diff options
author | joshuab <> | 2010-06-30 19:46:02 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-06-30 19:46:02 +0000 |
commit | 69d07c77b0de12a2d268418f9a67395280a730c4 (patch) | |
tree | 158a8a41a4d2030e766a2db784bcb8c08edafb2a | |
parent | 7ad7e0d22581d43e60f493bec15ce9a49978420f (diff) | |
download | afterklein-wiki-69d07c77b0de12a2d268418f9a67395280a730c4.tar.gz afterklein-wiki-69d07c77b0de12a2d268418f9a67395280a730c4.zip |
trying to fix ints
-rw-r--r-- | Problem Set 1.page | 6 |
1 files changed, 3 insertions, 3 deletions
diff --git a/Problem Set 1.page b/Problem Set 1.page index eb2c6e7..eb0a758 100644 --- a/Problem Set 1.page +++ b/Problem Set 1.page @@ -25,10 +25,10 @@ Cook up other examples and post them on the wiki! - $g(x) = x(x-2\pi)$ (Hint: Use integration by parts) 2. Show that -$ \int_0^{2\pi} sin^4(x) dx = \frac{3 \pi}{4} $ +$\int_0^{2\pi} sin^4(x) dx = \frac{3 \pi}{4} $ (Hint: write out the exponential fourier expansion of $sin^4(x)$.) 3. Compute the exponential Fourier coefficients of $sin^2(x)$: -$ a_n = \frac{1}{\sqrt(2\pi)} \int_0^{2\pi} sin^2(x) e^{-inx} dx $ +$a_n = \frac{1}{\sqrt(2\pi)} \int_0^{2\pi} sin^2(x) e^{-inx} dx $ and use this to show that -$ \int_0^{2\pi} |sin^2(x)|^2 dx = \sum |a_n|^2 $ +$\int_0^{2\pi} |sin^2(x)|^2 dx = \sum |a_n|^2 $ |