summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorjoshuab <>2010-07-08 02:56:45 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-07-08 02:56:45 +0000
commitb8fe1b1c707ebd1a6c92fc8fbe88f476eac57991 (patch)
tree94da441917f18635bd56530e8a6ee7ea485c62f2
parentf4c035e1e4969e36e507dfa8b35a98a2564f95ff (diff)
downloadafterklein-wiki-b8fe1b1c707ebd1a6c92fc8fbe88f476eac57991.tar.gz
afterklein-wiki-b8fe1b1c707ebd1a6c92fc8fbe88f476eac57991.zip
formatting
-rw-r--r--ClassJune28.page2
1 files changed, 1 insertions, 1 deletions
diff --git a/ClassJune28.page b/ClassJune28.page
index 2190bb7..2a7065f 100644
--- a/ClassJune28.page
+++ b/ClassJune28.page
@@ -6,7 +6,7 @@
A Fourier series is a function of the form $\sum_{n=-\infty}^\infty a_n e^{inx}$ or $\sum_{n=-\infty}^\infty b_n \cos(n x) + c_n \sin (n x)$, depending on one's taste for the imaginary. The rumor on the street is that any periodic function (well, any nice one) can be expressed as a Fourier series: you hand me a function $f:[0,2\pi]\rightarrow \mathbb{C}$ and I hand you a list of real numbers $b_0,c_0,b_1,c_1,b_2,c_2,b_3,c_3,\dots$ such that
-$f(x) = \sum_{n=-\infty}^\infty b_n \cos(n x) + c_n \sin (n x).$
+$$f(x) = \sum_{n=-\infty}^\infty b_n \cos(n x) + c_n \sin (n x).$$
If this exchange is always possible, there must be at least as many different lists of real numbers as there are nice periodic functions. So how many are there of each?