diff options
-rw-r--r-- | proposals/2020_seaweed_s3.md | 424 |
1 files changed, 424 insertions, 0 deletions
diff --git a/proposals/2020_seaweed_s3.md b/proposals/2020_seaweed_s3.md new file mode 100644 index 0000000..9473cb7 --- /dev/null +++ b/proposals/2020_seaweed_s3.md @@ -0,0 +1,424 @@ +# Notes on seaweedfs + +> 2020-04-28, martin@archive.org + +Currently (04/2020) [minio](https://github.com/minio/minio) is used to store +output from PDF analysis for [fatcat](https://fatcat.wiki) (e.g. from +[grobid](https://grobid.readthedocs.io/en/latest/)). The file checksum (sha1) +serves as key, values are blobs of XML or JSON. + +Problem: minio inserts slowed down after inserting 80M or more objects. + +Summary: I did four test runs, three failed, one (testrun-4) succeeded. + +* [testrun-4](https://git.archive.org/webgroup/sandcrawler/-/blob/martin-seaweed-s3/proposals/2020_seaweed_s3.md#testrun-4) + +So far, in a non-distributed mode, the project looks usable. Added 200M objects +(about 550G) in 6 days. Full CPU load, 400M RAM usage, constant insert times. + +---- + +Details (03/2020) / @bnewbold, slack + +> the sandcrawler XML data store (currently on aitio) is grinding to a halt, I +> think because despite tuning minio+ext4+hdd just doesn't work. current at 2.6 +> TiB of data (each document compressed with snappy) and 87,403,183 objects. + +> this doesn't impact ingest processing (because content is queued and archived +> in kafka), but does impact processing and analysis + +> it is possible that the other load on aitio is making this worse, but I did +> an experiment with dumping to a 16 TB disk that slowed way down after about +> 50 million files also. some people on the internet said to just not worry +> about these huge file counts on modern filesystems, but i've debugged a bit +> and I think it is a bad idea after all + +Possible solutions + +* putting content in fake WARCs and trying to do something like CDX +* deploy CEPH object store (or swift, or any other off-the-shelf object store) +* try putting the files in postgres tables, mongodb, cassandra, etc: these are + not designed for hundreds of millions of ~50 KByte XML documents (5 - 500 + KByte range) +* try to find or adapt an open source tool like Haystack, Facebook's solution + to this engineering problem. eg: + https://engineering.linkedin.com/blog/2016/05/introducing-and-open-sourcing-ambry---linkedins-new-distributed- + +---- + +The following are notes gathered during a few test runs of seaweedfs in 04/2020 +on wbgrp-svc170.us.archive.org (4 core E5-2620 v4, 4GB RAM). + +---- + +## Setup + +There are frequent [releases](https://github.com/chrislusf/seaweedfs/releases) +but for the test, we used a build off the master branch. + +Directions from configuring AWS CLI for seaweedfs: +[https://github.com/chrislusf/seaweedfs/wiki/AWS-CLI-with-SeaweedFS](https://github.com/chrislusf/seaweedfs/wiki/AWS-CLI-with-SeaweedFS). + +### Build the binary + +Using development version (requires a [Go installation](https://golang.org/dl/)). + +``` +$ git clone git@github.com:chrislusf/seaweedfs.git # 11f5a6d9 +$ cd seaweedfs +$ make +$ ls -lah weed/weed +-rwxr-xr-x 1 tir tir 55M Apr 17 16:57 weed + +$ git rev-parse HEAD +11f5a6d91346e5f3cbf3b46e0a660e231c5c2998 + +$ sha1sum weed/weed +a7f8f0b49e6183da06fc2d1411c7a0714a2cc96b +``` + +A single, 55M binary emerges after a few seconds. The binary contains +subcommands to run different parts of seaweed, e.g. master or volume servers, +filer and commands