diff options
author | luccul <luccul@gmail.com> | 2010-07-06 06:51:34 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-06 06:51:34 +0000 |
commit | f821a0e513387167f5c5616f4f3199790ef6ab16 (patch) | |
tree | e7d1e142017f5fed745d266567dd58b0a9d36902 | |
parent | 760ec9515274f7ce7eb9251f0900071e9034e426 (diff) | |
download | afterklein-wiki-f821a0e513387167f5c5616f4f3199790ef6ab16.tar.gz afterklein-wiki-f821a0e513387167f5c5616f4f3199790ef6ab16.zip |
add pi^2/6 problem
-rw-r--r-- | Problem Set 3.page | 3 |
1 files changed, 3 insertions, 0 deletions
diff --git a/Problem Set 3.page b/Problem Set 3.page index b1011b9..9504969 100644 --- a/Problem Set 3.page +++ b/Problem Set 3.page @@ -43,4 +43,7 @@ $$ f(z + 2\pi) = f(z) $$ $$ f(z + \tau) = f(z) $$ (Such a function is said to be doubly periodic). Show that $f$ is constant. Hint: Write down holomorphic Fourier series for $f(z)$ and $f(z+\tau)$, and compare their Fourier coefficients. +11. Compute the Fourier coefficients of the function $f(x) = \frac{1}{2} - \frac{x}{\pi}$ and use this to show that +$$ \sum_{n = 1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} $$ + # Solutions |