aboutsummaryrefslogtreecommitdiffstats
path: root/libs/jpeg6/jfdctflt.cpp
diff options
context:
space:
mode:
authorzakk <zakk@edf5b092-35ff-0310-97b2-ce42778d08ea>2005-08-26 17:39:27 +0000
committerzakk <zakk@edf5b092-35ff-0310-97b2-ce42778d08ea>2005-08-26 17:39:27 +0000
commit6bf20c78f5b69d40bcc4931df93d29198435ab67 (patch)
treee3eda937a05d7db42de725b7013bd0344b987f34 /libs/jpeg6/jfdctflt.cpp
parent872d4d7f55af706737ffb361bb76ad13e7496770 (diff)
downloadioquake3-aero-6bf20c78f5b69d40bcc4931df93d29198435ab67.tar.gz
ioquake3-aero-6bf20c78f5b69d40bcc4931df93d29198435ab67.zip
newlines fixed
git-svn-id: svn://svn.icculus.org/quake3/trunk@6 edf5b092-35ff-0310-97b2-ce42778d08ea
Diffstat (limited to 'libs/jpeg6/jfdctflt.cpp')
-rwxr-xr-xlibs/jpeg6/jfdctflt.cpp336
1 files changed, 168 insertions, 168 deletions
diff --git a/libs/jpeg6/jfdctflt.cpp b/libs/jpeg6/jfdctflt.cpp
index 1509b88..21371eb 100755
--- a/libs/jpeg6/jfdctflt.cpp
+++ b/libs/jpeg6/jfdctflt.cpp
@@ -1,168 +1,168 @@
-/*
- * jfdctflt.c
- *
- * Copyright (C) 1994, Thomas G. Lane.
- * This file is part of the Independent JPEG Group's software.
- * For conditions of distribution and use, see the accompanying README file.
- *
- * This file contains a floating-point implementation of the
- * forward DCT (Discrete Cosine Transform).
- *
- * This implementation should be more accurate than either of the integer
- * DCT implementations. However, it may not give the same results on all
- * machines because of differences in roundoff behavior. Speed will depend
- * on the hardware's floating point capacity.
- *
- * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
- * on each column. Direct algorithms are also available, but they are
- * much more complex and seem not to be any faster when reduced to code.
- *
- * This implementation is based on Arai, Agui, and Nakajima's algorithm for
- * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
- * Japanese, but the algorithm is described in the Pennebaker & Mitchell
- * JPEG textbook (see REFERENCES section in file README). The following code
- * is based directly on figure 4-8 in P&M.
- * While an 8-point DCT cannot be done in less than 11 multiplies, it is
- * possible to arrange the computation so that many of the multiplies are
- * simple scalings of the final outputs. These multiplies can then be
- * folded into the multiplications or divisions by the JPEG quantization
- * table entries. The AA&N method leaves only 5 multiplies and 29 adds
- * to be done in the DCT itself.
- * The primary disadvantage of this method is that with a fixed-point
- * implementation, accuracy is lost due to imprecise representation of the
- * scaled quantization values. However, that problem does not arise if
- * we use floating point arithmetic.
- */
-
-#define JPEG_INTERNALS
-#include "jinclude.h"
-#include "jpeglib.h"
-#include "jdct.h" /* Private declarations for DCT subsystem */
-
-#ifdef DCT_FLOAT_SUPPORTED
-
-
-/*
- * This module is specialized to the case DCTSIZE = 8.
- */
-
-#if DCTSIZE != 8
- Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
-#endif
-
-
-/*
- * Perform the forward DCT on one block of samples.
