summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorluccul <luccul@gmail.com>2010-07-13 14:08:40 +0000
committerbnewbold <bnewbold@adelie.robocracy.org>2010-07-13 14:08:40 +0000
commit51e542f89644b3cdd564f9caa0780481690d3520 (patch)
treed1c181e805cee0a9858846ee1681507e92adff30
parent06267c010bd92ab8a84ed50c0e4fa1551b5533c3 (diff)
downloadafterklein-wiki-51e542f89644b3cdd564f9caa0780481690d3520.tar.gz
afterklein-wiki-51e542f89644b3cdd564f9caa0780481690d3520.zip
grammar
-rw-r--r--ClassJuly5.page2
1 files changed, 1 insertions, 1 deletions
diff --git a/ClassJuly5.page b/ClassJuly5.page
index 84173e9..4282c4a 100644
--- a/ClassJuly5.page
+++ b/ClassJuly5.page
@@ -22,7 +22,7 @@ You may find it helpful to think about other ways of deriving Theorems 1 and 2.
An alternate proof of Theorem 2 goes as follows: Since $f$ is holomorphic on a disk, it has a Laurent expansion. The statement of Theorem 2 says that the negative terms in this Laurent expansion are zero. First let's prove that $c_{-1}$ is zero. Since $c_{-1}$ is the residue of $f$ at zero, it is given by
$$c_{-1} = \int_{\gamma_r} f(z) dz$$
-where $\gamma$ is a small circle of radius $r$ that goes counterclockwise around the origin. As we shrink the radius of this circle, its length goes to zero. On the other hand since $f(z)$ tends to $f(0)$. Taking the limit as $r \to 0$,
+where $\gamma$ is a small circle of radius $r$ that goes counterclockwise around the origin. As we shrink the radius of this circle, its length goes to zero. On the other hand since $f$ is holomorphic, $f(z)$ tends to $f(0)$ as $z$ tends to zero. Taking the limit as $r \to 0$,
$$ c_{-1} = \lim_{r \to 0} \int_{\gamma_r} f(z) dz = \lim_{r \to 0} 2 \pi r f(0) = 0 $$
so we conclude that $c_{-1} = 0$.