diff options
author | siveshs <siveshs@gmail.com> | 2010-07-03 04:45:57 +0000 |
---|---|---|
committer | bnewbold <bnewbold@adelie.robocracy.org> | 2010-07-03 04:45:57 +0000 |
commit | 06c3d2c8fcef68d31c24553b18b71f9e36fbe04f (patch) | |
tree | 1d1d53d1f8d69769d5267894ccf8a33efbccf0aa | |
parent | dd009e6da20d42c456ffb30684460dc040082d9d (diff) | |
download | afterklein-wiki-06c3d2c8fcef68d31c24553b18b71f9e36fbe04f.tar.gz afterklein-wiki-06c3d2c8fcef68d31c24553b18b71f9e36fbe04f.zip |
section 3 editing
-rw-r--r-- | Fourier Series.page | 2 |
1 files changed, 1 insertions, 1 deletions
diff --git a/Fourier Series.page b/Fourier Series.page index ff1449e..127d211 100644 --- a/Fourier Series.page +++ b/Fourier Series.page @@ -159,7 +159,7 @@ $$ Extending this principle to the case of an n-dimensional vector: -Let $f$ be the periodic function expressed as $ f= \Sigma a_n \frac{1}{\sqrt{2\pi}} \, e^{inx} = \Sigma a_n \, f_n$ where $a_n \Epsilon \mathbb C$ +Let $f$ be the periodic function expressed as $ f= \Sigma a_n \frac{1}{\sqrt{2\pi}} \, e^{inx} = \Sigma a_n \, f_n$ where $a_n \in \mathbb C$ ##Proving that this function is does indeed completely represent $f$ |