1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
|
;;;; CONSPIRE: Time Sharing in Scheme
;;; "Processes scheming together
;;; constitute a conspiracy"
;;; The essence of this system is that the state of a
;;; thread is specified by its continuation. To switch
;;; threads we need to make a continuation, store it
;;; for the scheduler, and then retrieve a thread from
;;; the scheduler and start it running. The thread has
;;; an identity, even though its continuation changes
;;; from time to time.
;;; A running thread can block itself until some
;;; predicate thunk becomes true by calling
;;; conspire:switch-threads with the predicate.
(define (conspire:switch-threads runnable?)
(without-interrupts
(lambda ()
(conspire:save-current-thread runnable?
conspire:start-next-thread))))
(define (conspire:save-current-thread runnable? after-save)
(call-with-current-continuation
(lambda (current-continuation)
(conspire:set-continuation! *running-thread*
current-continuation)
(conspire:add-to-schedule! runnable?
*running-thread*)
(after-save))))
(define (conspire:start-next-thread)
(set! *running-thread*
(conspire:get-runnable-thread-from-schedule!))
((conspire:continuation *running-thread*) unspecific))
;;; A thread can explicitly yield control, remaining
;;; runnable.
(define (conspire:thread-yield)
(conspire:switch-threads conspire:runnable))
(define conspire:runnable (lambda () #t))
;;; A thread can kill itself by starting some other thread
;;; without saving itself for rescheduling.
(define (conspire:kill-current-thread)
(without-interrupts
(lambda ()
(conspire:start-next-thread))))
(define (conspire:kill-threads threads)
(without-interrupts
(lambda ()
(for-each conspire:delete-from-schedule! threads)
(if (memq *running-thread* threads)
(conspire:kill-current-thread)))))
;;; A thread can make another thread and continue running.
;;; The thunk specified is the work order for the new thread.
;;; When the thunk returns the thread kills itself.
(define (conspire:make-thread runnable? thunk)
(call-with-current-continuation
(lambda (current-continuation)
(within-continuation *root-continuation*
(lambda ()
(without-interrupts
(lambda ()
(call-with-current-continuation
(lambda (new-continuation)
(let ((new-thread
(conspire:make-new-thread new-continuation)))
(conspire:add-to-schedule! runnable? new-thread)
(current-continuation new-thread))))))
(thunk)
(conspire:kill-current-thread))))))
;;; A simple scheduler is just round-robin.
(define (conspire:add-to-schedule! runnable? thread)
(queue:add-to-end! *thread-queue*
(cons runnable? thread)))
(define (conspire:get-runnable-thread-from-schedule!)
(if (not (queue:empty? *thread-queue*))
(let lp ((first (queue:get-first *thread-queue*)))
(if ((car first)) ; runnable?
(cdr first)
(begin
(queue:add-to-end! *thread-queue* first)
(lp (queue:get-first *thread-queue*)))))
(error "No current thread")))
(define (conspire:delete-from-schedule! thread)
(let ((entry
(find-matching-item
(queue:front-ptr *thread-queue*)
(lambda (entry)
(eq? (cdr entry) thread)))))
(if entry
(queue:delete-from-queue! *thread-queue*
entry))))
;;; We use the queue design similar to SICP Section 3.3.2
(define-record-type queue
(queue:make-record front-ptr rear-ptr)
queue?
(front-ptr queue:front-ptr queue:set-front-ptr!)
(rear-ptr queue:rear-ptr queue:set-rear-ptr!))
(define (queue:make)
(queue:make-record '() '()))
(define (queue:empty? queue)
(null? (queue:front-ptr queue)))
(define (queue:get-first queue)
(if (null? (queue:front-ptr queue))
(error "get-first called with an empty queue" queue)
(let ((first (car (queue:front-ptr queue)))
(rest (cdr (queue:front-ptr queue))))
(queue:set-front-ptr! queue rest)
(if (null? rest)
(queue:set-rear-ptr! queue '()))
first)))
(define (queue:add-to-end! queue item)
(let ((new-pair (cons item '())))
(cond ((null? (queue:front-ptr queue))
(queue:set-front-ptr! queue new-pair)
(queue:set-rear-ptr! queue new-pair))
(else
(set-cdr! (queue:rear-ptr queue) new-pair)
(queue:set-rear-ptr! queue new-pair))))
'done)
(define (queue:delete-from-queue! queue item)
(queue:set-front-ptr! queue
(delq item
(queue:front-ptr queue)))
(if (pair? (queue:front-ptr queue))
(queue:set-rear-ptr! queue
(last-pair (queue:front-ptr queue)))
(queue:set-rear-ptr! queue '()))
'done)
(define-record-type conspire:thread
(conspire:make-new-thread continuation)
conspire:thread?
(continuation conspire:continuation
conspire:set-continuation!))
