diff options
author | joshuab <> | 2010-06-29 15:22:56 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-06-29 15:22:56 +0000 |
commit | bce1315f07aa8377378cbd938761d9accaf64649 (patch) | |
tree | 1dbdb85dafdc9be11c4f8c1c794fb383a6b485d9 | |
parent | c2bd2ecbfadd29cdd42952a9c5abda530322ecea (diff) | |
download | afterklein-wiki-bce1315f07aa8377378cbd938761d9accaf64649.tar.gz afterklein-wiki-bce1315f07aa8377378cbd938761d9accaf64649.zip |
tex
-rw-r--r-- | ClassJune26.page | 20 |
1 files changed, 10 insertions, 10 deletions
diff --git a/ClassJune26.page b/ClassJune26.page index 8b14dc1..b28d40e 100644 --- a/ClassJune26.page +++ b/ClassJune26.page @@ -146,26 +146,26 @@ look like? PICTURE. Another key example is the exponential map. Recall the power series for $e^{z}$: -\[ -e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\frac{z^{4}}{4!}+\frac{z^{5}}{5!}+\cdots\] +$e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\frac{z^{4}}{4!}+\frac{z^{5}}{5!}+\cdots$ + We can raise complex numbers to powers, divide by the real denominators, and add them up just fine, so we can exponentiate complex values of $z$. We know what happens to real values, what happens to pure imaginary -ones? Let $y\in\mathbb{R}$. Then \begin{eqnarray*} -e^{iy} & = & 1+iy+\frac{(iy)^{2}}{2!}+\frac{(iy)^{3}}{3!}+\frac{(iy)^{4}}{4!}+\frac{(iy)^{5}}{5!}+\cdots\\ - & = & 1+iy-\frac{y^{2}}{2!}-i\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+i\frac{y^{5}}{5!}+\cdots\\ - & = & (1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}+\cdots)+i(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\cdots)\\ - & = & \cos y+i\sin y\end{eqnarray*} +ones? Let $y\in\mathbb{R}$. Then +$\begin{array}e^{iy} & = & 1+iy+\frac{(iy)^{2}}{2!}+\frac{(iy)^{3}}{3!}+\frac{(iy)^{4}}{4!}+\frac{(iy)^{5}}{5!}+\cdots + & = & 1+iy-\frac{y^{2}}{2!}-i\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+i\frac{y^{5}}{5!}+\cdots + & = & (1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}+\cdots)+i(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\cdots) + & = & \cos y+i\sin y\end{array}$ -Substituting $y=\pi$, we recover Euler's famous identity,\[ -e^{i\pi}=-1.\] +Substituting $y=\pi$, we recover Euler's famous identity, +$e^{i\pi}=-1.$ Given a real argument $y$, the $e^{iy}$ gives the unit vector with that argument. Given an arbitrary complex number $z=x+iy$, it's exponnt $e^{z}$ is the complex number with magnitude $e^{x}$ and angle $y$ radians. -What does $z\rightsquigarrow e^{z}$ look like? Periodic in the $i$ +What does $z\mapsto e^{z}$ look like? Periodic in the $i$ direction with period $2\pi$. Takes a horizontal strip and wraps it around, forming an annulus. PICTURE. |