summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorluccul <luccul@gmail.com>2010-07-06 06:51:34 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-07-06 06:51:34 +0000
commitf821a0e513387167f5c5616f4f3199790ef6ab16 (patch)
treee7d1e142017f5fed745d266567dd58b0a9d36902
parent760ec9515274f7ce7eb9251f0900071e9034e426 (diff)
downloadafterklein-wiki-f821a0e513387167f5c5616f4f3199790ef6ab16.tar.gz
afterklein-wiki-f821a0e513387167f5c5616f4f3199790ef6ab16.zip
add pi^2/6 problem
-rw-r--r--Problem Set 3.page3
1 files changed, 3 insertions, 0 deletions
diff --git a/Problem Set 3.page b/Problem Set 3.page
index b1011b9..9504969 100644
--- a/Problem Set 3.page
+++ b/Problem Set 3.page
@@ -43,4 +43,7 @@ $$ f(z + 2\pi) = f(z) $$
$$ f(z + \tau) = f(z) $$
(Such a function is said to be doubly periodic). Show that $f$ is constant. Hint: Write down holomorphic Fourier series for $f(z)$ and $f(z+\tau)$, and compare their Fourier coefficients.
+11. Compute the Fourier coefficients of the function $f(x) = \frac{1}{2} - \frac{x}{\pi}$ and use this to show that
+$$ \sum_{n = 1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} $$
+
# Solutions