -	{
 -		VectorClear (out);
 -		return 0;
 -	}
 -
 -	ilength = 1.0/length;
 -	out[0] = in[0]*ilength;
 -	out[1] = in[1]*ilength;
 -	out[2] = in[2]*ilength;
 -
 -	return length;
 -}
 -
 -vec_t ColorNormalize( const vec3_t in, vec3_t out ) {
 -	float	max, scale;
 -
 -	max = in[0];
 -	if (in[1] > max)
 -		max = in[1];
 -	if (in[2] > max)
 -		max = in[2];
 -
 -	if (max == 0) {
 -		out[0] = out[1] = out[2] = 1.0;
 -		return 0;
 -	}
 -
 -	scale = 1.0 / max;
 -
 -	VectorScale (in, scale, out);
 -
 -	return max;
 -}
 -
 -
 -
 -void VectorInverse (vec3_t v)
 -{
 -	v[0] = -v[0];
 -	v[1] = -v[1];
 -	v[2] = -v[2];
 -}
 -
 -void ClearBounds (vec3_t mins, vec3_t maxs)
 -{
 -	mins[0] = mins[1] = mins[2] = 99999;
 -	maxs[0] = maxs[1] = maxs[2] = -99999;
 -}
 -
 -void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) {
 -	int		i;
 -	vec_t	val;
 -
 -	for (i=0 ; i<3 ; i++)
 -	{
 -		val = v[i];
 -		if (val < mins[i])
 -			mins[i] = val;
 -		if (val > maxs[i])
 -			maxs[i] = val;
 -	}
 -}
 -
 -
 -/*
 -=================
 -PlaneTypeForNormal
 -=================
 -*/
 -int	PlaneTypeForNormal (vec3_t normal) {
 -	if (normal[0] == 1.0 || normal[0] == -1.0)
 -		return PLANE_X;
 -	if (normal[1] == 1.0 || normal[1] == -1.0)
 -		return PLANE_Y;
 -	if (normal[2] == 1.0 || normal[2] == -1.0)
 -		return PLANE_Z;
 -	
 -	return PLANE_NON_AXIAL;
 -}
 -
 -/*
 -================
 -MatrixMultiply
 -================
 -*/
 -void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) {
 -	out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] +
 -				in1[0][2] * in2[2][0];
 -	out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] +
 -				in1[0][2] * in2[2][1];
 -	out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] +
 -				in1[0][2] * in2[2][2];
 -	out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] +
 -				in1[1][2] * in2[2][0];
 -	out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] +
 -				in1[1][2] * in2[2][1];
 -	out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] +
 -				in1[1][2] * in2[2][2];
 -	out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] +
 -				in1[2][2] * in2[2][0];
 -	out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] +
 -				in1[2][2] * in2[2][1];
 -	out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] +
 -				in1[2][2] * in2[2][2];
 -}
 -
 -void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal )
 -{
 -	float d;
 -	vec3_t n;
 -	float inv_denom;
 -
 -	inv_denom = 1.0F / DotProduct( normal, normal );
 -
 -	d = DotProduct( normal, p ) * inv_denom;
 -
 -	n[0] = normal[0] * inv_denom;
 -	n[1] = normal[1] * inv_denom;
 -	n[2] = normal[2] * inv_denom;
 -
 -	dst[0] = p[0] - d * n[0];
 -	dst[1] = p[1] - d * n[1];
 -	dst[2] = p[2] - d * n[2];
 -}
 -
 -/*
 -** assumes "src" is normalized
 -*/
 -void PerpendicularVector( vec3_t dst, const vec3_t src )
 -{
 -	int	pos;
 -	int i;
 -	float minelem = 1.0F;
 -	vec3_t tempvec;
 -
 -	/*
 -	** find the smallest magnitude axially aligned vector
 -	*/
 -	for ( pos = 0, i = 0; i < 3; i++ )
 -	{
 -		if ( fabs( src[i] ) < minelem )
 -		{
 -			pos = i;
 -			minelem = fabs( src[i] );
 -		}
 -	}
 -	tempvec[0] = tempvec[1] = tempvec[2] = 0.0F;
 -	tempvec[pos] = 1.0F;
 -
 -	/*
 -	** project the point onto the plane defined by src
 -	*/
 -	ProjectPointOnPlane( dst, tempvec, src );
 -
 -	/*
 -	** normalize the result
 -	*/
 -	VectorNormalize( dst, dst );
 -}
 -
 -/*
 -===============
 -RotatePointAroundVector
 -
 -This is not implemented very well...
