summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Fourier Series.page8
1 files changed, 7 insertions, 1 deletions
diff --git a/Fourier Series.page b/Fourier Series.page
index 4ece8ea..d81f78b 100644
--- a/Fourier Series.page
+++ b/Fourier Series.page
@@ -38,8 +38,14 @@ Rearranging,
$\qquad\sin^3(x) = \frac{3\sin(x)-\sin(3x)}{4}$
Substituting back in the former equation, we get
-$\sin(2x).\cos(x) = 2 \sin(x) - 2 [\frac{3\sin(x)-\sin(3x)}{4}]$
+$$
+\begin{array}
+\sin(2x) & = & 2\sin(x) - 2 [\frac{3\sin(x)-\sin(3x)}{4}]\\
+& = & \frac{1}{2}\sin(x) + \frac{1}{2}\sin(3x)\\
+\end{array}
+$$
+
##What is the Fourier series actually?</b>
##Why is Fourier series useful? </b>