diff options
author | luccul <luccul@gmail.com> | 2010-07-13 14:01:39 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-13 14:01:39 +0000 |
commit | 57baf7790e322a31fb04d0337444c7f21def0dec (patch) | |
tree | 38e03c9f2e0d74de43944817adced246d4b44462 | |
parent | 65c0d756bd0430c7cad535dd935cd37ef9465ef6 (diff) | |
download | afterklein-wiki-57baf7790e322a31fb04d0337444c7f21def0dec.tar.gz afterklein-wiki-57baf7790e322a31fb04d0337444c7f21def0dec.zip |
formatting
-rw-r--r-- | Problem Set 3.page | 8 |
1 files changed, 4 insertions, 4 deletions
diff --git a/Problem Set 3.page b/Problem Set 3.page index 8f9876b..e5bac92 100644 --- a/Problem Set 3.page +++ b/Problem Set 3.page @@ -61,13 +61,13 @@ $$ \frac{\partial f}{\partial r} = \frac{\partial f}{\partial x}\frac{\partial x together with the Cauchy-Riemann equations in rectangular coordinates. 8. By applying Cauchy-Riemann equations in polar coordinates to a Fourier series -\[ f(r,\theta) = \sum_{n = -\infty}^{\infty} a_n(r) e^{in \theta} \] +$$ f(r,\theta) = \sum_{n = -\infty}^{\infty} a_n(r) e^{in \theta} $$ you should obtain the following system of ordinary differential equations for the coefficients $a_n(r)$: -\[ \frac{d a_n}{dr} = \frac{na_n}{r} \] +$$ \frac{d a_n}{dr} = \frac{na_n}{r} $$ Write this in the form -\[ \frac{d a_n}{a_n} = \frac{n dr}{r} \] +$$ \frac{d a_n}{a_n} = \frac{n dr}{r} $$ and integrate to get the solution. Then write -\[ z = re^{i\theta} \] +$$ z = re^{i\theta} $$ to derive the Laurent series. # Solutions
\ No newline at end of file |