aboutsummaryrefslogtreecommitdiffstats
path: root/code/splines/math_vector.h
diff options
context:
space:
mode:
Diffstat (limited to 'code/splines/math_vector.h')
-rwxr-xr-xcode/splines/math_vector.h574
1 files changed, 574 insertions, 0 deletions
diff --git a/code/splines/math_vector.h b/code/splines/math_vector.h
new file mode 100755
index 0000000..be4418d
--- /dev/null
+++ b/code/splines/math_vector.h
@@ -0,0 +1,574 @@
+/*
+===========================================================================
+Copyright (C) 1999-2005 Id Software, Inc.
+
+This file is part of Quake III Arena source code.
+
+Quake III Arena source code is free software; you can redistribute it
+and/or modify it under the terms of the GNU General Public License as
+published by the Free Software Foundation; either version 2 of the License,
+or (at your option) any later version.
+
+Quake III Arena source code is distributed in the hope that it will be
+useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with Foobar; if not, write to the Free Software
+Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+===========================================================================
+*/
+#ifndef __MATH_VECTOR_H__
+#define __MATH_VECTOR_H__
+
+#if defined(_WIN32)
+#pragma warning(disable : 4244)
+#endif
+
+#include <math.h>
+#include <assert.h>
+
+//#define DotProduct(a,b) ((a)[0]*(b)[0]+(a)[1]*(b)[1]+(a)[2]*(b)[2])
+//#define VectorSubtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2])
+//#define VectorAdd(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2])
+//#define VectorCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2])
+//#define VectorCopy(a,b) ((b).x=(a).x,(b).y=(a).y,(b).z=(a).z])
+
+//#define VectorScale(v, s, o) ((o)[0]=(v)[0]*(s),(o)[1]=(v)[1]*(s),(o)[2]=(v)[2]*(s))
+#define __VectorMA(v, s, b, o) ((o)[0]=(v)[0]+(b)[0]*(s),(o)[1]=(v)[1]+(b)[1]*(s),(o)[2]=(v)[2]+(b)[2]*(s))
+//#define CrossProduct(a,b,c) ((c)[0]=(a)[1]*(b)[2]-(a)[2]*(b)[1],(c)[1]=(a)[2]*(b)[0]-(a)[0]*(b)[2],(c)[2]=(a)[0]*(b)[1]-(a)[1]*(b)[0])
+
+#define DotProduct4(x,y) ((x)[0]*(y)[0]+(x)[1]*(y)[1]+(x)[2]*(y)[2]+(x)[3]*(y)[3])
+#define VectorSubtract4(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2],(c)[3]=(a)[3]-(b)[3])
+#define VectorAdd4(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2],(c)[3]=(a)[3]+(b)[3])
+#define VectorCopy4(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3])
+#define VectorScale4(v, s, o) ((o)[0]=(v)[0]*(s),(o)[1]=(v)[1]*(s),(o)[2]=(v)[2]*(s),(o)[3]=(v)[3]*(s))
+#define VectorMA4(v, s, b, o) ((o)[0]=(v)[0]+(b)[0]*(s),(o)[1]=(v)[1]+(b)[1]*(s),(o)[2]=(v)[2]+(b)[2]*(s),(o)[3]=(v)[3]+(b)[3]*(s))
+
+
+//#define VectorClear(a) ((a)[0]=(a)[1]=(a)[2]=0)
+#define VectorNegate(a,b) ((b)[0]=-(a)[0],(b)[1]=-(a)[1],(b)[2]=-(a)[2])
+//#define VectorSet(v, x, y, z) ((v)[0]=(x), (v)[1]=(y), (v)[2]=(z))
+#define Vector4Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3])
+
+#define SnapVector(v) {v[0]=(int)v[0];v[1]=(int)v[1];v[2]=(int)v[2];}
+
+
+//#include "util_heap.h"
+
+#ifndef EQUAL_EPSILON
+#define EQUAL_EPSILON 0.001
+#endif
+
+float Q_fabs( float f );
+
+#ifndef ID_INLINE
+#ifdef _WIN32
+#define ID_INLINE __inline
+#else
+#define ID_INLINE inline
+#endif
+#endif
+
+// if this is defined, vec3 will take four elements, which may allow
+// easier SIMD optimizations
+//#define FAT_VEC3
+//#ifdef __ppc__
+//#pragma align(16)
+//#endif
+
+class angles_t;
+#ifdef __ppc__
+// Vanilla PPC code, but since PPC has a reciprocal square root estimate instruction,
+// runs *much* faster than calling sqrt(). We'll use two Newton-Raphson
+// refinement steps to get bunch more precision in the 1/sqrt() value for very little cost.
