diff options
author | Opheliar99 <> | 2010-07-04 04:09:15 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-04 04:09:15 +0000 |
commit | affb42424db9b15740145cd7ba1f323b082126b5 (patch) | |
tree | b63b6aef6dd24a7ec310bc43fa388e8fad2cc962 | |
parent | feffa8323b8f71ff31fe0042ec541bf91d6bab58 (diff) | |
download | afterklein-wiki-affb42424db9b15740145cd7ba1f323b082126b5.tar.gz afterklein-wiki-affb42424db9b15740145cd7ba1f323b082126b5.zip |
posted solutions of 2 and 3 in pset2
-rw-r--r-- | Problem Set 2.page | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/Problem Set 2.page b/Problem Set 2.page index aadb1f6..3f1a214 100644 --- a/Problem Set 2.page +++ b/Problem Set 2.page @@ -40,7 +40,7 @@ $\int_0^{2\pi} |\sin^2(x)|^2 dx = \sum |a_n|^2.$ 2. Since $\sin x = \frac{e^{ix}-e^{-ix}}{2}$, -$\sin^4 x = \frac{{( e^{ix}-e^{-ix} )}^4}{16}$, +$ \sin^4 x = \frac{{( e^{ix}-e^{-ix} )}^4}{16}$, $ = \frac{e^{i 4x}+e^{-i 4x}-4 e^{i 2x} -4 e^{-i 2x}+6}{16}$. If we express any periodic function $f(x)$ as |