diff options
author | siveshs <siveshs@gmail.com> | 2010-07-02 03:09:25 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-02 03:09:25 +0000 |
commit | b8916c076a2f43dcc727e7e28f57bab76eef5885 (patch) | |
tree | 192a4b0481e705da5c8227f94d7c4cbacd921ad9 | |
parent | 229bcb5e4f2ab7c82c5d944783af526411907280 (diff) | |
download | afterklein-wiki-b8916c076a2f43dcc727e7e28f57bab76eef5885.tar.gz afterklein-wiki-b8916c076a2f43dcc727e7e28f57bab76eef5885.zip |
still testing
-rw-r--r-- | Fourier Series.page | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/Fourier Series.page b/Fourier Series.page index 8e0732c..a46cf95 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -6,9 +6,9 @@ We first begin with a few basic identities on the size of sets. Show that the se ##Why Fourier series is plausible?</b> To show that Fourier series is plausible, let us consider some arbitrary trignometric functions and see if it is possible to express them as the sum of sines and cosines: - $1. \cos(2x) = 1 - 2 \sin^2(x) -\therefore \sin^2(x) = 1/2 - \cos(2x)/2 -$ + $1. \cos(2x) = 1 - 2 \sin^2(x)$ +$\therefore \sin^2(x) = 1/2 - \cos(2x)/2$ + ##What is the Fourier series actually?</b> |