summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorsiveshs <siveshs@gmail.com>2010-07-02 17:13:36 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-07-02 17:13:36 +0000
commit5695b3f59b6cd1070589a5e939c181743a65878e (patch)
tree3edbc696edeadb91bdec36ffbf2fe89bc9ffcc8c
parentb0645138f127e0c3e6737fe6fc22c94d706a444f (diff)
downloadafterklein-wiki-5695b3f59b6cd1070589a5e939c181743a65878e.tar.gz
afterklein-wiki-5695b3f59b6cd1070589a5e939c181743a65878e.zip
still testing
-rw-r--r--Fourier Series.page4
1 files changed, 2 insertions, 2 deletions
diff --git a/Fourier Series.page b/Fourier Series.page
index 8d68997..afa4c0a 100644
--- a/Fourier Series.page
+++ b/Fourier Series.page
@@ -5,7 +5,7 @@ We first begin with a few basic identities on the size of sets. Show that the se
##Why Fourier series is plausible?</b>
To show that Fourier series is plausible, let us consider some arbitrary trignometric functions and see if it is possible to express them as the sum of sines and cosines:
-$**1.\quad\sin^2(x) = ?**$
+$1.\quad\sin^2(x) = ?$
Based on the double angle formula,
@@ -15,7 +15,7 @@ Rearranging,
$\qquad\sin^2(x) = \frac{1-\cos(2x)}{2}$
-$**2.\quad\sin(2x)\cdot\cos(2x) = ?**$
+$2.\quad\sin(2x)\cdot\cos(2x) = ?$
Based on the double angle formula,