diff options
| -rw-r--r-- | ClassJune26.page | 3 | 
1 files changed, 1 insertions, 2 deletions
| diff --git a/ClassJune26.page b/ClassJune26.page index 112eb6c..3724f4e 100644 --- a/ClassJune26.page +++ b/ClassJune26.page @@ -1,4 +1,3 @@ -  Links to Josh's handwritten notes  [link page 1](/L1p1.jpeg) @@ -162,7 +161,7 @@ We can raise complex numbers to powers, divide by the real denominators,  and add them up just fine, so we can exponentiate complex values of  $z$. We know what happens to real values, what happens to pure imaginary  ones? Let $y\in\mathbb{R}$. Then   -$\begin{array}ee^{iy} & = & 1+iy+\frac{(iy)^{2}}{2!}+\frac{(iy)^{3}}{3!}+\frac{(iy)^{4}}{4!}+\frac{(iy)^{5}}{5!}+\cdots\\ +$\begin{array}{}ee^{iy} & = & 1+iy+\frac{(iy)^{2}}{2!}+\frac{(iy)^{3}}{3!}+\frac{(iy)^{4}}{4!}+\frac{(iy)^{5}}{5!}+\cdots\\   & = & 1+iy-\frac{y^{2}}{2!}-i\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+i\frac{y^{5}}{5!}+\cdots\\   & = & (1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}+\cdots)+i(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\cdots)\\   & = & \cos y+i\sin y\end{array}$ | 
