aboutsummaryrefslogtreecommitdiffstats
path: root/code/splines/math_vector.h
diff options
context:
space:
mode:
Diffstat (limited to 'code/splines/math_vector.h')
-rwxr-xr-xcode/splines/math_vector.h1148
1 files changed, 574 insertions, 574 deletions
diff --git a/code/splines/math_vector.h b/code/splines/math_vector.h
index be4418d..188907f 100755
--- a/code/splines/math_vector.h
+++ b/code/splines/math_vector.h
@@ -1,574 +1,574 @@
-/*
-===========================================================================
-Copyright (C) 1999-2005 Id Software, Inc.
-
-This file is part of Quake III Arena source code.
-
-Quake III Arena source code is free software; you can redistribute it
-and/or modify it under the terms of the GNU General Public License as
-published by the Free Software Foundation; either version 2 of the License,
-or (at your option) any later version.
-
-Quake III Arena source code is distributed in the hope that it will be
-useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
-MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
-GNU General Public License for more details.
-
-You should have received a copy of the GNU General Public License
-along with Foobar; if not, write to the Free Software
-Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
-===========================================================================
-*/
-#ifndef __MATH_VECTOR_H__
-#define __MATH_VECTOR_H__
-
-#if defined(_WIN32)
-#pragma warning(disable : 4244)
-#endif
-
-#include <math.h>
-#include <assert.h>
-
-//#define DotProduct(a,b) ((a)[0]*(b)[0]+(a)[1]*(b)[1]+(a)[2]*(b)[2])
-//#define VectorSubtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2])
-//#define VectorAdd(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2])
-//#define VectorCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2])
-//#define VectorCopy(a,b) ((b).x=(a).x,(b).y=(a).y,(b).z=(a).z])
-
-//#define VectorScale(v, s, o) ((o)[0]=(v)[0]*(s),(o)[1]=(v)[1]*(s),(o)[2]=(v)[2]*(s))
-#define __VectorMA(v, s, b, o) ((o)[0]=(v)[0]+(b)[0]*(s),(o)[1]=(v)[1]+(b)[1]*(s),(o)[2]=(v)[2]+(b)[2]*(s))
-//#define CrossProduct(a,b,c) ((c)[0]=(a)[1]*(b)[2]-(a)[2]*(b)[1],(c)[1]=(a)[2]*(b)[0]-(a)[0]*(b)[2],(c)[2]=(a)[0]*(b)[1]-(a)[1]*(b)[0])
-
-#define DotProduct4(x,y) ((x)[0]*(y)[0]+(x)[1]*(y)[1]+(x)[2]*(y)[2]+(x)[3]*(y)[3])
-#define VectorSubtract4(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2],(c)[3]=(a)[3]-(b)[3])
-#define VectorAdd4(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2],(c)[3]=(a)[3]+(b)[3])
-#define VectorCopy4(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3])
-#define VectorScale4(v, s, o) ((o)[0]=(v)[0]*(s),(o)[1]=(v)[1]*(s),(o)[2]=(v)[2]*(s),(o)[3]=(v)[3]*(s))
-#define VectorMA4(v, s, b, o) ((o)[0]=(v)[0]+(b)[0]*(s),(o)[1]=(v)[1]+(b)[1]*(s),(o)[2]=(v)[2]+(b)[2]*(s),(o)[3]=(v)[3]+(b)[3]*(s))
-
-
-//#define VectorClear(a) ((a)[0]=(a)[1]=(a)[2]=0)
-#define VectorNegate(a,b) ((b)[0]=-(a)[0],(b)[1]=-(a)[1],(b)[2]=-(a)[2])
-//#define VectorSet(v, x, y, z) ((v)[0]=(x), (v)[1]=(y), (v)[2]=(z))
-#define Vector4Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3])
-
-#define SnapVector(v) {v[0]=(int)v[0];v[1]=(int)v[1];v[2]=(int)v[2];}
-
-
-//#include "util_heap.h"
-
-#ifndef EQUAL_EPSILON
-#define EQUAL_EPSILON 0.001
-#endif
-
-float Q_fabs( float f );
-
-#ifndef ID_INLINE
-#ifdef _WIN32
-#define ID_INLINE __inline
-#else
-#define ID_INLINE inline
-#endif
-#endif
-
-// if this is defined, vec3 will take four elements, which may allow
-// easier SIMD optimizations
-//#define FAT_VEC3
-//#ifdef __ppc__
-//#pragma align(16)
-//#endif
-
-class angles_t;
-#ifdef __ppc__
-// Vanilla PPC code, but since PPC has a reciprocal square root estimate instruction,
-// runs *much* faster than calling sqrt(). We'll use two Newton-Raphson
-// refinement steps to get bunch more precision in the 1/sqrt() value for very little cost.
-// We'll then multiply 1/sqrt times the original value to get the sqrt.
