summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorsiveshs <siveshs@gmail.com>2010-07-03 04:23:25 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-07-03 04:23:25 +0000
commit4ec3329e7ccc87db9d15a35323df44e1142abe75 (patch)
tree72fdcd4d421c56bf83ea1a2cd8b6be0024f8c485
parentd513190cd3487fb3ef43e78e68b1eeddf7a86ad2 (diff)
downloadafterklein-wiki-4ec3329e7ccc87db9d15a35323df44e1142abe75.tar.gz
afterklein-wiki-4ec3329e7ccc87db9d15a35323df44e1142abe75.zip
section 3 editing
-rw-r--r--Fourier Series.page8
1 files changed, 6 insertions, 2 deletions
diff --git a/Fourier Series.page b/Fourier Series.page
index ce33109..ae34c0f 100644
--- a/Fourier Series.page
+++ b/Fourier Series.page
@@ -121,9 +121,13 @@ In order to prove orthonormality of the basis vectors:
$$
\begin{array}{ccl}
-(f_n,f_m) = \int_0^{2\pi} \, \frac{1}{\sqrt{2\pi}} \, e^{inx} \, \bar {\frac{1}{\sqrt{2\pi}} \, e^{inx}} \, dx\\
+(f_n,f_m) = \int_0^{2\pi} \, \frac{1}{\sqrt{2\pi}} \, e^{inx} \, \longbar {\frac{1}{\sqrt{2\pi}} \, e^{inx}} \, dx\\
+& = & \frac{1}{2\pi} \, \int_0^{2\pi} \, e^{i(n-m)x} \, dx \\
+Here, n = m \Rightarrow (f_n,f_m) & = & 1\\
+n \neq m \Rightarrow (f_n,f_m) & = & 0\\
\end{array}
-$$
+$$
+
##Determining Coefficients of the Basis vectors
In any vector space, the inner product of a vector and its basis vector gives the coefficient. For example, consider a 2-dimensional vector as shown below: