summaryrefslogtreecommitdiffstats
path: root/Problem Set 1.page
blob: a58e2dcbc6edcfc801ea11cd1362ca432da708cb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
## Countability

1. Group the following sets according to their cardinality:

    a. $\mathbb{N} = \{ 1,2,3,4,\dots \}$
    - $\mathbb{Z} = \{ \dots, -2, -1,0,1,2, \dots \}$
    - $\mathbb{N} \times \mathbb{N}$
    - $\mathbb{Q}$ = Set of all fractions $\frac{n}{m}$ where $n,m \in \mathbb{Z}$
    - $\mathbb{R}$
    - $(0,1)$
    - $2^{\mathbb{N}}$ = Set of all subsets of $\mathbb{N}$.
    - $2^{\mathbb{R}}$ = Set of all subsets of $\mathbb{R}$.
    - $\mathbb{R}^{\mathbb{R}}$ = Set of all functions from $\mathbb{R}$ to itself.

Cook up other examples and post them on the wiki!

2. Let $X$ be any set.  Show that the cardinality of $2^{X}$ is larger than the cardinality of $X$.  
(Hint: Let $f: X \to 2^X$ be a bijection.  Consider the set of all elements $x \in X$ such that $x$ is not an element of $f(x)$.)


## Fourier Series


1. Compute the Fourier Series of the following functions.  Do both the exponential and sin/cos expansions.
    a. $f(x) = \sin^3(3x)\cos^2(4x)$
    - $g(x) = x(x-2\pi)$  
      (Hint: Use integration by parts)

2. Show that  
$\int_0^{2\pi} \sin^4(x) dx = \frac{3 \pi}{4}$  
(Hint: write out the exponential fourier expansion of $\sin^4(x)$.)

3. Compute the exponential Fourier coefficients of $\sin^2(x)$:  
$a_n = \frac{1}{\sqrt 2\pi} \int_0^{2\pi} \sin^2(x) e^{-inx} dx$  
and use this to show that  
$\int_0^{2\pi} |\sin^2(x)|^2 dx = \sum |a_n|^2.$