From 8723650a87155080984c2e80f9cbf502a42f4fa5 Mon Sep 17 00:00:00 2001 From: Bryan Newbold Date: Fri, 29 Oct 2021 16:10:26 -0700 Subject: grobid citations: first pass at cleaning unstructured --- python/sandcrawler/grobid.py | 36 ++++++++++++++++++++++++++++++++++-- 1 file changed, 34 insertions(+), 2 deletions(-) diff --git a/python/sandcrawler/grobid.py b/python/sandcrawler/grobid.py index cdd2093..c57ea7c 100644 --- a/python/sandcrawler/grobid.py +++ b/python/sandcrawler/grobid.py @@ -1,5 +1,6 @@ -from typing import Any, Dict, List, Optional import sys +import unicodedata +from typing import Any, Dict, List, Optional import requests from grobid_tei_xml import GrobidBiblio, parse_citation_list_xml, parse_document_xml @@ -9,6 +10,30 @@ from .misc import gen_file_metadata from .workers import SandcrawlerFetchWorker, SandcrawlerWorker +def clean_ref_str(raw: str) -> str: + """ + When comparing raw unstructured strings (from upstream sources) to + GROBID-returned citations, we sometimes want to do exact comparisons to + match up records (eg, from crossref). GROBID does some (totally reasonable) + arbitrary normalizations of strings, like simplifying whitespace. + + This routine is to make comparisons against when GROBID returned and + original strings easier. + """ + # TODO: dead test code + # raw = unicodedata.normalize('NFKC', raw) + # raw = raw.replace('\u00a0', ' ').replace('\u2013', '-').replace('\u2014', '-').strip() + # raw = ' '.join(raw.split()) + raw = raw.replace(" ", " ") + return raw + + +def test_clean_ref_str() -> None: + raw_with_nbsp = """Qingyao Ai Keping Bi Cheng Luo Jiafeng Guo and W. Bruce Croft. 2018. Unbiased Learning to Rank with Unbiased Propensity Estimation. (2018) 385–394. Qingyao Ai Keping Bi Cheng Luo Jiafeng Guo and W. Bruce Croft. 2018. Unbiased Learning to Rank with Unbiased Propensity Estimation. (2018) 385–394.""" + raw_without_nbsp = """Qingyao Ai Keping Bi Cheng Luo Jiafeng Guo and W. Bruce Croft. 2018. Unbiased Learning to Rank with Unbiased Propensity Estimation. (2018) 385-394. Qingyao Ai Keping Bi Cheng Luo Jiafeng Guo and W. Bruce Croft. 2018. Unbiased Learning to Rank with Unbiased Propensity Estimation. (2018) 385-394.""" + assert clean_ref_str(raw_with_nbsp) == raw_without_nbsp + + class GrobidClient(object): def __init__(self, host_url: str = "https://grobid.qa.fatcat.wiki", **kwargs): self.host_url = host_url @@ -190,7 +215,14 @@ class GrobidClient(object): refs_json = [] for i in range(len(refs)): refs[i].id = unstructured_refs[i].get("key") - assert refs[i].unstructured == unstructured_refs[i]["unstructured"] + original = unstructured_refs[i]["unstructured"] + original_clean = clean_ref_str(unstructured_refs[i]["unstructured"]) + assert ( + refs[i].unstructured == original or refs[i].unstructured == original_clean + ), f'raw citation mismatch (GROBID then original cleaned): \n{refs[i].unstructured.encode("utf-8")}\n{original_clean.encode("utf-8")}' + # intentionally put "unclean" original string in, to allow later + # exact byte-accurate comparisons + refs[i].unstructured = original refs_json.append(refs[i].to_dict()) ret["refs_json"] = refs_json return ret -- cgit v1.2.3