 -===============
 -*/
 -void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point,
 -							 float degrees ) {
 -	float	m[3][3];
 -	float	im[3][3];
 -	float	zrot[3][3];
 -	float	tmpmat[3][3];
 -	float	rot[3][3];
 -	int	i;
 -	vec3_t vr, vup, vf;
 -	float	rad;
 -
 -	vf[0] = dir[0];
 -	vf[1] = dir[1];
 -	vf[2] = dir[2];
 -
 -	PerpendicularVector( vr, dir );
 -	CrossProduct( vr, vf, vup );
 -
 -	m[0][0] = vr[0];
 -	m[1][0] = vr[1];
 -	m[2][0] = vr[2];
 -
 -	m[0][1] = vup[0];
 -	m[1][1] = vup[1];
 -	m[2][1] = vup[2];
 -
 -	m[0][2] = vf[0];
 -	m[1][2] = vf[1];
 -	m[2][2] = vf[2];
 -
 -	memcpy( im, m, sizeof( im ) );
 -
 -	im[0][1] = m[1][0];
 -	im[0][2] = m[2][0];
 -	im[1][0] = m[0][1];
 -	im[1][2] = m[2][1];
 -	im[2][0] = m[0][2];
 -	im[2][1] = m[1][2];
 -
 -	memset( zrot, 0, sizeof( zrot ) );
 -	zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F;
 -
 -	rad = DEG2RAD( degrees );
 -	zrot[0][0] = cos( rad );
 -	zrot[0][1] = sin( rad );
 -	zrot[1][0] = -sin( rad );
 -	zrot[1][1] = cos( rad );
 -
 -	MatrixMultiply( m, zrot, tmpmat );
 -	MatrixMultiply( tmpmat, im, rot );
 -
 -	for ( i = 0; i < 3; i++ ) {
 -		dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2];
 -	}
 -}
 +// mathlib.c -- math primitives + +#include "cmdlib.h" +#include "mathlib.h" + +#ifdef _WIN32 +//Improve floating-point consistency. +//without this option weird floating point issues occur +#pragma optimize( "p", on ) +#endif + + +vec3_t vec3_origin = {0,0,0}; + +/* +** NormalToLatLong +** +** We use two byte encoded normals in some space critical applications. +** Lat = 0 at (1,0,0) to 360 (-1,0,0), encoded in 8-bit sine table format +** Lng = 0 at (0,0,1) to 180 (0,0,-1), encoded in 8-bit sine table format +** +*/ +void NormalToLatLong( const vec3_t normal, byte bytes[2] ) { +	// check for singularities +	if ( normal[0] == 0 && normal[1] == 0 ) { +		if ( normal[2] > 0 ) { +			bytes[0] = 0; +			bytes[1] = 0;		// lat = 0, long = 0 +		} else { +			bytes[0] = 128; +			bytes[1] = 0;		// lat = 0, long = 128 +		} +	} else { +		int	a, b; + +		a = RAD2DEG( atan2( normal[1], normal[0] ) ) * (255.0f / 360.0f ); +		a &= 0xff; + +		b = RAD2DEG( acos( normal[2] ) ) * ( 255.0f / 360.0f ); +		b &= 0xff; + +		bytes[0] = b;	// longitude +		bytes[1] = a;	// lattitude +	} +} + +/* +===================== +PlaneFromPoints + +Returns false if the triangle is degenrate. +The normal will point out of the clock for clockwise ordered points +===================== +*/ +qboolean PlaneFromPoints( vec4_t plane, const vec3_t a, const vec3_t b, const vec3_t c ) { +	vec3_t	d1, d2; + +	VectorSubtract( b, a, d1 ); +	VectorSubtract( c, a, d2 ); +	CrossProduct( d2, d1, plane ); +	if ( VectorNormalize( plane, plane ) == 0 ) { +		return qfalse; +	} + +	plane[3] = DotProduct( a, plane ); +	return qtrue; +} + +/* +================ +MakeNormalVectors + +Given a normalized forward vector, create two +other perpendicular vectors +================ +*/ +void MakeNormalVectors (vec3_t forward, vec3_t right, vec3_t up) +{ +	float		d; + +	// this rotate and negate guarantees a vector +	// not colinear with the original +	right[1] = -forward[0]; +	right[2] = forward[1]; +	right[0] = forward[2]; + +	d = DotProduct (right, forward); +	VectorMA (right, -d, forward, right); +	VectorNormalize (right, right); +	CrossProduct (right, forward, up); +} + + +void Vec10Copy( vec_t *in, vec_t *out ) { +	out[0] = in[0]; +	out[1] = in[1]; +	out[2] = in[2]; +	out[3] = in[3]; +	out[4] = in[4]; +	out[5] = in[5]; +	out[6] = in[6]; +	out[7] = in[7]; +	out[8] = in[8]; +	out[9] = in[9]; +} + + +void VectorRotate3x3( vec3_t v, float r[3][3], vec3_t d ) +{ +	d[0] = v[0] * r[0][0] + v[1] * r[1][0] + v[2] * r[2][0]; +	d[1] = v[0] * r[0][1] + v[1] * r[1][1] + v[2] * r[2][1]; +	d[2] = v[0] * r[0][2] + v[1] * r[1][2] + v[2] * r[2][2]; +} + +double VectorLength( const vec3_t v ) { +	int		i; +	double	length; +	 +	length = 0; +	for (i=0 ; i< 3 ; i++) +		length += v[i]*v[i]; +	length = sqrt (length);		// FIXME + +	return length; +} + +qboolean VectorCompare( const vec3_t v1, const vec3_t v2 ) { +	int		i; +	 +	for (i=0 ; i<3 ; i++) +		if (fabs(v1[i]-v2[i]) > EQUAL_EPSILON) +			return qfalse; +			 +	return qtrue; +} + +vec_t Q_rint (vec_t in) +{ +	return floor (in + 0.5); +} + +void VectorMA( const vec3_t va, double scale, const vec3_t vb, vec3_t vc ) { +	vc[0] = va[0] + scale*vb[0]; +	vc[1] = va[1] + scale*vb[1]; +	vc[2] = va[2] + scale*vb[2]; +} + +void CrossProduct( const vec3_t v1, const vec3_t v2, vec3_t cross ) { +	cross[0] = v1[1]*v2[2] - v1[2]*v2[1]; +	cross[1] = v1[2]*v2[0] - v1[0]*v2[2]; +	cross[2] = v1[0]*v2[1] - v1[1]*v2[0]; +} + +vec_t _DotProduct (vec3_t v1, vec3_t v2) +{ +	return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2]; +} + +void _VectorSubtract (vec3_t va, vec3_t vb, vec3_t out) +{ +	out[0] = va[0]-vb[0]; +	out[1] = va[1]-vb[1]; +	out[2] = va[2]-vb[2]; +} + +void _VectorAdd (vec3_t va, vec3_t vb, vec3_t out) +{ +	out[0] = va[0]+vb[0]; +	out[1] = va[1]+vb[1]; +	out[2] = va[2]+vb[2]; +} + +void _VectorCopy (vec3_t in, vec3_t out) +{ +	out[0] = in[0]; +	out[1] = in[1]; +	out[2] = in[2]; +} + +void _VectorScale (vec3_t v, vec_t scale, vec3_t out) +{ +	out[0] = v[0] * scale; +	out[1] = v[1] * scale; +	out[2] = v[2] * scale; +} + +vec_t VectorNormalize( const vec3_t in, vec3_t out ) { +	vec_t	length, ilength; + +	length = sqrt (in[0]*in[0] + in[1]*in[1] + in[2]*in[2]); +	if (length == 0) +	{ +		VectorClear (out); +		return 0; +	} + +	ilength = 1.0/length; +	out[0] = in[0]*ilength; +	out[1] = in[1]*ilength; +	out[2] = in[2]*ilength; + +	return length; +} + +vec_t ColorNormalize( const vec3_t in, vec3_t out ) { +	float	max, scale; + +	max = in[0]; +	if (in[1] > max) +		max = in[1]; +	if (in[2] > max) +		max = in[2]; + +	if (max == 0) { +		out[0] = out[1] = out[2] = 1.0; +		return 0; +	} + +	scale = 1.0 / max; + +	VectorScale (in, scale, out); + +	return max; +} + + + +void VectorInverse (vec3_t v) +{ +	v[0] = -v[0]; +	v[1] = -v[1]; +	v[2] = -v[2]; +} + +void ClearBounds (vec3_t mins, vec3_t maxs) +{ +	mins[0] = mins[1] = mins[2] = 99999; +	maxs[0] = maxs[1] = maxs[2] = -99999; +} + +void AddPointToBounds( const vec3_t v, vec3_t mins, vec3_t maxs ) { +	int		i; +	vec_t	val; + +	for (i=0 ; i<3 ; i++) +	{ +		val = v[i]; +		if (val < mins[i]) +			mins[i] = val; +		if (val > maxs[i]) +			maxs[i] = val; +	} +} + + +/* +================= +PlaneTypeForNormal +================= +*/ +int	PlaneTypeForNormal (vec3_t normal) { +	if (normal[0] == 1.0 || normal[0] == -1.0) +		return PLANE_X; +	if (normal[1] == 1.0 || normal[1] == -1.0) +		return PLANE_Y; +	if (normal[2] == 1.0 || normal[2] == -1.0) +		return PLANE_Z; +	 +	return PLANE_NON_AXIAL; +} + +/* +================ +MatrixMultiply +================ +*/ +void MatrixMultiply(float in1[3][3], float in2[3][3], float out[3][3]) { +	out[0][0] = in1[0][0] * in2[0][0] + in1[0][1] * in2[1][0] + +				in1[0][2] * in2[2][0]; +	out[0][1] = in1[0][0] * in2[0][1] + in1[0][1] * in2[1][1] + +				in1[0][2] * in2[2][1]; +	out[0][2] = in1[0][0] * in2[0][2] + in1[0][1] * in2[1][2] + +				in1[0][2] * in2[2][2]; +	out[1][0] = in1[1][0] * in2[0][0] + in1[1][1] * in2[1][0] + +				in1[1][2] * in2[2][0]; +	out[1][1] = in1[1][0] * in2[0][1] + in1[1][1] * in2[1][1] + +				in1[1][2] * in2[2][1]; +	out[1][2] = in1[1][0] * in2[0][2] + in1[1][1] * in2[1][2] + +				in1[1][2] * in2[2][2]; +	out[2][0] = in1[2][0] * in2[0][0] + in1[2][1] * in2[1][0] + +				in1[2][2] * in2[2][0]; +	out[2][1] = in1[2][0] * in2[0][1] + in1[2][1] * in2[1][1] + +				in1[2][2] * in2[2][1]; +	out[2][2] = in1[2][0] * in2[0][2] + in1[2][1] * in2[1][2] + +				in1[2][2] * in2[2][2]; +} + +void ProjectPointOnPlane( vec3_t dst, const vec3_t p, const vec3_t normal ) +{ +	float d; +	vec3_t n; +	float inv_denom; + +	inv_denom = 1.0F / DotProduct( normal, normal ); + +	d = DotProduct( normal, p ) * inv_denom; + +	n[0] = normal[0] * inv_denom; +	n[1] = normal[1] * inv_denom; +	n[2] = normal[2] * inv_denom; + +	dst[0] = p[0] - d * n[0]; +	dst[1] = p[1] - d * n[1]; +	dst[2] = p[2] - d * n[2]; +} + +/* +** assumes "src" is normalized +*/ +void PerpendicularVector( vec3_t dst, const vec3_t src ) +{ +	int	pos; +	int i; +	float minelem = 1.0F; +	vec3_t tempvec; + +	/* +	** find the smallest magnitude axially aligned vector +	*/ +	for ( pos = 0, i = 0; i < 3; i++ ) +	{ +		if ( fabs( src[i] ) < minelem ) +		{ +			pos = i; +			minelem = fabs( src[i] ); +		} +	} +	tempvec[0] = tempvec[1] = tempvec[2] = 0.0F; +	tempvec[pos] = 1.0F; + +	/* +	** project the point onto the plane defined by src +	*/ +	ProjectPointOnPlane( dst, tempvec, src ); + +	/* +	** normalize the result +	*/ +	VectorNormalize( dst, dst ); +} + +/* +=============== +RotatePointAroundVector + +This is not implemented very well... +=============== +*/ +void RotatePointAroundVector( vec3_t dst, const vec3_t dir, const vec3_t point, +							 float degrees ) { +	float	m[3][3]; +	float	im[3][3]; +	float	zrot[3][3]; +	float	tmpmat[3][3]; +	float	rot[3][3]; +	int	i; +	vec3_t vr, vup, vf; +	float	rad; + +	vf[0] = dir[0]; +	vf[1] = dir[1]; +	vf[2] = dir[2]; + +	PerpendicularVector( vr, dir ); +	CrossProduct( vr, vf, vup ); + +	m[0][0] = vr[0]; +	m[1][0] = vr[1]; +	m[2][0] = vr[2]; + +	m[0][1] = vup[0]; +	m[1][1] = vup[1]; +	m[2][1] = vup[2]; + +	m[0][2] = vf[0]; +	m[1][2] = vf[1]; +	m[2][2] = vf[2]; + +	memcpy( im, m, sizeof( im ) ); + +	im[0][1] = m[1][0]; +	im[0][2] = m[2][0]; +	im[1][0] = m[0][1]; +	im[1][2] = m[2][1]; +	im[2][0] = m[0][2]; +	im[2][1] = m[1][2]; + +	memset( zrot, 0, sizeof( zrot ) ); +	zrot[0][0] = zrot[1][1] = zrot[2][2] = 1.0F; + +	rad = DEG2RAD( degrees ); +	zrot[0][0] = cos( rad ); +	zrot[0][1] = sin( rad ); +	zrot[1][0] = -sin( rad ); +	zrot[1][1] = cos( rad ); + +	MatrixMultiply( m, zrot, tmpmat ); +	MatrixMultiply( tmpmat, im, rot ); + +	for ( i = 0; i < 3; i++ ) { +		dst[i] = rot[i][0] * point[0] + rot[i][1] * point[1] + rot[i][2] * point[2]; +	} +} | 