- */
-
-GLOBAL void
-jpeg_fdct_float (FAST_FLOAT * data)
-{
- FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
- FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
- FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
- FAST_FLOAT *dataptr;
- int ctr;
-
- /* Pass 1: process rows. */
-
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- tmp0 = dataptr[0] + dataptr[7];
- tmp7 = dataptr[0] - dataptr[7];
- tmp1 = dataptr[1] + dataptr[6];
- tmp6 = dataptr[1] - dataptr[6];
- tmp2 = dataptr[2] + dataptr[5];
- tmp5 = dataptr[2] - dataptr[5];
- tmp3 = dataptr[3] + dataptr[4];
- tmp4 = dataptr[3] - dataptr[4];
-
- /* Even part */
-
- tmp10 = tmp0 + tmp3; /* phase 2 */
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
-
- dataptr[0] = tmp10 + tmp11; /* phase 3 */
- dataptr[4] = tmp10 - tmp11;
-
- z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
- dataptr[2] = tmp13 + z1; /* phase 5 */
- dataptr[6] = tmp13 - z1;
-
- /* Odd part */
-
- tmp10 = tmp4 + tmp5; /* phase 2 */
- tmp11 = tmp5 + tmp6;
- tmp12 = tmp6 + tmp7;
-
- /* The rotator is modified from fig 4-8 to avoid extra negations. */
- z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
- z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
- z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
- z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
-
- z11 = tmp7 + z3; /* phase 5 */
- z13 = tmp7 - z3;
-
- dataptr[5] = z13 + z2; /* phase 6 */
- dataptr[3] = z13 - z2;
- dataptr[1] = z11 + z4;
- dataptr[7] = z11 - z4;
-
- dataptr += DCTSIZE; /* advance pointer to next row */
- }
-
- /* Pass 2: process columns. */
-
- dataptr = data;
- for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
- tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
- tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
- tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
- tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
- tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
- tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
- tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
- tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
-
- /* Even part */
-
- tmp10 = tmp0 + tmp3; /* phase 2 */
- tmp13 = tmp0 - tmp3;
- tmp11 = tmp1 + tmp2;
- tmp12 = tmp1 - tmp2;
-
- dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
- dataptr[DCTSIZE*4] = tmp10 - tmp11;
-
- z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
- dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
- dataptr[DCTSIZE*6] = tmp13 - z1;
-
- /* Odd part */
-
- tmp10 = tmp4 + tmp5; /* phase 2 */
- tmp11 = tmp5 + tmp6;
- tmp12 = tmp6 + tmp7;
-
- /* The rotator is modified from fig 4-8 to avoid extra negations. */
- z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
- z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
- z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
- z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
-
- z11 = tmp7 + z3; /* phase 5 */
- z13 = tmp7 - z3;
-
- dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
- dataptr[DCTSIZE*3] = z13 - z2;
- dataptr[DCTSIZE*1] = z11 + z4;
- dataptr[DCTSIZE*7] = z11 - z4;
-
- dataptr++; /* advance pointer to next column */
- }
-}
-
-#endif /* DCT_FLOAT_SUPPORTED */
+/*
+ * jfdctflt.c
+ *
+ * Copyright (C) 1994, Thomas G. Lane.
+ * This file is part of the Independent JPEG Group's software.
+ * For conditions of distribution and use, see the accompanying README file.
+ *
+ * This file contains a floating-point implementation of the
+ * forward DCT (Discrete Cosine Transform).
+ *
+ * This implementation should be more accurate than either of the integer
+ * DCT implementations. However, it may not give the same results on all
+ * machines because of differences in roundoff behavior. Speed will depend
+ * on the hardware's floating point capacity.
+ *
+ * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
+ * on each column. Direct algorithms are also available, but they are
+ * much more complex and seem not to be any faster when reduced to code.
+ *
+ * This implementation is based on Arai, Agui, and Nakajima's algorithm for
+ * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in
+ * Japanese, but the algorithm is described in the Pennebaker & Mitchell
+ * JPEG textbook (see REFERENCES section in file README). The following code
+ * is based directly on figure 4-8 in P&M.
+ * While an 8-point DCT cannot be done in less than 11 multiplies, it is
+ * possible to arrange the computation so that many of the multiplies are
+ * simple scalings of the final outputs. These multiplies can then be
+ * folded into the multiplications or divisions by the JPEG quantization
+ * table entries. The AA&N method leaves only 5 multiplies and 29 adds
+ * to be done in the DCT itself.
+ * The primary disadvantage of this method is that with a fixed-point
+ * implementation, accuracy is lost due to imprecise representation of the
+ * scaled quantization values. However, that problem does not arise if
+ * we use floating point arithmetic.
+ */
+
+#define JPEG_INTERNALS
+#include "jinclude.h"
+#include "jpeglib.h"
+#include "jdct.h" /* Private declarations for DCT subsystem */
+
+#ifdef DCT_FLOAT_SUPPORTED
+
+
+/*
+ * This module is specialized to the case DCTSIZE = 8.
+ */
+
+#if DCTSIZE != 8
+ Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */
+#endif
+
+
+/*
+ * Perform the forward DCT on one block of samples.
+ */
+
+GLOBAL void
+jpeg_fdct_float (FAST_FLOAT * data)
+{
+ FAST_FLOAT tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7;
+ FAST_FLOAT tmp10, tmp11, tmp12, tmp13;
+ FAST_FLOAT z1, z2, z3, z4, z5, z11, z13;
+ FAST_FLOAT *dataptr;
+ int ctr;
+
+ /* Pass 1: process rows. */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ tmp0 = dataptr[0] + dataptr[7];
+ tmp7 = dataptr[0] - dataptr[7];
+ tmp1 = dataptr[1] + dataptr[6];
+ tmp6 = dataptr[1] - dataptr[6];
+ tmp2 = dataptr[2] + dataptr[5];
+ tmp5 = dataptr[2] - dataptr[5];
+ tmp3 = dataptr[3] + dataptr[4];
+ tmp4 = dataptr[3] - dataptr[4];
+
+ /* Even part */
+
+ tmp10 = tmp0 + tmp3; /* phase 2 */
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+
+ dataptr[0] = tmp10 + tmp11; /* phase 3 */
+ dataptr[4] = tmp10 - tmp11;
+
+ z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
+ dataptr[2] = tmp13 + z1; /* phase 5 */
+ dataptr[6] = tmp13 - z1;
+
+ /* Odd part */
+
+ tmp10 = tmp4 + tmp5; /* phase 2 */
+ tmp11 = tmp5 + tmp6;
+ tmp12 = tmp6 + tmp7;
+
+ /* The rotator is modified from fig 4-8 to avoid extra negations. */
+ z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
+ z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
+ z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
+ z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
+
+ z11 = tmp7 + z3; /* phase 5 */
+ z13 = tmp7 - z3;
+
+ dataptr[5] = z13 + z2; /* phase 6 */
+ dataptr[3] = z13 - z2;
+ dataptr[1] = z11 + z4;
+ dataptr[7] = z11 - z4;
+
+ dataptr += DCTSIZE; /* advance pointer to next row */
+ }
+
+ /* Pass 2: process columns. */
+
+ dataptr = data;
+ for (ctr = DCTSIZE-1; ctr >= 0; ctr--) {
+ tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7];
+ tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7];
+ tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6];
+ tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6];
+ tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5];
+ tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5];
+ tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4];
+ tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4];
+
+ /* Even part */
+
+ tmp10 = tmp0 + tmp3; /* phase 2 */
+ tmp13 = tmp0 - tmp3;
+ tmp11 = tmp1 + tmp2;
+ tmp12 = tmp1 - tmp2;
+
+ dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */
+ dataptr[DCTSIZE*4] = tmp10 - tmp11;
+
+ z1 = (tmp12 + tmp13) * ((FAST_FLOAT) 0.707106781); /* c4 */
+ dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */
+ dataptr[DCTSIZE*6] = tmp13 - z1;
+
+ /* Odd part */
+
+ tmp10 = tmp4 + tmp5; /* phase 2 */
+ tmp11 = tmp5 + tmp6;
+ tmp12 = tmp6 + tmp7;
+
+ /* The rotator is modified from fig 4-8 to avoid extra negations. */
+ z5 = (tmp10 - tmp12) * ((FAST_FLOAT) 0.382683433); /* c6 */
+ z2 = ((FAST_FLOAT) 0.541196100) * tmp10 + z5; /* c2-c6 */
+ z4 = ((FAST_FLOAT) 1.306562965) * tmp12 + z5; /* c2+c6 */
+ z3 = tmp11 * ((FAST_FLOAT) 0.707106781); /* c4 */
+
+ z11 = tmp7 + z3; /* phase 5 */
+ z13 = tmp7 - z3;
+
+ dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */
+ dataptr[DCTSIZE*3] = z13 - z2;
+ dataptr[DCTSIZE*1] = z11 + z4;
+ dataptr[DCTSIZE*7] = z11 - z4;
+
+ dataptr++; /* advance pointer to next column */
+ }
+}
+
+#endif /* DCT_FLOAT_SUPPORTED */