diff options
author | luccul <luccul@gmail.com> | 2010-07-11 00:47:55 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-11 00:47:55 +0000 |
commit | ab0506357517828c769ea7bf9eb5aa25375e97ff (patch) | |
tree | 1658f614c3599101f476ff1bac0f059acb0407e7 | |
parent | 746e44533d73d61b2a9b63b11a2782fd1016bdc1 (diff) | |
download | afterklein-wiki-ab0506357517828c769ea7bf9eb5aa25375e97ff.tar.gz afterklein-wiki-ab0506357517828c769ea7bf9eb5aa25375e97ff.zip |
formatting formula
-rw-r--r-- | ClassJuly5.page | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/ClassJuly5.page b/ClassJuly5.page index 9af2b85..7e19aff 100644 --- a/ClassJuly5.page +++ b/ClassJuly5.page @@ -75,4 +75,4 @@ How do we know that the Fourier series of a square wave or sawtooth function con The answer to this question depends greatly on the type of convergence desired. Aside from the convergence we already proved, the next easiest type of convergence is $L^2$ or root-mean-square convergence. The formal statement is that -$$ \lim_{N \to \infty} \sqrt{\int_0^{2\pi} | \sum_{n = - N}^N c_n e^{in\theta} - f(\theta) |^2} = 0 $$
\ No newline at end of file +$$ \lim_{N \to \infty} \sqrt{\int_0^{2\pi} \left| \sum_{n = - N}^N c_n e^{in\theta} - f(\theta) \right|^2} = 0 $$
\ No newline at end of file |