summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Fourier Series.page6
1 files changed, 4 insertions, 2 deletions
diff --git a/Fourier Series.page b/Fourier Series.page
index ab12979..e01fec9 100644
--- a/Fourier Series.page
+++ b/Fourier Series.page
@@ -55,7 +55,7 @@ e^{-i\theta} & = & \cos \theta - i \sin \theta\\
\end{array}{ccl}
$$
-Solving for \cos \theta and \sin \theta\\
+Solving for $\cos \theta$ and $\sin \theta$
$$
\begin{array}{ccl}
@@ -63,7 +63,9 @@ $$
\sin \theta & = & \frac{1}{2i}e^{i\theta} - \frac{1}{2i}e^{-i\theta}\\
\end{array}
$$
-
+
+It is easy to show that any product of cosines and sines can be expressed as the product of exponentials which will reduce to a sum of sines and cosines.
+
##What is the Fourier series actually?</b>
##Why is Fourier series useful? </b>