diff options
author | joshuab <> | 2010-06-30 20:20:30 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-06-30 20:20:30 +0000 |
commit | c92c58d1539e2c46109998bee74b7392f587a9e9 (patch) | |
tree | 8ace766db37a79437e1cdd18b54b299d06ff43b1 | |
parent | 106f0d60f28b21aa85abdee3fd9b1abdd163a465 (diff) | |
download | afterklein-wiki-c92c58d1539e2c46109998bee74b7392f587a9e9.tar.gz afterklein-wiki-c92c58d1539e2c46109998bee74b7392f587a9e9.zip |
trying to fix integrals
-rw-r--r-- | Problem Set 1.page | 4 |
1 files changed, 2 insertions, 2 deletions
diff --git a/Problem Set 1.page b/Problem Set 1.page index 7457222..7df1501 100644 --- a/Problem Set 1.page +++ b/Problem Set 1.page @@ -29,6 +29,6 @@ $\int_0^{2\pi} \sin^4(x) dx = \frac{3 \pi}{4} $ (Hint: write out the exponential fourier expansion of $\sin^4(x)$.) 3. Compute the exponential Fourier coefficients of $\sin^2(x)$: -$a_n = \frac{1}{\sqrt(2\pi)} \int_0^{2\pi} sin^2(x) e^{-inx} dx $ +$a_n = \frac{1}{\sqrt(2\pi)} \int_0^{2\pi} sin^2(x) e^{-inx} dx$ and use this to show that -$\int_0^{2\pi} |\sin^2(x)|^2 dx = \sum |a_n|^2 $ +$\int_0^{2\pi} |\sin^2(x)|^2 dx = \sum |a_n|^2$ |