diff options
author | siveshs <siveshs@gmail.com> | 2010-07-02 18:51:14 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-02 18:51:14 +0000 |
commit | 812f04f58d9740b8222537070de8012ea55acdd2 (patch) | |
tree | 78ab2e630f838e351360f730d81bdcbcb6a03445 | |
parent | d8807f800af54d7d4652f8061a478e18f557d42b (diff) | |
download | afterklein-wiki-812f04f58d9740b8222537070de8012ea55acdd2.tar.gz afterklein-wiki-812f04f58d9740b8222537070de8012ea55acdd2.zip |
section 2 done
-rw-r--r-- | Fourier Series.page | 6 |
1 files changed, 4 insertions, 2 deletions
diff --git a/Fourier Series.page b/Fourier Series.page index ab12979..e01fec9 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -55,7 +55,7 @@ e^{-i\theta} & = & \cos \theta - i \sin \theta\\ \end{array}{ccl} $$ -Solving for \cos \theta and \sin \theta\\ +Solving for $\cos \theta$ and $\sin \theta$ $$ \begin{array}{ccl} @@ -63,7 +63,9 @@ $$ \sin \theta & = & \frac{1}{2i}e^{i\theta} - \frac{1}{2i}e^{-i\theta}\\ \end{array} $$ - + +It is easy to show that any product of cosines and sines can be expressed as the product of exponentials which will reduce to a sum of sines and cosines. + ##What is the Fourier series actually?</b> ##Why is Fourier series useful? </b> |