+// We'll then multiply 1/sqrt times the original value to get the sqrt.
+// This is about 12.4 times faster than sqrt() and according to my testing (not exhaustive)
+// it returns fairly accurate results (error below 1.0e-5 up to 100000.0 in 0.1 increments).
+
+static inline float idSqrt(float x) {
+ const float half = 0.5;
+ const float one = 1.0;
+ float B, y0, y1;
+
+ // This'll NaN if it hits frsqrte. Handle both +0.0 and -0.0
+ if (fabs(x) == 0.0)
+ return x;
+ B = x;
+
+#ifdef __GNUC__
+ asm("frsqrte %0,%1" : "=f" (y0) : "f" (B));
+#else
+ y0 = __frsqrte(B);
+#endif
+ /* First refinement step */
+
+ y1 = y0 + half*y0*(one - B*y0*y0);
+
+ /* Second refinement step -- copy the output of the last step to the input of this step */
+
+ y0 = y1;
+ y1 = y0 + half*y0*(one - B*y0*y0);
+
+ /* Get sqrt(x) from x * 1/sqrt(x) */
+ return x * y1;
+}
+#else
+static inline double idSqrt(double x) {
+ return sqrt(x);
+}
+#endif
+
+
+//class idVec3_t : public idHeap<idVec3_t> {
+class idVec3_t {
+public:
+#ifndef FAT_VEC3
+ float x,y,z;
+#else
+ float x,y,z,dist;
+#endif
+
+#ifndef FAT_VEC3
+ idVec3_t() {};
+#else
+ idVec3_t() {dist = 0.0f;};
+#endif
+ idVec3_t( const float x, const float y, const float z );
+
+ operator float *();
+
+ float operator[]( const int index ) const;
+ float &operator[]( const int index );
+
+ void set( const float x, const float y, const float z );
+
+ idVec3_t operator-() const;
+
+ idVec3_t &operator=( const idVec3_t &a );
+
+ float operator*( const idVec3_t &a ) const;
+ idVec3_t operator*( const float a ) const;
+ friend idVec3_t operator*( float a, idVec3_t b );
+
+ idVec3_t operator+( const idVec3_t &a ) const;
+ idVec3_t operator-( const idVec3_t &a ) const;
+
+ idVec3_t &operator+=( const idVec3_t &a );
+ idVec3_t &operator-=( const idVec3_t &a );
+ idVec3_t &operator*=( const float a );
+
+ int operator==( const idVec3_t &a ) const;
+ int operator!=( const idVec3_t &a ) const;
+
+ idVec3_t Cross( const idVec3_t &a ) const;
+ idVec3_t &Cross( const idVec3_t &a, const idVec3_t &b );
+
+ float Length( void ) const;
+ float Normalize( void );
+
+ void Zero( void );
+ void Snap( void );
+ void SnapTowards( const idVec3_t &to );
+
+ float toYaw( void );
+ float toPitch( void );
+ angles_t toAngles( void );
+ friend idVec3_t LerpVector( const idVec3_t &w1, const idVec3_t &w2, const float t );
+
+ char *string( void );
+};
+
+extern idVec3_t vec_zero;
+
+ID_INLINE idVec3_t::idVec3_t( const float x, const float y, const float z ) {
+ this->x = x;
+ this->y = y;
+ this->z = z;
+#ifdef FAT_VEC3
+ this->dist = 0.0f;
+#endif
+}
+
+ID_INLINE float idVec3_t::operator[]( const int index ) const {
+ return ( &x )[ index ];
+}
+
+ID_INLINE float &idVec3_t::operator[]( const int index ) {
+ return ( &x )[ index ];
+}
+
+ID_INLINE idVec3_t::operator float *( void ) {
+ return &x;
+}
+
+ID_INLINE idVec3_t idVec3_t::operator-() const {
+ return idVec3_t( -x, -y, -z );
