diff options
author | joshuab <> | 2010-06-30 20:18:53 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-06-30 20:18:53 +0000 |
commit | b37915ea3530f61fddd245e4331d944a61303d58 (patch) | |
tree | 5fc8a9eb71ce183f6cc7648c15421404d8434453 | |
parent | 426ea8f03ba5019c074d51c387b72bf520a85b2c (diff) | |
download | afterklein-wiki-b37915ea3530f61fddd245e4331d944a61303d58.tar.gz afterklein-wiki-b37915ea3530f61fddd245e4331d944a61303d58.zip |
trying to fix integrals
-rw-r--r-- | Problem Set 1.page | 10 |
1 files changed, 5 insertions, 5 deletions
diff --git a/Problem Set 1.page b/Problem Set 1.page index 88ec240..d77e2eb 100644 --- a/Problem Set 1.page +++ b/Problem Set 1.page @@ -1,5 +1,5 @@ ## Countability - +$\int f(x)$ 1. Group the following sets according to their cardinality: a. $\mathbb{N} = \{ 1,2,3,4,\dots \}$ @@ -25,10 +25,10 @@ Cook up other examples and post them on the wiki! - $g(x) = x(x-2\pi)$ (Hint: Use integration by parts) 2. Show that -$\int_0^{2\pi} sin^4(x) dx = \frac{3 \pi}{4} $ -(Hint: write out the exponential fourier expansion of $sin^4(x)$.) +$\int_0^{2\pi} \sin^4(x) dx = \frac{3 \pi}{4} $ +(Hint: write out the exponential fourier expansion of $\sin^4(x)$.) -3. Compute the exponential Fourier coefficients of $sin^2(x)$: +3. Compute the exponential Fourier coefficients of $\sin^2(x)$: $a_n = \frac{1}{\sqrt(2\pi)} \int_0^{2\pi} sin^2(x) e^{-inx} dx $ and use this to show that -$\int_0^{2\pi} |sin^2(x)|^2 dx = \sum |a_n|^2 $ +$\int_0^{2\pi} |\sin^2(x)|^2 dx = \sum |a_n|^2 $ |