summaryrefslogtreecommitdiffstats
path: root/ClassJune26.page
diff options
context:
space:
mode:
authorjoshuab <>2010-06-29 15:22:56 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-06-29 15:22:56 +0000
commitbce1315f07aa8377378cbd938761d9accaf64649 (patch)
tree1dbdb85dafdc9be11c4f8c1c794fb383a6b485d9 /ClassJune26.page
parentc2bd2ecbfadd29cdd42952a9c5abda530322ecea (diff)
downloadafterklein-wiki-bce1315f07aa8377378cbd938761d9accaf64649.tar.gz
afterklein-wiki-bce1315f07aa8377378cbd938761d9accaf64649.zip
tex
Diffstat (limited to 'ClassJune26.page')
-rw-r--r--ClassJune26.page20
1 files changed, 10 insertions, 10 deletions
diff --git a/ClassJune26.page b/ClassJune26.page
index 8b14dc1..b28d40e 100644
--- a/ClassJune26.page
+++ b/ClassJune26.page
@@ -146,26 +146,26 @@ look like? PICTURE.
Another key example is the exponential map. Recall the power series
for $e^{z}$:
-\[
-e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\frac{z^{4}}{4!}+\frac{z^{5}}{5!}+\cdots\]
+$e^{z}=1+z+\frac{z^{2}}{2!}+\frac{z^{3}}{3!}+\frac{z^{4}}{4!}+\frac{z^{5}}{5!}+\cdots$
+
We can raise complex numbers to powers, divide by the real denominators,
and add them up just fine, so we can exponentiate complex values of
$z$. We know what happens to real values, what happens to pure imaginary
-ones? Let $y\in\mathbb{R}$. Then \begin{eqnarray*}
-e^{iy} & = & 1+iy+\frac{(iy)^{2}}{2!}+\frac{(iy)^{3}}{3!}+\frac{(iy)^{4}}{4!}+\frac{(iy)^{5}}{5!}+\cdots\\
- & = & 1+iy-\frac{y^{2}}{2!}-i\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+i\frac{y^{5}}{5!}+\cdots\\
- & = & (1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}+\cdots)+i(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\cdots)\\
- & = & \cos y+i\sin y\end{eqnarray*}
+ones? Let $y\in\mathbb{R}$. Then
+$\begin{array}e^{iy} & = & 1+iy+\frac{(iy)^{2}}{2!}+\frac{(iy)^{3}}{3!}+\frac{(iy)^{4}}{4!}+\frac{(iy)^{5}}{5!}+\cdots
+ & = & 1+iy-\frac{y^{2}}{2!}-i\frac{y^{3}}{3!}+\frac{y^{4}}{4!}+i\frac{y^{5}}{5!}+\cdots
+ & = & (1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}+\cdots)+i(y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\cdots)
+ & = & \cos y+i\sin y\end{array}$
-Substituting $y=\pi$, we recover Euler's famous identity,\[
-e^{i\pi}=-1.\]
+Substituting $y=\pi$, we recover Euler's famous identity,
+$e^{i\pi}=-1.$
Given a real argument $y$, the $e^{iy}$ gives the unit vector with
that argument. Given an arbitrary complex number $z=x+iy$, it's exponnt
$e^{z}$ is the complex number with magnitude $e^{x}$ and angle $y$
radians.
-What does $z\rightsquigarrow e^{z}$ look like? Periodic in the $i$
+What does $z\mapsto e^{z}$ look like? Periodic in the $i$
direction with period $2\pi$. Takes a horizontal strip and wraps
it around, forming an annulus. PICTURE.