for maintenance tasks, like backup and compact. + +To *deploy*, just copy this binary to the destination. + +### Quickstart with S3 + +Assuming `weed` binary is in PATH. + +Start a master and volume server (over /tmp, most likely) and the S3 API with a single command: + +``` +$ weed -server s3 +... +Start Seaweed Master 30GB 1.74 at 0.0.0.0:9333 +... +Store started on dir: /tmp with 0 volumes max 7 +Store started on dir: /tmp with 0 ec shards +Volume server start with seed master nodes: [localhost:9333] +... +Start Seaweed S3 API Server 30GB 1.74 at http port 8333 +... +``` + +Install the [AWS +CLI](https://github.com/chrislusf/seaweedfs/wiki/AWS-CLI-with-SeaweedFS). +Create a bucket. + +``` +$ aws --endpoint-url http://localhost:8333 s3 mb s3://sandcrawler-dev +make_bucket: sandcrawler-dev +``` + +List buckets. + +``` +$ aws --endpoint-url http://localhost:8333 s3 ls +2020-04-17 17:44:39 sandcrawler-dev +``` + +Create a dummy file. + +``` +$ echo "blob" > 12340d9a4a4f710ecf03b127051814385e83ff08.tei.xml +``` + +Upload. + +``` +$ aws --endpoint-url http://localhost:8333 s3 cp 12340d9a4a4f710ecf03b127051814385e83ff08.tei.xml s3://sandcrawler-dev +upload: ./12340d9a4a4f710ecf03b127051814385e83ff08.tei.xml to s3://sandcrawler-dev/12340d9a4a4f710ecf03b127051814385e83ff08.tei.xml +``` + +List. + +``` +$ aws --endpoint-url http://localhost:8333 s3 ls s3://sandcrawler-dev +2020-04-17 17:50:35 5 12340d9a4a4f710ecf03b127051814385e83ff08.tei.xml +``` + +Stream to stdout. + +``` +$ aws --endpoint-url http://localhost:8333 s3 cp s3://sandcrawler-dev/12340d9a4a4f710ecf03b127051814385e83ff08.tei.xml - +blob +``` + +Drop the bucket. + +``` +$ aws --endpoint-url http://localhost:8333 s3 rm --recursive s3://sandcrawler-dev +``` + +### Builtin benchmark + +The project comes with a builtin benchmark command. + +``` +$ weed benchmark +``` + +I encountered an error like +[#181](https://github.com/chrislusf/seaweedfs/issues/181), "no free volume +left" - when trying to start the benchmark after the S3 ops. A restart or a restart with `-volume.max 100` helped. + +``` +$ weed server -s3 -volume.max 100 +``` + +### Listing volumes + +``` +$ weed shell +> volume.list +Topology volume:15/112757 active:8 free:112742 remote:0 volumeSizeLimit:100 MB + DataCenter DefaultDataCenter volume:15/112757 active:8 free:112742 remote:0 + Rack DefaultRack volume:15/112757 active:8 free:112742 remote:0 + DataNode localhost:8080 volume:15/112757 active:8 free:112742 remote:0 + volume id:1 size:105328040 collection:"test" file_count:33933 version:3 modified_at_second:1587215730 + volume id:2 size:106268552 collection:"test" file_count:34236 version:3 modified_at_second:1587215730 + volume id:3 size:106290280 collection:"test" file_count:34243 version:3 modified_at_second:1587215730 + volume id:4 size:105815368 collection:"test" file_count:34090 version:3 modified_at_second:1587215730 + volume id:5 size:105660168 collection:"test" file_count:34040 version:3 modified_at_second:1587215730 + volume id:6 size:106296488 collection:"test" file_count:34245 version:3 modified_at_second:1587215730 + volume id:7 size:105753288 collection:"test" file_count:34070 version:3 modified_at_second:1587215730 + volume id:8 size:7746408 file_count:12 version:3 modified_at_second:1587215764 + volume id:9 size:10438760 collection:"test" file_count:3363 version:3 modified_at_second:1587215788 + volume id:10 size:10240104 collection:"test" file_count:3299 version:3 modified_at_second:1587215788 + volume id:11 