+}
+
+ID_INLINE idVec3_t &idVec3_t::operator=( const idVec3_t &a ) {
+ x = a.x;
+ y = a.y;
+ z = a.z;
+
+ return *this;
+}
+
+ID_INLINE void idVec3_t::set( const float x, const float y, const float z ) {
+ this->x = x;
+ this->y = y;
+ this->z = z;
+}
+
+ID_INLINE idVec3_t idVec3_t::operator-( const idVec3_t &a ) const {
+ return idVec3_t( x - a.x, y - a.y, z - a.z );
+}
+
+ID_INLINE float idVec3_t::operator*( const idVec3_t &a ) const {
+ return x * a.x + y * a.y + z * a.z;
+}
+
+ID_INLINE idVec3_t idVec3_t::operator*( const float a ) const {
+ return idVec3_t( x * a, y * a, z * a );
+}
+
+ID_INLINE idVec3_t operator*( const float a, const idVec3_t b ) {
+ return idVec3_t( b.x * a, b.y * a, b.z * a );
+}
+
+ID_INLINE idVec3_t idVec3_t::operator+( const idVec3_t &a ) const {
+ return idVec3_t( x + a.x, y + a.y, z + a.z );
+}
+
+ID_INLINE idVec3_t &idVec3_t::operator+=( const idVec3_t &a ) {
+ x += a.x;
+ y += a.y;
+ z += a.z;
+
+ return *this;
+}
+
+ID_INLINE idVec3_t &idVec3_t::operator-=( const idVec3_t &a ) {
+ x -= a.x;
+ y -= a.y;
+ z -= a.z;
+
+ return *this;
+}
+
+ID_INLINE idVec3_t &idVec3_t::operator*=( const float a ) {
+ x *= a;
+ y *= a;
+ z *= a;
+
+ return *this;
+}
+
+ID_INLINE int idVec3_t::operator==( const idVec3_t &a ) const {
+ if ( Q_fabs( x - a.x ) > EQUAL_EPSILON ) {
+ return false;
+ }
+
+ if ( Q_fabs( y - a.y ) > EQUAL_EPSILON ) {
+ return false;
+ }
+
+ if ( Q_fabs( z - a.z ) > EQUAL_EPSILON ) {
+ return false;
+ }
+
+ return true;
+}
+
+ID_INLINE int idVec3_t::operator!=( const idVec3_t &a ) const {
+ if ( Q_fabs( x - a.x ) > EQUAL_EPSILON ) {
+ return true;
+ }
+
+ if ( Q_fabs( y - a.y ) > EQUAL_EPSILON ) {
+ return true;
+ }
+
+ if ( Q_fabs( z - a.z ) > EQUAL_EPSILON ) {
+ return true;
+ }
+
+ return false;
+}
+
+ID_INLINE idVec3_t idVec3_t::Cross( const idVec3_t &a ) const {
+ return idVec3_t( y * a.z - z * a.y, z * a.x - x * a.z, x * a.y - y * a.x );
+}
+
+ID_INLINE idVec3_t &idVec3_t::Cross( const idVec3_t &a, const idVec3_t &b ) {
+ x = a.y * b.z - a.z * b.y;
+ y = a.z * b.x - a.x * b.z;
+ z = a.x * b.y - a.y * b.x;
+
+ return *this;
+}
+
+ID_INLINE float idVec3_t::Length( void ) const {
+ float length;
+
+ length = x * x + y * y + z * z;
+ return ( float )idSqrt( length );
+}
+
+ID_INLINE float idVec3_t::Normalize( void ) {
+ float length;
+ float ilength;
+
+ length = this->Length();
+ if ( length ) {
+ ilength = 1.0f / length;
+ x *= ilength;
+ y *= ilength;
+ z *= ilength;
+ }
+
+ return length;
+}
+
+ID_INLINE void idVec3_t::Zero( void ) {
+ x = 0.0f;
+ y = 0.0f;
+ z = 0.0f;
+}
+
+ID_INLINE void idVec3_t::Snap( void ) {
+ x = float( int( x ) );
+ y = float( int( y ) );
+ z = float( int( z ) );
+}
+
+/*
+======================
+SnapTowards
+
+Round a vector to integers for more efficient network
+transmission, but make sure that it rounds towards a given point
+rather than blindly truncating. This prevents it from truncating
+into a wall.
