summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorluccul <luccul@gmail.com>2010-07-04 19:53:39 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-07-04 19:53:39 +0000
commit7e25667dea286052527e96bfc43f12aa08f7fd3b (patch)
treef79d30e98a89faa314b9fc8f68bb01bb41a892e9
parent1db3e56bce88b7d8e99cd18a69a714c817bd5e7d (diff)
downloadafterklein-wiki-7e25667dea286052527e96bfc43f12aa08f7fd3b.tar.gz
afterklein-wiki-7e25667dea286052527e96bfc43f12aa08f7fd3b.zip
more formatting/editing
-rw-r--r--Problem Set 2.page27
1 files changed, 11 insertions, 16 deletions
diff --git a/Problem Set 2.page b/Problem Set 2.page
index 5ba4b65..b4a7e19 100644
--- a/Problem Set 2.page
+++ b/Problem Set 2.page
@@ -61,34 +61,29 @@ $$ \begin{array}{ccl} \int_0^{2\pi} \sin^4(x) dx = <1, f> &=& \sqrt{2\pi} \times
&=& \frac{3 \pi}{4} \end{array} $$
-3. Since $\sin x = \frac{e^{ix}-e^{-ix}}{2}$,
+3. Since $\sin x = \frac{e^{ix}-e^{-ix}}{2}$, $\sin^2 x = \frac{e^{i 2x}+e^{-i 2x}-2}{4}$, and therefore,
-$\sin^2 x = \frac{e^{i 2x}+e^{-i 2x}-2}{4}$
+$$\begin{array}{ccl} a_m &=& \frac{1}{\sqrt 2\pi} \int_0^{2\pi} \sin^2(x) e^{-imx} dx \\
-$a_m = \frac{1}{\sqrt 2\pi} \int_0^{2\pi} \sin^2(x) e^{-imx} dx$
-
-$= \frac{1}{\sqrt 2\pi} \int_0^{2\pi} \frac{e^{i 2x}+e^{-i 2x}-2}{4} e^{-imx} dx$
-
-$= \frac{1}{\sqrt 2\pi} \int_0^{2\pi} \frac{e^{-i (m-2)x}+e^{-i (m+2)x}-2e^{-imx}}{4} dx$.
+&=& \frac{1}{\sqrt 2\pi} \int_0^{2\pi} \frac{e^{i 2x}+e^{-i 2x}-2}{4} e^{-imx} dx \\
+&=& \frac{1}{\sqrt 2\pi} \int_0^{2\pi} \frac{e^{-i (m-2)x}+e^{-i (m+2)x}-2e^{-imx}}{4} dx. \\
Because $\int_0^{2\pi} e^{inx} dx = 2\pi$ for $n = 0$ and $\int_0^{2\pi} e^{inx} dx = 0$ for $n \neq 0$,
-$m = 2 : a_m = \frac{1}{4 \sqrt{2\pi}} \times 2\pi = \sqrt{2\pi}/4$,
-
-$m = 0 : a_m = \frac{1}{4 \sqrt{2\pi}} \times 2\pi \times (-2) = - \sqrt{2\pi}/2$,
+$$m = 2 : a_m = \frac{1}{4 \sqrt{2\pi}} \times 2\pi = \sqrt{2\pi}/4,$$
-$m = -2 : a_m = \frac{1}{4 \sqrt{2\pi}} \times 2\pi = \sqrt{2\pi}/4$,
+$$m = 0 : a_m = \frac{1}{4 \sqrt{2\pi}} \times 2\pi \times (-2) = - \frac{\sqrt{2\pi}{2},$$
-Then,
+$$m = -2 : a_m = \frac{1}{4 \sqrt{2\pi}} \times 2\pi = \frac{\sqrt{2\pi}}{4},$$
-$\sum |a_n|^2 = {(\sqrt{2\pi}/4)}^2 + {(- \sqrt{2\pi}/2)}^2 + {(\sqrt{2\pi}/4)}^2 = \frac{3 \pi}{4}$.
+It follows that
-And, it was shown in Prob 2 that $\int_0^{2\pi} \sin^4(x) dx = \frac{3 \pi}{4}$.
+$$\sum |a_n|^2 = {(\sqrt{2\pi}/4)}^2 + {(- \sqrt{2\pi}/2)}^2 + {(\sqrt{2\pi}/4)}^2 = \frac{3 \pi}{4}$$.
-Therefore,
+It was shown in Prob 2 that $\int_0^{2\pi} \sin^4(x) dx = \frac{3 \pi}{4}$, so therefore,
-$\int_0^{2\pi} \sin^4(x) dx = \sum |a_n|^2 = \frac{3 \pi}{4}$
+$$\int_0^{2\pi} \sin^4(x) dx = \sum |a_n|^2 = \frac{3 \pi}{4}$$