diff options
author | siveshs <siveshs@gmail.com> | 2010-07-02 03:45:19 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-02 03:45:19 +0000 |
commit | 6ad599e9356fba4444c8236e8537a030dc9686c2 (patch) | |
tree | de48a1c89143cc192535ea4b9d709f6d4507df85 | |
parent | 8e66273b1701fe12a436f6e08c41273e0676af89 (diff) | |
download | afterklein-wiki-6ad599e9356fba4444c8236e8537a030dc9686c2.tar.gz afterklein-wiki-6ad599e9356fba4444c8236e8537a030dc9686c2.zip |
still testing
-rw-r--r-- | Fourier Series.page | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/Fourier Series.page b/Fourier Series.page index 1298bc9..4da54cf 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -23,7 +23,7 @@ $\qquad\sin(2x) = 2\sin(x)\cos(x)$ Rearranging, $$\begin{array}{ccl} -\sin(2x).\cos(x) & = & (\2\sin(x)\cos(x))\cos(x)\\ +\sin(2x).\cos(x) & = & (2\sin(x)\cos(x))\cos(x)\\ & = & 1+iy-\frac{y^{2}}{2!}-i\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+i\frac{y^{5}}{5!}+\cdots\\ & = & (1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}+\cdots)+i(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\cdots)\\ & = & \cos y+i\sin y\end{array}$$ |