summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorsiveshs <siveshs@gmail.com>2010-07-02 17:09:19 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-07-02 17:09:19 +0000
commit45af21054d665ca4eb14021ca067655b56185667 (patch)
treebd93a3021df8064393b0b60121577f5c00c046e8
parent0604d189dd4c94b8ee79250e4bd36b03e169f995 (diff)
downloadafterklein-wiki-45af21054d665ca4eb14021ca067655b56185667.tar.gz
afterklein-wiki-45af21054d665ca4eb14021ca067655b56185667.zip
still testing
-rw-r--r--Fourier Series.page4
1 files changed, 2 insertions, 2 deletions
diff --git a/Fourier Series.page b/Fourier Series.page
index 375b855..4cc80d6 100644
--- a/Fourier Series.page
+++ b/Fourier Series.page
@@ -5,7 +5,7 @@ We first begin with a few basic identities on the size of sets. Show that the se
##Why Fourier series is plausible?</b>
To show that Fourier series is plausible, let us consider some arbitrary trignometric functions and see if it is possible to express them as the sum of sines and cosines:
-$1.\quad\sin^2(x) = ?$
+$**1.\quad\sin^2(x) = ?**$
Based on the double angle formula,
@@ -15,7 +15,7 @@ Rearranging,
$\qquad\sin^2(x) = \frac{1-\cos(2x)}{2}$
-$2.\quad\sin(2x)\cdot\cos(2x) = ?$
+$**2.\quad\sin(2x)\cdot\cos(2x) = ?**$
Based on the double angle formula,