diff options
| author | siveshs <siveshs@gmail.com> | 2010-07-03 04:01:12 +0000 | 
|---|---|---|
| committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-03 04:01:12 +0000 | 
| commit | 7f185607aa1450a4c249b86f4f826003fe500699 (patch) | |
| tree | d30f85f4c8863c35115cf4610c46cb745ac58109 | |
| parent | a30d0db37fa80a7a75666072dbf637b465e41d22 (diff) | |
| download | afterklein-wiki-7f185607aa1450a4c249b86f4f826003fe500699.tar.gz afterklein-wiki-7f185607aa1450a4c249b86f4f826003fe500699.zip | |
section 3 editing
| -rw-r--r-- | Fourier Series.page | 2 | 
1 files changed, 1 insertions, 1 deletions
| diff --git a/Fourier Series.page b/Fourier Series.page index 1968cf7..7ef6ab5 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -98,7 +98,7 @@ We now proceed to define certain operations on these functions in Hilbert space.  $$  \begin{array}{ccl}  inner product, (f,g) & = & \int_0^{2\pi} f g dx\\ -\mid f \mid ^2  =  (f, f) & = & \int_0^{2\pi} f^2 dx\\ +\mid f \mid ^2 $ =  (f, f) & = & \int_0^{2\pi} f^2 dx\\  \end{array}  $$ | 
