diff options
-rw-r--r-- | Fourier Series.page | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/Fourier Series.page b/Fourier Series.page index 1298bc9..4da54cf 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -23,7 +23,7 @@ $\qquad\sin(2x) = 2\sin(x)\cos(x)$ Rearranging, $$\begin{array}{ccl} -\sin(2x).\cos(x) & = & (\2\sin(x)\cos(x))\cos(x)\\ +\sin(2x).\cos(x) & = & (2\sin(x)\cos(x))\cos(x)\\ & = & 1+iy-\frac{y^{2}}{2!}-i\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+i\frac{y^{5}}{5!}+\cdots\\ & = & (1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}+\cdots)+i(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\cdots)\\ & = & \cos y+i\sin y\end{array}$$ |