diff options
author | siveshs <siveshs@gmail.com> | 2010-07-02 17:13:36 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-02 17:13:36 +0000 |
commit | 5695b3f59b6cd1070589a5e939c181743a65878e (patch) | |
tree | 3edbc696edeadb91bdec36ffbf2fe89bc9ffcc8c | |
parent | b0645138f127e0c3e6737fe6fc22c94d706a444f (diff) | |
download | afterklein-wiki-5695b3f59b6cd1070589a5e939c181743a65878e.tar.gz afterklein-wiki-5695b3f59b6cd1070589a5e939c181743a65878e.zip |
still testing
-rw-r--r-- | Fourier Series.page | 4 |
1 files changed, 2 insertions, 2 deletions
diff --git a/Fourier Series.page b/Fourier Series.page index 8d68997..afa4c0a 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -5,7 +5,7 @@ We first begin with a few basic identities on the size of sets. Show that the se ##Why Fourier series is plausible?</b> To show that Fourier series is plausible, let us consider some arbitrary trignometric functions and see if it is possible to express them as the sum of sines and cosines: -$**1.\quad\sin^2(x) = ?**$ +$1.\quad\sin^2(x) = ?$ Based on the double angle formula, @@ -15,7 +15,7 @@ Rearranging, $\qquad\sin^2(x) = \frac{1-\cos(2x)}{2}$ -$**2.\quad\sin(2x)\cdot\cos(2x) = ?**$ +$2.\quad\sin(2x)\cdot\cos(2x) = ?$ Based on the double angle formula, |