-// This is about 12.4 times faster than sqrt() and according to my testing (not exhaustive)
-// it returns fairly accurate results (error below 1.0e-5 up to 100000.0 in 0.1 increments).
-
-static inline float idSqrt(float x) {
- const float half = 0.5;
- const float one = 1.0;
- float B, y0, y1;
-
- // This'll NaN if it hits frsqrte. Handle both +0.0 and -0.0
- if (fabs(x) == 0.0)
- return x;
- B = x;
-
-#ifdef __GNUC__
- asm("frsqrte %0,%1" : "=f" (y0) : "f" (B));
-#else
- y0 = __frsqrte(B);
-#endif
- /* First refinement step */
-
- y1 = y0 + half*y0*(one - B*y0*y0);
-
- /* Second refinement step -- copy the output of the last step to the input of this step */
-
- y0 = y1;
- y1 = y0 + half*y0*(one - B*y0*y0);
-
- /* Get sqrt(x) from x * 1/sqrt(x) */
- return x * y1;
-}
-#else
-static inline double idSqrt(double x) {
- return sqrt(x);
-}
-#endif
-
-
-//class idVec3_t : public idHeap<idVec3_t> {
-class idVec3_t {
-public:
-#ifndef FAT_VEC3
- float x,y,z;
-#else
- float x,y,z,dist;
-#endif
-
-#ifndef FAT_VEC3
- idVec3_t() {};
-#else
- idVec3_t() {dist = 0.0f;};
-#endif
- idVec3_t( const float x, const float y, const float z );
-
- operator float *();
-
- float operator[]( const int index ) const;
- float &operator[]( const int index );
-
- void set( const float x, const float y, const float z );
-
- idVec3_t operator-() const;
-
- idVec3_t &operator=( const idVec3_t &a );
-
- float operator*( const idVec3_t &a ) const;
- idVec3_t operator*( const float a ) const;
- friend idVec3_t operator*( float a, idVec3_t b );
-
- idVec3_t operator+( const idVec3_t &a ) const;
- idVec3_t operator-( const idVec3_t &a ) const;
-
- idVec3_t &operator+=( const idVec3_t &a );
- idVec3_t &operator-=( const idVec3_t &a );
- idVec3_t &operator*=( const float a );
-
- int operator==( const idVec3_t &a ) const;
- int operator!=( const idVec3_t &a ) const;
-
- idVec3_t Cross( const idVec3_t &a ) const;
- idVec3_t &Cross( const idVec3_t &a, const idVec3_t &b );
-
- float Length( void ) const;
- float Normalize( void );
-
- void Zero( void );
- void Snap( void );
- void SnapTowards( const idVec3_t &to );
-
- float toYaw( void );
- float toPitch( void );
- angles_t toAngles( void );
- friend idVec3_t LerpVector( const idVec3_t &w1, const idVec3_t &w2, const float t );
-
- char *string( void );
-};
-
-extern idVec3_t vec_zero;
-
-ID_INLINE idVec3_t::idVec3_t( const float x, const float y, const float z ) {
- this->x = x;
- this->y = y;
- this->z = z;
-#ifdef FAT_VEC3
- this->dist = 0.0f;
-#endif
-}
-
-ID_INLINE float idVec3_t::operator[]( const int index ) const {
- return ( &x )[ index ];
-}
-
-ID_INLINE float &idVec3_t::operator[]( const int index ) {
- return ( &x )[ index ];
-}
-
-ID_INLINE idVec3_t::operator float *( void ) {
- return &x;
-}
-
-ID_INLINE idVec3_t idVec3_t::operator-() const {
- return idVec3_t( -x, -y, -z );
-}
-
-ID_INLINE idVec3_t &idVec3_t::operator=( const idVec3_t &a ) {
- x = a.x;
- y = a.y;
- z = a.z;
-
- return *this;
-}
-
-ID_INLINE void idVec3_t::set( const float x, const float y, const float z ) {
- this->x = x;
- this->y = y;
- this->z = z;
-}
-
-ID_INLINE idVec3_t idVec3_t::operator-( const idVec3_t &a ) const {
- return idVec3_t( x - a.x, y - a.y, z - a.z );
-}
-
-ID_INLINE float idVec3_t::operator*( const idVec3_t &a ) const {
- return x * a.x + y * a.y + z * a.z;
-}
-
-ID_INLINE idVec3_t idVec3_t::operator*( const float a ) const {
- return idVec3_t( x * a, y * a, z * a );
-}
-
-ID_INLINE idVec3_t operator*( const float a, const idVec3_t b ) {
- return idVec3_t( b.x * a, b.y * a, b.z * a );
