diff options
author | Opheliar99 <> | 2010-07-04 04:31:03 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-04 04:31:03 +0000 |
commit | d406b157e8e83ef13288d6bce42e1ecf6f1f4cb6 (patch) | |
tree | 2fab570cc458bb11d723aabbf30873c9a24f7abc | |
parent | 9c223d0261fd2975b1d0a8ec60718d85bf683224 (diff) | |
download | afterklein-wiki-d406b157e8e83ef13288d6bce42e1ecf6f1f4cb6.tar.gz afterklein-wiki-d406b157e8e83ef13288d6bce42e1ecf6f1f4cb6.zip |
posted solutions of 2 and 3 in pset2
-rw-r--r-- | Problem Set 2.page | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/Problem Set 2.page b/Problem Set 2.page index a64e4c9..63e60ad 100644 --- a/Problem Set 2.page +++ b/Problem Set 2.page @@ -44,7 +44,7 @@ $\sin x = \frac{e^{ix}-e^{-ix}}{2}$, $\sin^4 x = \frac{{( e^{ix}-e^{-ix} )}^4}{16}$ $= \frac{e^{i 4x}+e^{-i 4x}-4 e^{i 2x} -4 e^{-i 2x}+6}{16}$. -// + If we express any periodic function $f(x)$ as $f(x) = \sum a_n f_n(x)$, where $f_n(x) = \frac{e^{inx}}{\sqrt{2\pi}}$ and $f_0(x) = \frac{1}{\sqrt{2\pi}}$, |