aboutsummaryrefslogtreecommitdiffstats
path: root/minimal.rs
blob: 7ddd8d67a528a02ca20e18878eb7a2cacc116f71 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

// A partial Scheme implementation in Rust
// Build with: rustc minimal.rs -o minimal-rust

use std::io;
use std::io::Write;
use std::collections::HashMap;

//////////// Types and Constants

// There doesn't seem to be a symbol or quote type in Rust, so i'm going to use strings and vectors

// XXX: how to avoid the '16' here?
const SCHEME_BUILTINS: [&'static str; 16] = ["lambda", "quote", "cond", "else", "cons", "car", "cdr",
    "null?", "eq?", "atom?", "zero?", "number?", "+", "-", "*", "/"];

#[derive(Clone)]
enum SchemeExpr<'a> {
    SchemeNull,
    SchemeTrue,
    SchemeFalse,
    SchemeNum(f64),
    SchemeBuiltin(&'a str),
    SchemeSymbol(&'a str),
    SchemeStr(&'a str),
    SchemeList(Vec<SchemeExpr<'a>>),
    SchemeQuote(Vec<SchemeExpr<'a>>),
}

//////////// Lexing, Parsing, and Printing

fn is_scheme_whitespace(c: char) -> bool{
    " \r\n".find(c) != None
}
fn is_scheme_sep(c: char) -> bool {
    "()".find(c) != None
}

fn is_valid_symbol(s: &str) -> bool {
    // TODO: this could be an 'any' or 'filter' call?
    if s.len() == 0 {
        return false;
    }
    for c in s.chars() {
        if !c.is_alphabetic() && c != '-' {
            return false;
        }
    }
    return true;
}

// TODO: need to expand prefix notation stuff like `(1 2 3) to (quote 1 2 3) here?
fn scheme_tokenize<'a>(raw_str: &'a str) -> Result<Vec<&'a str>, &'static str> {
    let mut ret = Vec::<&str>::new();
    let mut food: usize = 0;
    let mut quoted: bool = false;
    for (i, c) in raw_str.chars().enumerate() {
        if quoted {
            if c == '"' && raw_str.chars().collect::<Vec<char>>()[i-1] != '\\' {
                ret.push(&raw_str[i-food-1..i+1]);
                quoted = false;
                food = 0;
            } else if (raw_str.len() == i+1) {
                return Err("unmatched quote char");
            } else {
                food += 1;
            }
        } else if c == '"' {
            if food > 0 {
                return Err("unexpected quote char");
            }
            if (raw_str.len() == i+1) {
                return Err("unmatched (trailing) quote char");
            }
            quoted = true;
        } else if is_scheme_whitespace(c) || is_scheme_sep(c) {
            if food > 0 {
                ret.push(&raw_str[i-food..i]);
            }
            if is_scheme_sep(c) {
                ret.push(&raw_str[i..i+1]);
            }
            food = 0;
        } else if (raw_str.len() == i+1) {
            ret.push(&raw_str[i-food..]);
        } else {
            food += 1;
        }
    }
    return Ok(ret);
}

fn scheme_parse_token(token: &str) -> Result<SchemeExpr, &'static str> {

    // First match on easy stuff
    match token {
        "#t" => return Ok(SchemeExpr::SchemeTrue),
        "#f" => return Ok(SchemeExpr::SchemeFalse),
        _ => ()
    }

    // Is it a builtin?
    if SCHEME_BUILTINS.contains(&token) {
        return Ok(SchemeExpr::SchemeBuiltin(token));
    }

    // Try to parse as a number
    match token.parse::<f64>() {
        Ok(x) => return Ok(SchemeExpr::SchemeNum(x)),
        Err(_) => ()
    }

    // Is it a string?
    if token.starts_with("\"") && token.ends_with("\"") {
        return Ok(SchemeExpr::SchemeStr(token));
    }

    // If it's all alphas, must be a symbol
    if is_valid_symbol(token) {
        return Ok(SchemeExpr::SchemeSymbol(token));
    }

    return Err("unparsable token");
}

fn scheme_parse<'a>(tokens: &Vec<&'a str>, depth: u32) -> Result<(SchemeExpr<'a>, usize), &'static str> {
    let mut ret = Vec::<SchemeExpr>::new();
    let mut i: usize = 0;
    if tokens.len() == 0  {
        return Ok((SchemeExpr::SchemeNull, 0));
    } else if tokens.len() == 1 {
        let expr = try!(scheme_parse_token(tokens[0]));
        return Ok((expr, 1));
    }
    while i < tokens.len() {
        match tokens[i] {
            "(" => {
                let (expr, skip) = try!(scheme_parse(&tokens[i+1..].to_vec(), depth+1));
                ret.push(expr);
                i += skip;},
            ")" => {
                if depth == 0 {
                    return Err("missing an open bracket");
                }
                return Ok((SchemeExpr::SchemeList(ret), i+1));},
            token => {
                let expr = try!(scheme_parse_token(token));
                ret.push(expr);
            }
        }
        i += 1;
    }
    if depth > 0 {
        return Err("missing a close bracket");
    }
    let rlen = ret.len();
    if depth == 0 && rlen == 1 {
        return Ok((ret.pop().unwrap(), rlen));
    } else {
        return Ok((SchemeExpr::SchemeList(ret), rlen));
    }
}

