summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorjoshuab <>2010-06-30 20:26:13 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-06-30 20:26:13 +0000
commitd4e4095fe79a0b7dee17316129f1ae1fe09a23a3 (patch)
tree308e9458a6ed55cdd9155b4f4e5a180825c0b5c4
parent88c0bddefd9faf5844c6b37b7b8637f3d082b0dd (diff)
downloadafterklein-wiki-d4e4095fe79a0b7dee17316129f1ae1fe09a23a3.tar.gz
afterklein-wiki-d4e4095fe79a0b7dee17316129f1ae1fe09a23a3.zip
created
-rw-r--r--Problem Set 2.page37
1 files changed, 37 insertions, 0 deletions
diff --git a/Problem Set 2.page b/Problem Set 2.page
new file mode 100644
index 0000000..9ea5399
--- /dev/null
+++ b/Problem Set 2.page
@@ -0,0 +1,37 @@
+## Countability
+
+1. Group the following sets according to their cardinality:
+
+ a. $\mathbb{N} = \{ 1,2,3,4,\dots \}$
+ - $\mathbb{Z} = \{ \dots, -2, -1,0,1,2, \dots \}$
+ - $\mathbb{N} \times \mathbb{N}$
+ - $\mathbb{Q}$ = Set of all fractions $\frac{n}{m}$ where $n,m \in \mathbb{Z}$
+ - $\mathbb{R}$
+ - The open interval $(0,1)$
+ - The closed interval $[0,1]$
+ - $2^{\mathbb{N}}$ = Set of all subsets of $\mathbb{N}$.
+ - $2^{\mathbb{R}}$ = Set of all subsets of $\mathbb{R}$.
+ - $\mathbb{R}^{\mathbb{R}}$ = Set of all functions from $\mathbb{R}$ to itself.
+
+Cook up other examples and post them on the wiki!
+
+2. Let $X$ be any set. Show that the cardinality of $2^{X}$ is larger than the cardinality of $X$.
+(Hint: Let $f: X \to 2^X$ be a bijection. Consider the set of all elements $x \in X$ such that $x$ is not an element of $f(x)$.)
+
+
+## Fourier Series
+
+
+1. Compute the Fourier Series of the following functions. Do both the exponential and sin/cos expansions.
+ a. $f(x) = \sin^3(3x)\cos^2(4x)$
+ - $g(x) = x(x-2\pi)$
+ (Hint: Use integration by parts)
+
+2. Show that
+$\int_0^{2\pi} \sin^4(x) dx = \frac{3 \pi}{4}$
+(Hint: write out the exponential fourier expansion of $\sin^4(x)$.)
+
+3. Compute the exponential Fourier coefficients of $\sin^2(x)$:
+$a_n = \frac{1}{\sqrt 2\pi} \int_0^{2\pi} \sin^2(x) e^{-inx} dx$
+and use this to show that
+$\int_0^{2\pi} |\sin^2(x)|^2 dx = \sum |a_n|^2.$