summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorjoshuab <>2010-06-30 19:46:02 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-06-30 19:46:02 +0000
commit69d07c77b0de12a2d268418f9a67395280a730c4 (patch)
tree158a8a41a4d2030e766a2db784bcb8c08edafb2a
parent7ad7e0d22581d43e60f493bec15ce9a49978420f (diff)
downloadafterklein-wiki-69d07c77b0de12a2d268418f9a67395280a730c4.tar.gz
afterklein-wiki-69d07c77b0de12a2d268418f9a67395280a730c4.zip
trying to fix ints
-rw-r--r--Problem Set 1.page6
1 files changed, 3 insertions, 3 deletions
diff --git a/Problem Set 1.page b/Problem Set 1.page
index eb2c6e7..eb0a758 100644
--- a/Problem Set 1.page
+++ b/Problem Set 1.page
@@ -25,10 +25,10 @@ Cook up other examples and post them on the wiki!
- $g(x) = x(x-2\pi)$ (Hint: Use integration by parts)
2. Show that
-$ \int_0^{2\pi} sin^4(x) dx = \frac{3 \pi}{4} $
+$\int_0^{2\pi} sin^4(x) dx = \frac{3 \pi}{4} $
(Hint: write out the exponential fourier expansion of $sin^4(x)$.)
3. Compute the exponential Fourier coefficients of $sin^2(x)$:
-$ a_n = \frac{1}{\sqrt(2\pi)} \int_0^{2\pi} sin^2(x) e^{-inx} dx $
+$a_n = \frac{1}{\sqrt(2\pi)} \int_0^{2\pi} sin^2(x) e^{-inx} dx $
and use this to show that
-$ \int_0^{2\pi} |sin^2(x)|^2 dx = \sum |a_n|^2 $
+$\int_0^{2\pi} |sin^2(x)|^2 dx = \sum |a_n|^2 $