-}
-
-ID_INLINE idVec3_t idVec3_t::operator+( const idVec3_t &a ) const {
- return idVec3_t( x + a.x, y + a.y, z + a.z );
-}
-
-ID_INLINE idVec3_t &idVec3_t::operator+=( const idVec3_t &a ) {
- x += a.x;
- y += a.y;
- z += a.z;
-
- return *this;
-}
-
-ID_INLINE idVec3_t &idVec3_t::operator-=( const idVec3_t &a ) {
- x -= a.x;
- y -= a.y;
- z -= a.z;
-
- return *this;
-}
-
-ID_INLINE idVec3_t &idVec3_t::operator*=( const float a ) {
- x *= a;
- y *= a;
- z *= a;
-
- return *this;
-}
-
-ID_INLINE int idVec3_t::operator==( const idVec3_t &a ) const {
- if ( Q_fabs( x - a.x ) > EQUAL_EPSILON ) {
- return false;
- }
-
- if ( Q_fabs( y - a.y ) > EQUAL_EPSILON ) {
- return false;
- }
-
- if ( Q_fabs( z - a.z ) > EQUAL_EPSILON ) {
- return false;
- }
-
- return true;
-}
-
-ID_INLINE int idVec3_t::operator!=( const idVec3_t &a ) const {
- if ( Q_fabs( x - a.x ) > EQUAL_EPSILON ) {
- return true;
- }
-
- if ( Q_fabs( y - a.y ) > EQUAL_EPSILON ) {
- return true;
- }
-
- if ( Q_fabs( z - a.z ) > EQUAL_EPSILON ) {
- return true;
- }
-
- return false;
-}
-
-ID_INLINE idVec3_t idVec3_t::Cross( const idVec3_t &a ) const {
- return idVec3_t( y * a.z - z * a.y, z * a.x - x * a.z, x * a.y - y * a.x );
-}
-
-ID_INLINE idVec3_t &idVec3_t::Cross( const idVec3_t &a, const idVec3_t &b ) {
- x = a.y * b.z - a.z * b.y;
- y = a.z * b.x - a.x * b.z;
- z = a.x * b.y - a.y * b.x;
-
- return *this;
-}
-
-ID_INLINE float idVec3_t::Length( void ) const {
- float length;
-
- length = x * x + y * y + z * z;
- return ( float )idSqrt( length );
-}
-
-ID_INLINE float idVec3_t::Normalize( void ) {
- float length;
- float ilength;
-
- length = this->Length();
- if ( length ) {
- ilength = 1.0f / length;
- x *= ilength;
- y *= ilength;
- z *= ilength;
- }
-
- return length;
-}
-
-ID_INLINE void idVec3_t::Zero( void ) {
- x = 0.0f;
- y = 0.0f;
- z = 0.0f;
-}
-
-ID_INLINE void idVec3_t::Snap( void ) {
- x = float( int( x ) );
- y = float( int( y ) );
- z = float( int( z ) );
-}
-
-/*
-======================
-SnapTowards
-
-Round a vector to integers for more efficient network
-transmission, but make sure that it rounds towards a given point
-rather than blindly truncating. This prevents it from truncating
-into a wall.
-======================
-*/
-ID_INLINE void idVec3_t::SnapTowards( const idVec3_t &to ) {
- if ( to.x <= x ) {
- x = float( int( x ) );
- } else {
- x = float( int( x ) + 1 );
- }
-
- if ( to.y <= y ) {
- y = float( int( y ) );
- } else {
- y = float( int( y ) + 1 );
- }
-
- if ( to.z <= z ) {
- z = float( int( z ) );
- } else {
- z = float( int( z ) + 1 );
- }
-}
-
-//===============================================================
-
-class Bounds {
-public:
- idVec3_t b[2];
-
- Bounds();
- Bounds( const idVec3_t &mins, const idVec3_t &maxs );
-
- void Clear();
- void Zero();
- float Radius(); // radius from origin, not from center
- idVec3_t Center();
- void AddPoint( const idVec3_t &v );
- void AddBounds( const Bounds &bb );
- bool IsCleared();
- bool ContainsPoint( const idVec3_t &p );
- bool IntersectsBounds( const Bounds &b2 ); // touching is NOT intersecting
-};
-
-extern Bounds boundsZero;
-
-ID_INLINE Bounds::Bounds(){
-}
-
-ID_INLINE bool Bounds::IsCleared() {
- return b[0][0] > b[1][0];
-}
-
-ID_INLINE bool Bounds::ContainsPoint( const idVec3_t &p ) {
- if ( p[0] < b[0][0] || p[1] < b[0][1] || p[2] < b[0][2]
- || p[0] > b[1][0] || p[1] > b[1][1] || p[2] > b[1][2] ) {
- return false;
- }
- return true;
-}
-
-ID_INLINE bool Bounds::IntersectsBounds( const Bounds &b2 ) {
