diff options
Diffstat (limited to 'scalding/src')
-rw-r--r-- | scalding/src/main/scala/sandcrawler/GrobidScorableDumpJob.scala | 59 |
1 files changed, 52 insertions, 7 deletions
diff --git a/scalding/src/main/scala/sandcrawler/GrobidScorableDumpJob.scala b/scalding/src/main/scala/sandcrawler/GrobidScorableDumpJob.scala index 9a8d701..5e06f9b 100644 --- a/scalding/src/main/scala/sandcrawler/GrobidScorableDumpJob.scala +++ b/scalding/src/main/scala/sandcrawler/GrobidScorableDumpJob.scala @@ -2,17 +2,62 @@ package sandcrawler import cascading.pipe.Pipe -import com.twitter.scalding.Args -import com.twitter.scalding.TypedPipe -import com.twitter.scalding.TypedTsv +import com.twitter.scalding._ +import com.twitter.scalding.typed.TDsl._ import parallelai.spyglass.base.JobBase +import cascading.flow.FlowDef +import cascading.tuple.Fields +import com.twitter.scalding._ +import com.twitter.scalding.typed.TDsl._ +import org.apache.hadoop.hbase.io.ImmutableBytesWritable +import org.apache.hadoop.hbase.util.Bytes +import parallelai.spyglass.hbase.HBaseConstants.SourceMode +import parallelai.spyglass.hbase.HBasePipeConversions +import parallelai.spyglass.hbase.HBaseSource + class GrobidScorableDumpJob(args: Args) extends JobBase(args) { - val sc1 : Scorable = new GrobidScorable() - val pipe1 : TypedPipe[(String, ReduceFeatures)] = sc1.getInputPipe(args) + val grobidHbaseRows = Stat("hbase-rows-scanned", "hbase-grobid-dump") + val filteredGrobidRows = Stat("grobid-rows-filtered", "hbase-grobid-dump") + val parsedGrobidRows = Stat("grobid-rows-parsed", "hbase-grobid-dump") + val validGrobidRows = Stat("grobid-rows-valid-slug", "hbase-grobid-dump") + + val pipe = GrobidScorable.getHBaseSource(args("hbase-table"), args("zookeeper-hosts")) + .read + // Can't just "fromBytesWritable" because we have multiple types? + .toTypedPipe[(ImmutableBytesWritable,ImmutableBytesWritable,ImmutableBytesWritable)](new Fields("key", "tei_json", "status_code")) + .filter { case (_, tei_json, status_code) => + grobidHbaseRows.inc + tei_json != null && status_code != null + } + .map { case (key, tei_json, status_code) => + (Bytes.toString(key.copyBytes()), Bytes.toString(tei_json.copyBytes()), Bytes.toLong(status_code.copyBytes())) + } + // TODO: Should I combine next two stages for efficiency? + .collect { case (key, json, 200) => + filteredGrobidRows.inc + (key, json) + } + .map { entry : (String, String) => + parsedGrobidRows.inc + GrobidScorable.jsonToMapFeatures(entry._1, entry._2) + } + .filter { entry => Scorable.isValidSlug(entry.slug) } + .map { entry => + validGrobidRows.inc + entry + } + // XXX: this groupBy after the map? + .groupBy { case MapFeatures(slug, json) => slug } + .map { tuple => + val (slug : String, features : MapFeatures) = tuple + (slug, ReduceFeatures(features.json)) + } - pipe1 - .map { case (slug, features) => (slug, features.json) } + pipe + .map { case (slug, features) => + (slug, features.json) + } .write(TypedTsv[(String, String)](args("output"))) } |