1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
|
#LyX 1.5.2 created this file. For more info see http://www.lyx.org/
\lyxformat 276
\begin_document
\begin_header
\textclass article
\language english
\inputencoding auto
\font_roman default
\font_sans default
\font_typewriter default
\font_default_family default
\font_sc false
\font_osf false
\font_sf_scale 100
\font_tt_scale 100
\graphics default
\paperfontsize default
\papersize default
\use_geometry false
\use_amsmath 1
\use_esint 1
\cite_engine basic
\use_bibtopic false
\paperorientation portrait
\secnumdepth 3
\tocdepth 3
\paragraph_separation indent
\defskip medskip
\quotes_language english
\papercolumns 1
\papersides 1
\paperpagestyle default
\tracking_changes false
\output_changes false
\author ""
\author ""
\end_header
\begin_body
\begin_layout Title
A Computational Elucidation of Curved Spacetime
\end_layout
\begin_layout Date
\begin_inset Formula $\today$
\end_inset
\end_layout
\begin_layout Author
Bryan Newbold
\end_layout
\begin_layout Quotation
Advisor: Prof.
Gerald J.
Sussman, EECS
\end_layout
\begin_layout Standard
I propose to implement a geometric formulation of curved space time in a
functional computer programming language, and to explore the space of simulatio
ns and manipulations made possible by such a formulation.
A primary motivation is to state the foundations of General Relativity
in a non-ambiguous manner.
\end_layout
\begin_layout Standard
This work follows several attempts to formulate curved spacetime on computers
for the purpose of numerical calculations and algebraic manipulation.
Most of these packages are specially designed for the tasks of tensor analysis
and/or efficient numerical calculation, as is appropriate for use in calculatio
ns.
A crucial difference of this proposed work will be to carefully build up
the geometric and analytical tools in a general purpose functional programing
language (mit-scheme).
As a learning and reference tool, this will allow users to explore the
inner workings and structure of the system, which I believe is essential
to understanding the system as a whole.
\end_layout
\begin_layout Standard
The frame field representation will be used to emphasize the geometric propertie
s of curved space time, as opposed to the more traditional coordinate heavy
tensor analysis approach.
\end_layout
\begin_layout Standard
The resulting work will include a full implementation with source code and
documentation, as well as example problems and qualitative comparisons
with existing packages and software systems.
\end_layout
\begin_layout Bibliography
\begin_inset LatexCommand bibitem
key "key-1"
\end_inset
Functional Differential Geometry, G.
Sussman and J.
Wisdom (2005)
\end_layout
\begin_layout Bibliography
\begin_inset LatexCommand bibitem
key "key-2"
\end_inset
Structure and Interpretation of Classical Mechanics, G.
Sussman and J.
Wisdom (2001)
\end_layout
\begin_layout Bibliography
\begin_inset LatexCommand bibitem
key "key-1"
\end_inset
"Algebraic Computing in General Relativity", Ray d'Inverno (from General
Relativity, G.
Hall and J.
Pulham)
\end_layout
\begin_layout Bibliography
\begin_inset LatexCommand bibitem
key "key-2"
\end_inset
"The Use of Algebraic Computing in General Relativity", H.
I.
Cohen, A.
Leringe and Y.
Sundblad
\end_layout
\end_body
\end_document
|