- if ( b2.b[1][0] < b[0][0] || b2.b[1][1] < b[0][1] || b2.b[1][2] < b[0][2]
- || b2.b[0][0] > b[1][0] || b2.b[0][1] > b[1][1] || b2.b[0][2] > b[1][2] ) {
- return false;
- }
- return true;
-}
-
-ID_INLINE Bounds::Bounds( const idVec3_t &mins, const idVec3_t &maxs ) {
- b[0] = mins;
- b[1] = maxs;
-}
-
-ID_INLINE idVec3_t Bounds::Center() {
- return idVec3_t( ( b[1][0] + b[0][0] ) * 0.5f, ( b[1][1] + b[0][1] ) * 0.5f, ( b[1][2] + b[0][2] ) * 0.5f );
-}
-
-ID_INLINE void Bounds::Clear() {
- b[0][0] = b[0][1] = b[0][2] = 99999;
- b[1][0] = b[1][1] = b[1][2] = -99999;
-}
-
-ID_INLINE void Bounds::Zero() {
- b[0][0] = b[0][1] = b[0][2] =
- b[1][0] = b[1][1] = b[1][2] = 0;
-}
-
-ID_INLINE void Bounds::AddPoint( const idVec3_t &v ) {
- if ( v[0] < b[0][0]) {
- b[0][0] = v[0];
- }
- if ( v[0] > b[1][0]) {
- b[1][0] = v[0];
- }
- if ( v[1] < b[0][1] ) {
- b[0][1] = v[1];
- }
- if ( v[1] > b[1][1]) {
- b[1][1] = v[1];
- }
- if ( v[2] < b[0][2] ) {
- b[0][2] = v[2];
- }
- if ( v[2] > b[1][2]) {
- b[1][2] = v[2];
- }
-}
-
-
-ID_INLINE void Bounds::AddBounds( const Bounds &bb ) {
- if ( bb.b[0][0] < b[0][0]) {
- b[0][0] = bb.b[0][0];
- }
- if ( bb.b[0][1] < b[0][1]) {
- b[0][1] = bb.b[0][1];
- }
- if ( bb.b[0][2] < b[0][2]) {
- b[0][2] = bb.b[0][2];
- }
-
- if ( bb.b[1][0] > b[1][0]) {
- b[1][0] = bb.b[1][0];
- }
- if ( bb.b[1][1] > b[1][1]) {
- b[1][1] = bb.b[1][1];
- }
- if ( bb.b[1][2] > b[1][2]) {
- b[1][2] = bb.b[1][2];
- }
-}
-
-ID_INLINE float Bounds::Radius( ) {
- int i;
- float total;
- float a, aa;
-
- total = 0;
- for (i=0 ; i<3 ; i++) {
- a = (float)fabs( b[0][i] );
- aa = (float)fabs( b[1][i] );
- if ( aa > a ) {
- a = aa;
- }
- total += a * a;
- }
-
- return (float)idSqrt( total );
-}
-
-//===============================================================
-
-
-class idVec2_t {
-public:
- float x;
- float y;
-
- operator float *();
- float operator[]( int index ) const;
- float &operator[]( int index );
-};
-
-ID_INLINE float idVec2_t::operator[]( int index ) const {
- return ( &x )[ index ];
-}
-
-ID_INLINE float& idVec2_t::operator[]( int index ) {
- return ( &x )[ index ];
-}
-
-ID_INLINE idVec2_t::operator float *( void ) {
- return &x;
-}
-
-class vec4_t : public idVec3_t {
-public:
-#ifndef FAT_VEC3
- float dist;
-#endif
- vec4_t();
- ~vec4_t() {};
-
- vec4_t( float x, float y, float z, float dist );
- float operator[]( int index ) const;
- float &operator[]( int index );
-};
-
-ID_INLINE vec4_t::vec4_t() {}
-ID_INLINE vec4_t::vec4_t( float x, float y, float z, float dist ) {
- this->x = x;
- this->y = y;
- this->z = z;
- this->dist = dist;
-}
-
-ID_INLINE float vec4_t::operator[]( int index ) const {
- return ( &x )[ index ];
-}
-
-ID_INLINE float& vec4_t::operator[]( int index ) {
- return ( &x )[ index ];
-}
-
-
-class idVec5_t : public idVec3_t {
-public:
- float s;
- float t;
- float operator[]( int index ) const;
- float &operator[]( int index );
-};
-
-
-ID_INLINE float idVec5_t::operator[]( int index ) const {
- return ( &x )[ index ];
-}
-
-ID_INLINE float& idVec5_t::operator[]( int index ) {
- return ( &x )[ index ];
-}
-
-#endif /* !__MATH_VECTOR_H__ */
+/*
+===========================================================================
+Copyright (C) 1999-2005 Id Software, Inc.
+
+This file is part of Quake III Arena source code.
+
+Quake III Arena source code is free software; you can redistribute it
+and/or modify it under the terms of the GNU General Public License as
+published by the Free Software Foundation; either version 2 of the License,
+or (at your option) any later version.