+======================
+*/
+ID_INLINE void idVec3_t::SnapTowards( const idVec3_t &to ) {
+ if ( to.x <= x ) {
+ x = float( int( x ) );
+ } else {
+ x = float( int( x ) + 1 );
+ }
+
+ if ( to.y <= y ) {
+ y = float( int( y ) );
+ } else {
+ y = float( int( y ) + 1 );
+ }
+
+ if ( to.z <= z ) {
+ z = float( int( z ) );
+ } else {
+ z = float( int( z ) + 1 );
+ }
+}
+
+//===============================================================
+
+class Bounds {
+public:
+ idVec3_t b[2];
+
+ Bounds();
+ Bounds( const idVec3_t &mins, const idVec3_t &maxs );
+
+ void Clear();
+ void Zero();
+ float Radius(); // radius from origin, not from center
+ idVec3_t Center();
+ void AddPoint( const idVec3_t &v );
+ void AddBounds( const Bounds &bb );
+ bool IsCleared();
+ bool ContainsPoint( const idVec3_t &p );
+ bool IntersectsBounds( const Bounds &b2 ); // touching is NOT intersecting
+};
+
+extern Bounds boundsZero;
+
+ID_INLINE Bounds::Bounds(){
+}
+
+ID_INLINE bool Bounds::IsCleared() {
+ return b[0][0] > b[1][0];
+}
+
+ID_INLINE bool Bounds::ContainsPoint( const idVec3_t &p ) {
+ if ( p[0] < b[0][0] || p[1] < b[0][1] || p[2] < b[0][2]
+ || p[0] > b[1][0] || p[1] > b[1][1] || p[2] > b[1][2] ) {
+ return false;
+ }
+ return true;
+}
+
+ID_INLINE bool Bounds::IntersectsBounds( const Bounds &b2 ) {
+ if ( b2.b[1][0] < b[0][0] || b2.b[1][1] < b[0][1] || b2.b[1][2] < b[0][2]
+ || b2.b[0][0] > b[1][0] || b2.b[0][1] > b[1][1] || b2.b[0][2] > b[1][2] ) {
+ return false;
+ }
+ return true;
+}
+
+ID_INLINE Bounds::Bounds( const idVec3_t &mins, const idVec3_t &maxs ) {
+ b[0] = mins;
+ b[1] = maxs;
+}
+
+ID_INLINE idVec3_t Bounds::Center() {
+ return idVec3_t( ( b[1][0] + b[0][0] ) * 0.5f, ( b[1][1] + b[0][1] ) * 0.5f, ( b[1][2] + b[0][2] ) * 0.5f );
+}
+
+ID_INLINE void Bounds::Clear() {
+ b[0][0] = b[0][1] = b[0][2] = 99999;
+ b[1][0] = b[1][1] = b[1][2] = -99999;
+}
+
+ID_INLINE void Bounds::Zero() {
+ b[0][0] = b[0][1] = b[0][2] =
+ b[1][0] = b[1][1] = b[1][2] = 0;
+}
+
+ID_INLINE void Bounds::AddPoint( const idVec3_t &v ) {
+ if ( v[0] < b[0][0]) {
+ b[0][0] = v[0];
+ }
+ if ( v[0] > b[1][0]) {
+ b[1][0] = v[0];
+ }
+ if ( v[1] < b[0][1] ) {
+ b[0][1] = v[1];
+ }
+ if ( v[1] > b[1][1]) {