size:10258728 collection:"test" file_count:3305 version:3 modified_at_second:1587215788 + volume id:12 size:10240104 collection:"test" file_count:3299 version:3 modified_at_second:1587215788 + volume id:13 size:10112840 collection:"test" file_count:3258 version:3 modified_at_second:1587215788 + volume id:14 size:10190440 collection:"test" file_count:3283 version:3 modified_at_second:1587215788 + volume id:15 size:10112840 collection:"test" file_count:3258 version:3 modified_at_second:1587215788 + DataNode localhost:8080 total size:820752408 file_count:261934 + Rack DefaultRack total size:820752408 file_count:261934 + DataCenter DefaultDataCenter total size:820752408 file_count:261934 +total size:820752408 file_count:261934 +``` + +### Custom S3 benchmark + +To simulate the use case of S3 use case for 100-500M small files (grobid xml, +pdftotext, ...), I created a synthetic benchmark. + +* [https://gist.github.com/miku/6f3fee974ba82083325c2f24c912b47b](https://gist.github.com/miku/6f3fee974ba82083325c2f24c912b47b) + +We just try to fill up the datastore with millions of 5k blobs. + +---- + +### testrun-1 + +Small set, just to run. Status: done. Learned that the default in memory volume +index grows too quickly for the 4GB machine. + +``` +$ weed server -dir /tmp/martin-seaweedfs-testrun-1 -s3 -volume.max 512 -master.volumeSizeLimitMB 100 +``` + +* https://github.com/chrislusf/seaweedfs/issues/498 -- RAM +* at 10M files, we already consume ~1G + +``` +-volume.index string + Choose [memory|leveldb|leveldbMedium|leveldbLarge] mode for memory~performance balance. (default "memory") +``` + +### testrun-2 + +200M 5k objects, in-memory volume index. Status: done. Observed: After 18M +objects the 512 100MB volumes are exhausted and seaweedfs will not accept any +new data. + +``` +$ weed server -dir /tmp/martin-seaweedfs-testrun-2 -s3 -volume.max 512 -master.volumeSizeLimitMB 100 +... +I0418 12:01:43 1622 volume_loading.go:104] loading index /tmp/martin-seaweedfs-testrun-2/test_511.idx to memory +I0418 12:01:43 1622 store.go:122] add volume 511 +I0418 12:01:43 1622 volume_layout.go:243] Volume 511 becomes writable +I0418 12:01:43 1622 volume_growth.go:224] Created Volume 511 on topo:DefaultDataCenter:DefaultRack:localhost:8080 +I0418 12:01:43 1622 master_grpc_server.go:158] master send to master@[::1]:45084: url:"localhost:8080" public_url:"localhost:8080" new_vids:511 +I0418 12:01:43 1622 master_grpc_server.go:158] master send to filer@::1:18888: url:"localhost:8080" public_url:"localhost:8080" new_vids:511 +I0418 12:01:43 1622 store.go:118] In dir /tmp/martin-seaweedfs-testrun-2 adds volume:512 collection:test replicaPlacement:000 ttl: +I0418 12:01:43 1622 volume_loading.go:104] loading index /tmp/martin-seaweedfs-testrun-2/test_512.idx to memory +I0418 12:01:43 1622 store.go:122] add volume 512 +I0418 12:01:43 1622 volume_layout.go:243] Volume 512 becomes writable +I0418 12:01:43 1622 master_grpc_server.go:158] master send to master@[::1]:45084: url:"localhost:8080" public_url:"localhost:8080" new_vids:512 +I0418 12:01:43 1622 master_grpc_server.go:158] master send to filer@::1:18888: url:"localhost:8080" public_url:"localhost:8080" new_vids:512 +I0418 12:01:43 1622 volume_growth.go:224] Created Volume 512 on topo:DefaultDataCenter:DefaultRack:localhost:8080 +I0418 12:01:43 1622 node.go:82] topo failed to pick 1 from 0 node candidates +I0418 12:01:43 1622 volume_growth.go:88] create 7 volume, created 2: No enough data node found! +I0418 12:04:30 1622 