fn scheme_repr<'a>(ast: &SchemeExpr) -> Result<String, &'static str> {
    return match ast {
        &SchemeExpr::SchemeTrue => Ok("#t".to_string()),
        &SchemeExpr::SchemeFalse => Ok("#f".to_string()),
        &SchemeExpr::SchemeNull => Ok("'()".to_string()),
        &SchemeExpr::SchemeBuiltin(b)=> Ok(b.to_string()),
        &SchemeExpr::SchemeStr(s)=> Ok(s.to_string()),
        &SchemeExpr::SchemeSymbol(s)=> Ok(s.to_string()),
        &SchemeExpr::SchemeNum(num) => Ok(format!("{}", num).to_string()),
        &SchemeExpr::SchemeList(ref list) => {
            let mut ret: String =
                list.iter().fold("(".to_string(),
                                 |acc, ref el| acc + " " + &scheme_repr(&el).unwrap());
            ret.push_str(" )");
            Ok(ret)
        },
        &SchemeExpr::SchemeQuote(ref list) => {
            let mut ret: String =
                list.iter().fold("(quote ".to_string(),
                                 |acc, ref el| acc + " " + &scheme_repr(&el).unwrap());
            ret.push_str(" )");
            Ok(ret)
        },
    }
}

//////////// Expression Evaluation

fn quote_action<'a>(list: &'a Vec<SchemeExpr>, ctx: HashMap<&str, SchemeExpr>) -> Result<SchemeExpr<'a>, &'static str> {
    // XXX: why can't I '.map()' here?
    let mut body = Vec::<SchemeExpr>::new();
    for el in list[1..].to_vec() {
        body.push(el.clone());
    }
    Ok(SchemeExpr::SchemeList(body))
}
/*
fn cond_action<'a>(list: &Vec<&'a SchemeExpr>, ctx: HashMap<&str, SchemeExpr>) -> Result<SchemeExpr<'a>, &'static str> {
    Ok(SchemeExpr::SchemeQuote(list[1..].to_vec()))
}

fn lambda_action<'a>(list: &Vec<&'a SchemeExpr>, ctx: HashMap<&str, SchemeExpr>) -> Result<SchemeExpr<'a>, &'static str> {
    Ok(SchemeExpr::SchemeQuote(list[1..].to_vec()))
}
*/

fn scheme_meaning<'a>(ast: &'a SchemeExpr, ctx: HashMap<&str, SchemeExpr<'a>>) -> Result<SchemeExpr<'a>, &'static str> {
    return match ast {
            // "identity actions"
        &SchemeExpr::SchemeTrue => Ok(ast.clone()),
        &SchemeExpr::SchemeFalse => Ok(ast.clone()),
        &SchemeExpr::SchemeNull => Ok(ast.clone()),
        &SchemeExpr::SchemeStr(s)=> Ok(ast.clone()),
        &SchemeExpr::SchemeNum(num) => Ok(ast.clone()),
        &SchemeExpr::SchemeBuiltin(b)=> Ok(ast.clone()),
        &SchemeExpr::SchemeQuote(ref list) => Ok(SchemeExpr::SchemeList(list.clone())),
        &SchemeExpr::SchemeSymbol(sym)=> match ctx.get(sym) {
            // the "lookup action"
            Some(val) => Ok(val.clone()),
            None => Err("symbol not defined"),
            },
        &SchemeExpr::SchemeList(ref list) => {
            if list.len() >= 2 {
                match list[0] {
                    SchemeExpr::SchemeBuiltin("quote") =>
                        quote_action(list, ctx),
/*
                    SchemeExpr::SchemeBuiltin("cond") =>
                        cond_action(list, ctx),
                    SchemeExpr::SchemeBuiltin("lambda") =>
                        lambda_action(list, ctx),
*/
                    _ => Ok(SchemeExpr::SchemeNull)
                }
            } else {
                Err("weird short expression")
            }},
    }
}

fn scheme_eval<'a>(ast: &'a SchemeExpr) -> Result<SchemeExpr<'a>, &'static str> {
    let mut ctx = HashMap::<&str, SchemeExpr>::new();
    Ok(try!(scheme_meaning(ast, ctx)))
}

//////////// Top-Level Program

fn main() {

    let stdin = io::stdin();
    let mut stdout = io::stdout();

    loop {
        let raw_input = &mut String::new();
        stdout.write(b"\nminimal-rust> ").unwrap();
        stdout.flush().unwrap();
        stdin.read_line(raw_input).unwrap();
        let raw_input = raw_input;  // UGH
        if raw_input.len() == 0 {
            stdout.write(b"\nCiao!\n").unwrap();
            return;
        }
        let tokens = match scheme_tokenize(&raw_input) {
            Ok(tokens) => {
                println!("Tokens: {}", tokens.join(", ")); // debug
                tokens},
            Err(e) => {
                println!("couldn't tokenize: {}", e);
                continue}};
        let ast = match scheme_parse(&tokens, 0) {
            Ok((ast, _)) => {
                println!("AST: {}", scheme_repr(&ast).unwrap());
                ast},
            Err(e) => {
                println!("couldn't parse: {}", e);
                continue}};
        let resp = match scheme_eval(&ast) {
            Ok(x) => x,
            Err(e) => {
                println!("couldn't eval: {}", e);
                continue}};
        println!("{}", scheme_repr(&resp).unwrap());
    }
}