summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Fourier Series.page2
1 files changed, 2 insertions, 0 deletions
diff --git a/Fourier Series.page b/Fourier Series.page
index 1c00a5b..391a82a 100644
--- a/Fourier Series.page
+++ b/Fourier Series.page
@@ -73,6 +73,8 @@ As a final test to see if the Fourier series really could exist for any periodic
If it is possible to approximate the above function using a sum of sines and cosines, then it can be argued that *any* continuous periodic function can be expressed in a similar way. This is because any function could be expressed as a number of peaks at every position.
It turns out that the above function can be approximated as the sum of two cosines, namely, $\cos^{2n}(x) + cos^{2n+1}(x)$
+![alt text](/cos10x.gif) ![alt text](/cos11x.gif)
+
##What is the Fourier series actually?</b>
##Why is Fourier series useful? </b>