summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorOpheliar99 <>2010-07-04 02:20:32 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-07-04 02:20:32 +0000
commit1d9ba4013d87ddeb4a1404f5c9812b2ebf13c417 (patch)
treeded5222a324b28e1d5c1ec2a5a7bbfbdb1386a58
parentbd1a5eb91d0f8c5adfc4e3d71cb6ff992616713e (diff)
downloadafterklein-wiki-1d9ba4013d87ddeb4a1404f5c9812b2ebf13c417.tar.gz
afterklein-wiki-1d9ba4013d87ddeb4a1404f5c9812b2ebf13c417.zip
posted solutions of 2 and 3 in pset2
-rw-r--r--Problem Set 2.page5
1 files changed, 3 insertions, 2 deletions
diff --git a/Problem Set 2.page b/Problem Set 2.page
index d001972..5d48dd5 100644
--- a/Problem Set 2.page
+++ b/Problem Set 2.page
@@ -40,8 +40,9 @@ $\int_0^{2\pi} |\sin^2(x)|^2 dx = \sum |a_n|^2.$
2. Since
$\sin x = \frac{e^{ix}-e^{-ix}}{2}$,
-$\int_0^{2\pi} \sin^4(x) dx = \frac{{e^{ix}-e^{-ix}}^{4}}{16}$,
-$ = \frac{e^{i 4x}+e^{-i 4x}-4 e^{i 2x} -4 e^{-i 2x}+6}{16}$
+$\int_0^{2\pi} \sin^4(x) dx = \frac{{\left e^{ix}-e^{-ix} \right}^{4}}{16}$,
+
+$ = \frac{e^{i 4x}+e^{-i 4x}-4 e^{i 2x} -4 e^{-i 2x}+6}{16}$.
If we express any periodic function $f(x)$ as