diff options
author | siveshs <siveshs@gmail.com> | 2010-07-03 04:04:31 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-03 04:04:31 +0000 |
commit | b98a02a8b8a5047eb560c2dca65aa6dfb8e83dc5 (patch) | |
tree | 5ecb4df8e001268e7cda4406dcb2d0ea69a4a066 | |
parent | 3b8d0f586e66a0731edb78a90bfa9f348850e15d (diff) | |
download | afterklein-wiki-b98a02a8b8a5047eb560c2dca65aa6dfb8e83dc5.tar.gz afterklein-wiki-b98a02a8b8a5047eb560c2dca65aa6dfb8e83dc5.zip |
section 3 editing
-rw-r--r-- | Fourier Series.page | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/Fourier Series.page b/Fourier Series.page index be19840..ca5c6c3 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -98,7 +98,7 @@ We now proceed to define certain operations on these functions in Hilbert space. $$ \begin{array}{ccl} inner product, (f,g) & = & \int_0^{2\pi} f g dx\\ -\mid f \mid ^2 = (f, f) & = & \int_0^{2\pi} f^2 dx\\ +\mid f \mid ^2 = (f, f) & = & \int_0^{2\pi} f^2 \,dx\\ \end{array} $$ |