;;; Startup: have to make queue and first process
(define (with-conspiracy thunk)
(fluid-let ((*running-thread*
(conspire:make-new-thread unspecific))
(*thread-queue* (queue:make))
(*root-continuation*))
(call-with-current-continuation
(lambda (k)
(set! *root-continuation* k)
(thunk)))))
(define *running-thread*)
(define *thread-queue*)
(define *root-continuation*)
#|
;;; An elementary example:
(define (loop n)
(let lp ((i 0))
(if (< global-counter 1)
'done
(begin (set! global-counter (- global-counter 1))
(if (= i n)
(begin (write-line `(,n ,global-counter))
(conspire:thread-yield)
(lp 0))
(lp (+ i 1)))))))
(define global-counter)
(with-conspiracy
(lambda ()
(set! global-counter 200)
(conspire:make-thread conspire:runnable (lambda () (loop 31)))
(conspire:make-thread conspire:runnable (lambda () (loop 37)))
(repl/start (push-repl (nearest-repl/environment))
"; Entering conspiracy")))
(pp *thread-queue*)
#[queue 4]
(front-ptr
((#[compound-procedure 6 conspire:runnable] . #[conspire:thread 7])
(#[compound-procedure 6 conspire:runnable] . #[conspire:thread 5])))
(rear-ptr
((#[compound-procedure 6 conspire:runnable] . #[conspire:thread 5])))
(conspire:thread-yield)
(31 168)
(37 130)
;Unspecified return value
;;; Got back to repl.
(conspire:thread-yield)
(31 98)
(37 60)
;Unspecified return value
(conspire:thread-yield)
(31 28)
;Unspecified return value
(conspire:thread-yield)
;Unspecified return value
(pp *thread-queue*)
#[queue 4]
(front-ptr ())
(rear-ptr ())
(abort->previous) ; Get out of repl.
|#
;;; Preemptive scheduling.
(define conspire:quantum 10)
(define conspire:running? #f)
;;; This is an MIT Scheme specific detail. register-timer-event is
;;; the MIT Scheme mechanism for delivering a timer interrupt -- when
;;; the time specified by its first argument expires, it invokes the
;;; second argument.
(define (start-time-sharing)
(let lp ()
(if *debugging-time-sharing* (display "."))
(if conspire:running?
(begin
(register-timer-event conspire:quantum
lp)
(conspire:thread-yield))))
'done)
(define *debugging-time-sharing* #f)
(define (with-time-sharing-conspiracy thunk)
(fluid-let ((conspire:running? #t))
(with-conspiracy
(lambda ()
(start-time-sharing)
(thunk)))))
(define (conspire:null-job)
(conspire:thread-yield)
(if (queue:empty? *thread-queue*)
'done
(conspire:null-job)))
#|
;;; Our elementary example, again
(define (loop n)
(let lp ((i 0))
(if (< global-counter 1)
'done
(begin (set! global-counter (- global-counter 1))
(if (= i n)
(begin (write-line `(,n ,global-counter))
(lp 0))
(lp (+ i 1)))))))
(define global-counter)
(with-time-sharing-conspiracy
(lambda ()
(set! global-counter 100000)
(conspire:make-thread conspire:runnable (lambda () (loop 5555)))
(conspire:make-thread conspire:runnable (lambda () (loop 4444)))
(conspire:null-job)))
(5555 94444)
(5555 88888)
(5555 83332)
(5555 77776)
(4444 71412)
(4444 66967)
(4444 62522)
(4444 58077)
(4444 53632)
(4444 49187)
(4444 44742)
(5555 39853)
(5555 34297)
(5555 28741)
(5555 23185)
(5555 17629)
(4444 9782)
(4444 5337)
(4444 892)
;Value: done
|#
;;; Interlocks
(define-record-type conspire:lock
(conspire:make-lock-cell state)
conspire:lock?
(state conspire:lock-state conspire:set-lock-state!))
(define (conspire:make-lock)
(conspire:make-lock-cell #f))
(define (test-and-set-lock?! cell)
(if (not (conspire:lock? cell))
(error "Bad lock"))
(without-interrupts
(lambda ()
(if (eq? (conspire:lock-state cell) #f)
(begin (conspire:set-lock-state! cell #t)
#t)
#f))))
(define (conspire:unlock cell)
(conspire:set-lock-state! cell #f))
(define (conspire:acquire-lock lock)
(if (test-and-set-lock?! lock)
'OK
(conspire:switch-threads
(lambda () (test-and-set-lock?! lock)))))
#|
;;; Our elementary example again:
(define global-counter-lock (conspire:make-lock))
(define (loop n)
(let lp ((i 0))
(let delaylp ((k 100))
(if (> k 0)
(delaylp (- k 1))))
(conspire:acquire-lock global-counter-lock)
(if (< global-counter 1)
(begin
(conspire:unlock global-counter-lock)
'done)
(begin (set! global-counter (- global-counter 1))
(if (= i n)
(begin (write-line `(,n ,global-counter))
(conspire:unlock global-counter-lock)
(lp 0))
(begin
(conspire:unlock global-counter-lock)
(lp (+ i 1)))))))
(write-line `(,n terminating)))
(define global-counter)
(set! conspire:quantum 5)
(with-time-sharing-conspiracy
(lambda ()
(set! global-counter 100000)
(conspire:make-thread conspire:runnable (lambda () (loop 999)))
(conspire:make-thread conspire:runnable (lambda () (loop 1000)))
(conspire:null-job)))
|#
|