summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorjoshuab <>2010-06-30 19:05:49 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-06-30 19:05:49 +0000
commit5c955d99061fb0d505de7e86776f7ecedbf1cc74 (patch)
tree906c22babe22c70e1d07aa39124a1d959c0ba0ad
parent50af045db4a2ed18dca34909c3e7a65463565103 (diff)
downloadafterklein-wiki-5c955d99061fb0d505de7e86776f7ecedbf1cc74.tar.gz
afterklein-wiki-5c955d99061fb0d505de7e86776f7ecedbf1cc74.zip
Added Problems
-rw-r--r--Problem Set 1.page34
1 files changed, 34 insertions, 0 deletions
diff --git a/Problem Set 1.page b/Problem Set 1.page
new file mode 100644
index 0000000..a68109f
--- /dev/null
+++ b/Problem Set 1.page
@@ -0,0 +1,34 @@
+## Countability
+
+1. Group the following sets according to their cardinality:
+
+ - $\mathbb{N} = \{ 1,2,3,4,\dots \}$
+ - $\mathbb{Z} = \{ \dots, -2, -1,0,1,2, \dots \}$
+ - $\mathbb{N} \times \mathbb{N}$
+ - $\mathbb{Q}$ = Set of all fractions $\frac{n}{m}$ where $n,m \in \mathbb{Z}$
+ - $\mathbb{R}$
+ - $(0,1)$
+ - $2^{\mathbb{N}}$ = Set of all subsets of $\mathbb{N}$.
+ - $2^{\mathbb{R}}$ = Set of all subsets of $\mathbb{R}$.
+ - $\mathbb{R}^{\mathbb{R}}$ = Set of all functions from $\mathbb{R}$ to itself.
+
+Cook up other examples and post them on the wiki!
+
+2. Let $X$ be any set. Show that the cardinality of $2^{X}$ is larger than the cardinality of $X$. Hint: Let $f: X \to 2^X$ be a bijection. Consider the set of all elements $x \in X$ such that $x$ is not an element of $f(x)$.
+
+
+## Fourier Series
+
+
+1. Compute the Fourier Series of the following functions. Do both the exponential and sin/cos expansions.
+- $f(x) = sin^3(3x)cos^2(4x)$
+- $g(x) = x(x-2\pi)$ (Hint: Use integration by parts)
+
+2. Show that
+$ \int_0^{2\pi} sin^4(x) dx = \frac{3 \pi}{4} $
+(Hint: write out the exponential fourier expansion of $sin^4(x)$.)
+
+3. Compute the exponential Fourier coefficients of $sin^2(x)$:
+$ a_n = \frac{1}{\sqrt(2\pi)} \int_0^{2\pi} sin^2(x) e^{-inx} dx $
+and use this to show that
+$ \int_0^{2\pi} |sin^2(x)|^2 dx = \sum |a_n|^2 $