+ b[1][1] = v[1];
+ }
+ if ( v[2] < b[0][2] ) {
+ b[0][2] = v[2];
+ }
+ if ( v[2] > b[1][2]) {
+ b[1][2] = v[2];
+ }
+}
+
+
+ID_INLINE void Bounds::AddBounds( const Bounds &bb ) {
+ if ( bb.b[0][0] < b[0][0]) {
+ b[0][0] = bb.b[0][0];
+ }
+ if ( bb.b[0][1] < b[0][1]) {
+ b[0][1] = bb.b[0][1];
+ }
+ if ( bb.b[0][2] < b[0][2]) {
+ b[0][2] = bb.b[0][2];
+ }
+
+ if ( bb.b[1][0] > b[1][0]) {
+ b[1][0] = bb.b[1][0];
+ }
+ if ( bb.b[1][1] > b[1][1]) {
+ b[1][1] = bb.b[1][1];
+ }
+ if ( bb.b[1][2] > b[1][2]) {
+ b[1][2] = bb.b[1][2];
+ }
+}
+
+ID_INLINE float Bounds::Radius( ) {
+ int i;
+ float total;
+ float a, aa;
+
+ total = 0;
+ for (i=0 ; i<3 ; i++) {
+ a = (float)fabs( b[0][i] );
+ aa = (float)fabs( b[1][i] );
+ if ( aa > a ) {
+ a = aa;
+ }
+ total += a * a;
+ }
+
+ return (float)idSqrt( total );
+}
+
+//===============================================================
+
+
+class idVec2_t {
+public:
+ float x;
+ float y;
+
+ operator float *();
+ float operator[]( int index ) const;
+ float &operator[]( int index );
+};
+
+ID_INLINE float idVec2_t::operator[]( int index ) const {
+ return ( &x )[ index ];
+}
+
+ID_INLINE float& idVec2_t::operator[]( int index ) {
+ return ( &x )[ index ];
+}
+
+ID_INLINE idVec2_t::operator float *( void ) {
+ return &x;
+}
+
+class vec4_t : public idVec3_t {
+public:
+#ifndef FAT_VEC3
+ float dist;
+#endif
+ vec4_t();
+ ~vec4_t() {};
+
+ vec4_t( float x, float y, float z, float dist );
+ float operator[]( int index ) const;
+ float &operator[]( int index );
+};
+
+ID_INLINE vec4_t::vec4_t() {}
+ID_INLINE vec4_t::vec4_t( float x, float y, float z, float dist ) {
+ this->x = x;
+ this->y = y;
+ this->z = z;
+ this->dist = dist;
+}
+
+ID_INLINE float vec4_t::operator[]( int index ) const {
+ return ( &x )[ index ];
+}
+
+ID_INLINE float& vec4_t::operator[]( int index ) {
+ return ( &x )[ index ];
+}
+
+
+class idVec5_t : public idVec3_t {
+public:
+ float s;
+ float t;
+ float operator[]( int index ) const;
+ float &operator[]( int index );
+};
+
+
+ID_INLINE float idVec5_t::operator[]( int index ) const {
+ return ( &x )[ index ];
+}
+
+ID_INLINE float& idVec5_t::operator[]( int index ) {
+ return ( &x )[ index ];
+}
+
+#endif /* !__MATH_VECTOR_H__ */