+
+Quake III Arena source code is distributed in the hope that it will be
+useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+GNU General Public License for more details.
+
+You should have received a copy of the GNU General Public License
+along with Foobar; if not, write to the Free Software
+Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
+===========================================================================
+*/
+#ifndef __MATH_VECTOR_H__
+#define __MATH_VECTOR_H__
+
+#if defined(_WIN32)
+#pragma warning(disable : 4244)
+#endif
+
+#include <math.h>
+#include <assert.h>
+
+//#define DotProduct(a,b) ((a)[0]*(b)[0]+(a)[1]*(b)[1]+(a)[2]*(b)[2])
+//#define VectorSubtract(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2])
+//#define VectorAdd(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2])
+//#define VectorCopy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2])
+//#define VectorCopy(a,b) ((b).x=(a).x,(b).y=(a).y,(b).z=(a).z])
+
+//#define VectorScale(v, s, o) ((o)[0]=(v)[0]*(s),(o)[1]=(v)[1]*(s),(o)[2]=(v)[2]*(s))
+#define __VectorMA(v, s, b, o) ((o)[0]=(v)[0]+(b)[0]*(s),(o)[1]=(v)[1]+(b)[1]*(s),(o)[2]=(v)[2]+(b)[2]*(s))
+//#define CrossProduct(a,b,c) ((c)[0]=(a)[1]*(b)[2]-(a)[2]*(b)[1],(c)[1]=(a)[2]*(b)[0]-(a)[0]*(b)[2],(c)[2]=(a)[0]*(b)[1]-(a)[1]*(b)[0])
+
+#define DotProduct4(x,y) ((x)[0]*(y)[0]+(x)[1]*(y)[1]+(x)[2]*(y)[2]+(x)[3]*(y)[3])
+#define VectorSubtract4(a,b,c) ((c)[0]=(a)[0]-(b)[0],(c)[1]=(a)[1]-(b)[1],(c)[2]=(a)[2]-(b)[2],(c)[3]=(a)[3]-(b)[3])
+#define VectorAdd4(a,b,c) ((c)[0]=(a)[0]+(b)[0],(c)[1]=(a)[1]+(b)[1],(c)[2]=(a)[2]+(b)[2],(c)[3]=(a)[3]+(b)[3])
+#define VectorCopy4(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3])
+#define VectorScale4(v, s, o) ((o)[0]=(v)[0]*(s),(o)[1]=(v)[1]*(s),(o)[2]=(v)[2]*(s),(o)[3]=(v)[3]*(s))
+#define VectorMA4(v, s, b, o) ((o)[0]=(v)[0]+(b)[0]*(s),(o)[1]=(v)[1]+(b)[1]*(s),(o)[2]=(v)[2]+(b)[2]*(s),(o)[3]=(v)[3]+(b)[3]*(s))
+
+
+//#define VectorClear(a) ((a)[0]=(a)[1]=(a)[2]=0)
+#define VectorNegate(a,b) ((b)[0]=-(a)[0],(b)[1]=-(a)[1],(b)[2]=-(a)[2])
+//#define VectorSet(v, x, y, z) ((v)[0]=(x), (v)[1]=(y), (v)[2]=(z))
+#define Vector4Copy(a,b) ((b)[0]=(a)[0],(b)[1]=(a)[1],(b)[2]=(a)[2],(b)[3]=(a)[3])
+
+#define SnapVector(v) {v[0]=(int)v[0];v[1]=(int)v[1];v[2]=(int)v[2];}
+
+
+//#include "util_heap.h"
+
+#ifndef EQUAL_EPSILON
+#define EQUAL_EPSILON 0.001
+#endif
+
+float Q_fabs( float f );
+
+#ifndef ID_INLINE
+#ifdef _WIN32
+#define ID_INLINE __inline
+#else
+#define ID_INLINE inline
+#endif
+#endif
+
+// if this is defined, vec3 will take four elements, which may allow
+// easier SIMD optimizations
+//#define FAT_VEC3
+//#ifdef __ppc__
+//#pragma align(16)
+//#endif
+
+class angles_t;
+#ifdef __ppc__
+// Vanilla PPC code, but since PPC has a reciprocal square root estimate instruction,
+// runs *much* faster than calling sqrt(). We'll use two Newton-Raphson
+// refinement steps to get bunch more precision in the 1/sqrt() value for very little cost.
+// We'll then multiply 1/sqrt times the original value to get the sqrt.
+// This is about 12.4 times faster than sqrt() and according to my testing (not exhaustive)
+// it returns fairly accurate results (error below 1.0e-5 up to 100000.0 in 0.1 increments).
+
+static inline float idSqrt(float x) {
+ const float half = 0.5;
+ const float one = 1.0;
+ float B, y0, y1;
+
+ // This'll NaN if it hits frsqrte. Handle both +0.0 and -0.0
+ if (fabs(x) == 0.0)
+ return x;
+ B = x;
+
+#ifdef __GNUC__
+ asm("frsqrte %0,%1" : "=f" (y0) : "f" (B));
+#else
+ y0 = __frsqrte(B);
+#endif
+ /* First refinement step */
+
+ y1 = y0 + half*y0*(one - B*y0*y0);
+
+ /* Second refinement step -- copy the output of the last step to the input of this step */
+
+ y0 = y1;
+ y1 = y0 + half*y0*(one - B*y0*y0);
+
+ /* Get sqrt(x) from x * 1/sqrt(x) */
+ return x * y1;
+}
+#else
+static inline double idSqrt(double x) {
+ return sqrt(x);
+}
+#endif
+
+
+//class idVec3_t : public idHeap<idVec3_t> {
+class idVec3_t {
+public:
+#ifndef FAT_VEC3
+ float x,y,z;
+#else
+ float x,y,z,dist;
+#endif
+
+#ifndef FAT_VEC3
+ idVec3_t() {};
+#else
+ idVec3_t() {dist = 0.0f;};
+#endif
+ idVec3_t( const float x, const float y, const float z );
+
+ operator float *();
+
+ float operator[]( const int index ) const;
+ float &operator[]( const int index );
+
+ void set( const float x, const float y, const float z );
+
+ idVec3_t operator-() const;
+
+ idVec3_t &operator=( const idVec3_t &a );
+
+ float operator*( const idVec3_t &a ) const;
+ idVec3_t operator*( const float a ) const;
+ friend idVec3_t operator*( float a, idVec3_t b );
+
+ idVec3_t operator+( const idVec3_t &a ) const;
+ idVec3_t operator-( const idVec3_t &a ) const;
+
+ idVec3_t &operator+=( const idVec3_t &a );
+ idVec3_t &operator-=( const idVec3_t &a );
+ idVec3_t &operator*=( const float a );
+
+ int operator==( const idVec3_t &a ) const;
+ int operator!=( const idVec3_t &a ) const;
+
+ idVec3_t Cross( const idVec3_t &a ) const;
+ idVec3_t &Cross( const idVec3_t &a, const idVec3_t &b );
+
+ float Length( void ) const;
+ float Normalize( void );
+
+ void Zero( void );
+ void Snap( void );
+ void SnapTowards( const idVec3_t &to );
+
+ float toYaw( void );
+ float toPitch( void );
+ angles_t toAngles( void );
+ friend idVec3_t LerpVector( const idVec3_t &w1, const idVec3_t &w2, const float t );
+
+ char *string( void );
+};
+
+extern idVec3_t vec_zero;
+
+ID_INLINE idVec3_t::idVec3_t( const float x, const float y, const float z ) {
+ this->x = x;
+ this->y = y;
+ this->z = z;
+#ifdef FAT_VEC3
+ this->dist = 0.0f;
+#endif
+}
+
+ID_INLINE float idVec3_t::operator[]( const int index ) const {
+ return ( &x )[ index ];
+}
+
+ID_INLINE float &idVec3_t::operator[]( const int index ) {
+ return ( &x )[ index ];
+}
+
+ID_INLINE idVec3_t::operator float *( void ) {
+ return &x;
+}
+
+ID_INLINE idVec3_t idVec3_t::operator-() const {
+ return idVec3_t( -x, -y, -z );
+}
+
+ID_INLINE idVec3_t &idVec3_t::operator=( const idVec3_t &a ) {
+ x = a.x;
+ y = a.y;
+ z = a.z;
+
+ return *this;
+}
+
+ID_INLINE void idVec3_t::set( const float x, const float y, const float z ) {
+ this->x = x;
+ this->y = y;
+ this->z = z;
+}
+
+ID_INLINE idVec3_t idVec3_t::operator-( const idVec3_t &a ) const {
+ return idVec3_t( x - a.x, y - a.y, z - a.z );
+}
+
+ID_INLINE float idVec3_t::operator*( const idVec3_t &a ) const {
+ return x * a.x + y * a.y + z * a.z;
+}
+
+ID_INLINE idVec3_t idVec3_t::operator*( const float a ) const {
+ return idVec3_t( x * a, y * a, z * a );
+}
+
+ID_INLINE idVec3_t operator*( const float a, const idVec3_t b ) {
