summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorluccul <luccul@gmail.com>2010-07-11 00:47:55 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-07-11 00:47:55 +0000
commitab0506357517828c769ea7bf9eb5aa25375e97ff (patch)
tree1658f614c3599101f476ff1bac0f059acb0407e7
parent746e44533d73d61b2a9b63b11a2782fd1016bdc1 (diff)
downloadafterklein-wiki-ab0506357517828c769ea7bf9eb5aa25375e97ff.tar.gz
afterklein-wiki-ab0506357517828c769ea7bf9eb5aa25375e97ff.zip
formatting formula
-rw-r--r--ClassJuly5.page2
1 files changed, 1 insertions, 1 deletions
diff --git a/ClassJuly5.page b/ClassJuly5.page
index 9af2b85..7e19aff 100644
--- a/ClassJuly5.page
+++ b/ClassJuly5.page
@@ -75,4 +75,4 @@ How do we know that the Fourier series of a square wave or sawtooth function con
The answer to this question depends greatly on the type of convergence desired. Aside from the convergence we already proved, the next easiest type of convergence is $L^2$ or root-mean-square convergence. The formal statement is that
-$$ \lim_{N \to \infty} \sqrt{\int_0^{2\pi} | \sum_{n = - N}^N c_n e^{in\theta} - f(\theta) |^2} = 0 $$ \ No newline at end of file
+$$ \lim_{N \to \infty} \sqrt{\int_0^{2\pi} \left| \sum_{n = - N}^N c_n e^{in\theta} - f(\theta) \right|^2} = 0 $$ \ No newline at end of file