diff options
author | siveshs <siveshs@gmail.com> | 2010-07-02 17:09:19 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-02 17:09:19 +0000 |
commit | 45af21054d665ca4eb14021ca067655b56185667 (patch) | |
tree | bd93a3021df8064393b0b60121577f5c00c046e8 | |
parent | 0604d189dd4c94b8ee79250e4bd36b03e169f995 (diff) | |
download | afterklein-wiki-45af21054d665ca4eb14021ca067655b56185667.tar.gz afterklein-wiki-45af21054d665ca4eb14021ca067655b56185667.zip |
still testing
-rw-r--r-- | Fourier Series.page | 4 |
1 files changed, 2 insertions, 2 deletions
diff --git a/Fourier Series.page b/Fourier Series.page index 375b855..4cc80d6 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -5,7 +5,7 @@ We first begin with a few basic identities on the size of sets. Show that the se ##Why Fourier series is plausible?</b> To show that Fourier series is plausible, let us consider some arbitrary trignometric functions and see if it is possible to express them as the sum of sines and cosines: -$1.\quad\sin^2(x) = ?$ +$**1.\quad\sin^2(x) = ?**$ Based on the double angle formula, @@ -15,7 +15,7 @@ Rearranging, $\qquad\sin^2(x) = \frac{1-\cos(2x)}{2}$ -$2.\quad\sin(2x)\cdot\cos(2x) = ?$ +$**2.\quad\sin(2x)\cdot\cos(2x) = ?**$ Based on the double angle formula, |