+ return idVec3_t( b.x * a, b.y * a, b.z * a );
+}
+
+ID_INLINE idVec3_t idVec3_t::operator+( const idVec3_t &a ) const {
+ return idVec3_t( x + a.x, y + a.y, z + a.z );
+}
+
+ID_INLINE idVec3_t &idVec3_t::operator+=( const idVec3_t &a ) {
+ x += a.x;
+ y += a.y;
+ z += a.z;
+
+ return *this;
+}
+
+ID_INLINE idVec3_t &idVec3_t::operator-=( const idVec3_t &a ) {
+ x -= a.x;
+ y -= a.y;
+ z -= a.z;
+
+ return *this;
+}
+
+ID_INLINE idVec3_t &idVec3_t::operator*=( const float a ) {
+ x *= a;
+ y *= a;
+ z *= a;
+
+ return *this;
+}
+
+ID_INLINE int idVec3_t::operator==( const idVec3_t &a ) const {
+ if ( Q_fabs( x - a.x ) > EQUAL_EPSILON ) {
+ return false;
+ }
+
+ if ( Q_fabs( y - a.y ) > EQUAL_EPSILON ) {
+ return false;
+ }
+
+ if ( Q_fabs( z - a.z ) > EQUAL_EPSILON ) {
+ return false;
+ }
+
+ return true;
+}
+
+ID_INLINE int idVec3_t::operator!=( const idVec3_t &a ) const {
+ if ( Q_fabs( x - a.x ) > EQUAL_EPSILON ) {
+ return true;
+ }
+
+ if ( Q_fabs( y - a.y ) > EQUAL_EPSILON ) {
+ return true;
+ }
+
+ if ( Q_fabs( z - a.z ) > EQUAL_EPSILON ) {
+ return true;
+ }
+
+ return false;
+}
+
+ID_INLINE idVec3_t idVec3_t::Cross( const idVec3_t &a ) const {
+ return idVec3_t( y * a.z - z * a.y, z * a.x - x * a.z, x * a.y - y * a.x );
+}
+
+ID_INLINE idVec3_t &idVec3_t::Cross( const idVec3_t &a, const idVec3_t &b ) {
+ x = a.y * b.z - a.z * b.y;
+ y = a.z * b.x - a.x * b.z;
+ z = a.x * b.y - a.y * b.x;
+
+ return *this;
+}
+
+ID_INLINE float idVec3_t::Length( void ) const {
+ float length;
+
+ length = x * x + y * y + z * z;
+ return ( float )idSqrt( length );
+}
+
+ID_INLINE float idVec3_t::Normalize( void ) {
+ float length;
+ float ilength;
+
+ length = this->Length();
+ if ( length ) {
+ ilength = 1.0f / length;
+ x *= ilength;
+ y *= ilength;
+ z *= ilength;
+ }
+
+ return length;
+}
+
+ID_INLINE void idVec3_t::Zero( void ) {
+ x = 0.0f;
+ y = 0.0f;
+ z = 0.0f;
+}
+
+ID_INLINE void idVec3_t::Snap( void ) {
+ x = float( int( x ) );
+ y = float( int( y ) );
+ z = float( int( z ) );
+}
+
+/*
+======================
+SnapTowards
+
+Round a vector to integers for more efficient network
+transmission, but make sure that it rounds towards a given point
+rather than blindly truncating. This prevents it from truncating
+into a wall.
+======================
+*/
+ID_INLINE void idVec3_t::SnapTowards( const idVec3_t &to ) {
+ if ( to.x <= x ) {
+ x = float( int( x ) );
+ } else {
+ x = float( int( x ) + 1 );
+ }
+
+ if ( to.y <= y ) {
+ y = float( int( y ) );
+ } else {
+ y = float( int( y ) + 1 );
+ }
+
+ if ( to.z <= z ) {
+ z = float( int( z ) );
+ } else {
+ z = float( int( z ) + 1 );
+ }
+}
+
+//===============================================================
+
+class Bounds {
+public:
+ idVec3_t b[2];
+
+ Bounds();
+ Bounds( const idVec3_t &mins, const idVec3_t &maxs );
+
+ void Clear();
+ void Zero();
+ float Radius(); // radius from origin, not from center
+ idVec3_t Center();
+ void AddPoint( const idVec3_t &v );
+ void AddBounds( const Bounds &bb );
+ bool IsCleared();
+ bool ContainsPoint( const idVec3_t &p );
+ bool IntersectsBounds( const Bounds &b2 ); // touching is NOT intersecting
+};
+
+extern Bounds boundsZero;
+
+ID_INLINE Bounds::Bounds(){
+}
+
+ID_INLINE bool Bounds::IsCleared() {
+ return b[0][0] > b[1][0];
+}
+
+ID_INLINE bool Bounds::ContainsPoint( const idVec3_t &p ) {
+ if ( p[0] < b[0][0] || p[1] < b[0][1] || p[2] < b[0][2]
+ || p[0] > b[1][0] || p[1] > b[1][1] || p[2] > b[1][2] ) {
+ return false;
+ }
+ return true;
+}
+
+ID_INLINE bool Bounds::IntersectsBounds( const Bounds &b2 ) {
+ if ( b2.b[1][0] < b[0][0] || b2.b[1][1] < b[0][1] || b2.b[1][2] < b[0][2]
+ || b2.b[0][0] > b[1][0] || b2.b[0][1] > b[1][1] || b2.b[0][2] > b[1][2] ) {
+ return false;
+ }
+ return true;
+}
+
+ID_INLINE Bounds::Bounds( const idVec3_t &mins, const idVec3_t &maxs ) {
+ b[0] = mins;
+ b[1] = maxs;
+}
+
+ID_INLINE idVec3_t Bounds::Center() {
+ return idVec3_t( ( b[1][0] + b[0][0] ) * 0.5f, ( b[1][1] + b[0][1] ) * 0.5f, ( b[1][2] + b[0][2] ) * 0.5f );
+}
+
+ID_INLINE void Bounds::Clear() {
+ b[0][0] = b[0][1] = b[0][2] = 99999;
+ b[1][0] = b[1][1] = b[1][2] = -99999;
+}
+
+ID_INLINE void Bounds::Zero() {
+ b[0][0] = b[0][1] = b[0][2] =
+ b[1][0] = b[1][1] = b[1][2] = 0;
+}
+
+ID_INLINE void Bounds::AddPoint( const idVec3_t &v ) {
+ if ( v[0] < b[0][0]) {
+ b[0][0] = v[0];
+ }
+ if ( v[0] > b[1][0]) {
+ b[1][0] = v[0];
+ }
+ if ( v[1] < b[0][1] ) {
+ b[0][1] = v[1];
+ }
+ if ( v[1] > b[1][1]) {
+ b[1][1] = v[1];
+ }
+ if ( v[2] < b[0][2] ) {
+ b[0][2] = v[2];
+ }
+ if ( v[2] > b[1][2]) {
+ b[1][2] = v[2];
+ }
+}
+
+
+ID_INLINE void Bounds::AddBounds( const Bounds &bb ) {
+ if ( bb.b[0][0] < b[0][0]) {
+ b[0][0] = bb.b[0][0];
+ }
+ if ( bb.b[0][1] < b[0][1]) {
+ b[0][1] = bb.b[0][1];
+ }
+ if ( bb.b[0][2] < b[0][2]) {
+ b[0][2] = bb.b[0][2];
+ }
+
+ if ( bb.b[1][0] > b[1][0]) {
+ b[1][0] = bb.b[1][0];
+ }
+ if ( bb.b[1][1] > b[1][1]) {
+ b[1][1] = bb.b[1][1];
+ }
+ if ( bb.b[1][2] > b[1][2]) {
+ b[1][2] = bb.b[1][2];
+ }
+}
+
+ID_INLINE float Bounds::Radius( ) {
+ int i;
+ float total;
+ float a, aa;
+
+ total = 0;
+ for (i=0 ; i<3 ; i++) {
+ a = (float)fabs( b[0][i] );
+ aa = (float)fabs( b[1][i] );
+ if ( aa > a ) {
+ a = aa;
+ }
+ total += a * a;
+ }
+
+ return (float)idSqrt( total );
+}
+
+//===============================================================
+
+
+class idVec2_t {
+public:
+ float x;
+ float y;
+
+ operator float *();
+ float operator[]( int index ) const;
+ float &operator[]( int index );
+};
+
+ID_INLINE float idVec2_t::operator[]( int index ) const {
+ return ( &x )[ index ];
+}
+
+ID_INLINE float& idVec2_t::operator[]( int index ) {
+ return ( &x )[ index ];
+}
+
+ID_INLINE idVec2_t::operator float *( void ) {
+ return &x;
+}
+
+class vec4_t : public idVec3_t {
+public:
+#ifndef FAT_VEC3
+ float dist;
+#endif
+ vec4_t();
+ ~vec4_t() {};
+
+ vec4_t( float x, float y, float z, float dist );
+ float operator[]( int index ) const;
+ float &operator[]( int index );
+};
+
+ID_INLINE vec4_t::vec4_t() {}
+ID_INLINE vec4_t::vec4_t( float x, float y, float z, float dist ) {
+ this->x = x;
+ this->y = y;
+ this->z = z;
+ this->dist = dist;
+}
+
+ID_INLINE float vec4_t::operator[]( int index ) const {
+ return ( &x )[ index ];
+}
+
+ID_INLINE float& vec4_t::operator[]( int index ) {
+ return ( &x )[ index ];
+}
+
+
+class idVec5_t : public idVec3_t {
+public:
+ float s;
+ float t;
+ float operator[]( int index ) const;
+ float &operator[]( int index );
+};
+
+
+ID_INLINE float idVec5_t::operator[]( int index ) const {
+ return ( &x )[ index ];
+}
+
+ID_INLINE float& idVec5_t::operator[]( int index ) {
+ return ( &x )[ index ];
+}
+
+#endif /* !__MATH_VECTOR_H__ */