summaryrefslogtreecommitdiffstats
path: root/Fourier Series.page
diff options
context:
space:
mode:
authorsiveshs <siveshs@gmail.com>2010-07-02 20:17:28 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-07-02 20:17:28 +0000
commit9646e2dcec01e75985e3ecad43e1739245a19def (patch)
treee1b05190de77241eb005f55bf38264d8ef946812 /Fourier Series.page
parent17e8c6dfce3f8800c3320bd5c00af75c8d681b2c (diff)
downloadafterklein-wiki-9646e2dcec01e75985e3ecad43e1739245a19def.tar.gz
afterklein-wiki-9646e2dcec01e75985e3ecad43e1739245a19def.zip
section 2 editing
Diffstat (limited to 'Fourier Series.page')
-rw-r--r--Fourier Series.page2
1 files changed, 1 insertions, 1 deletions
diff --git a/Fourier Series.page b/Fourier Series.page
index 391a82a..b16663f 100644
--- a/Fourier Series.page
+++ b/Fourier Series.page
@@ -73,7 +73,7 @@ As a final test to see if the Fourier series really could exist for any periodic
If it is possible to approximate the above function using a sum of sines and cosines, then it can be argued that *any* continuous periodic function can be expressed in a similar way. This is because any function could be expressed as a number of peaks at every position.
It turns out that the above function can be approximated as the sum of two cosines, namely, $\cos^{2n}(x) + cos^{2n+1}(x)$
-![alt text](/cos10x.gif) ![alt text](/cos11x.gif)
+<center>![alt text](/cos10x.gif) ![alt text](/cos11x.gif) </center>
##What is the Fourier series actually?</b>