volume_layout.go:231] Volume 511 becomes unwritable +I0418 12:04:30 1622 volume_layout.go:231] Volume 512 becomes unwritable +E0418 12:04:30 1622 filer_server_handlers_write.go:69] failing to assign a file id: rpc error: code = Unknown desc = No free volumes left! +I0418 12:04:30 1622 filer_server_handlers_write.go:120] fail to allocate volume for /buckets/test/k43731970, collection:test, datacenter: +E0418 12:04:30 1622 filer_server_handlers_write.go:69] failing to assign a file id: rpc error: code = Unknown desc = No free volumes left! +E0418 12:04:30 1622 filer_server_handlers_write.go:69] failing to assign a file id: rpc error: code = Unknown desc = No free volumes left! +E0418 12:04:30 1622 filer_server_handlers_write.go:69] failing to assign a file id: rpc error: code = Unknown desc = No free volumes left! +E0418 12:04:30 1622 filer_server_handlers_write.go:69] failing to assign a file id: rpc error: code = Unknown desc = No free volumes left! +I0418 12:04:30 1622 masterclient.go:88] filer failed to receive from localhost:9333: rpc error: code = Unavailable desc = transport is closing +I0418 12:04:30 1622 master_grpc_server.go:276] - client filer@::1:18888 +``` + +Inserted about 18M docs, then: + +``` +worker-0 @3720000 45475.13 81.80 +worker-1 @3730000 45525.00 81.93 +worker-3 @3720000 45525.76 81.71 +worker-4 @3720000 45527.22 81.71 +Process Process-1: +Traceback (most recent call last): + File "/usr/lib/python3.5/multiprocessing/process.py", line 249, in _bootstrap + self.run() + File "/usr/lib/python3.5/multiprocessing/process.py", line 93, in run + self._target(*self._args, **self._kwargs) + File "s3test.py", line 42, in insert_keys + s3.Bucket(bucket).put_object(Key=key, Body=data) + File "/home/martin/.virtualenvs/6f3fee974ba82083325c2f24c912b47b/lib/python3.5/site-packages/boto3/resources/factory.py", line 520, in do_action + response = action(self, *args, **kwargs) + File "/home/martin/.virtualenvs/6f3fee974ba82083325c2f24c912b47b/lib/python3.5/site-packages/boto3/resources/action.py", line 83, in __call__ + response = getattr(parent.meta.client, operation_name)(**params) + File "/home/martin/.virtualenvs/6f3fee974ba82083325c2f24c912b47b/lib/python3.5/site-packages/botocore/client.py", line 316, in _api_call + return self._make_api_call(operation_name, kwargs) + File "/home/martin/.virtualenvs/6f3fee974ba82083325c2f24c912b47b/lib/python3.5/site-packages/botocore/client.py", line 626, in _make_api_call + raise error_class(parsed_response, operation_name) +botocore.exceptions.ClientError: An error occurred (InternalError) when calling the PutObject operation (reached max retries: 4): We encountered an internal error, please try again. + +real 759m30.034s +user 1962m47.487s +sys 105m21.113s +``` + +Sustained 400 S3 puts/s, RAM usage 41% of a 4G machine. 56G on disk. + +> No free volumes left! Failed to allocate bucket for /buckets/test/k163721819 + +### testrun-3 + +* use leveldb, leveldbLarge +* try "auto" volumes +* Status: done. Observed: rapid memory usage. + +``` +$ weed server -dir /tmp/martin-seaweedfs-testrun-3 -s3 -volume.max 0 -volume.index=leveldbLarge -filer=false -master.volumeSizeLimitMB 100 +``` + +Observations: memory usage grows rapidly, soon at 15%. + +Note-to-self: [https://github.com/chrislusf/seaweedfs/wiki/Optimization](https://github.com/chrislusf/seaweedfs/wiki/Optimization) + +### testrun-4 + +The default volume size is 30G (and cannot be more at the moment), and RAM +grows very much with the number of volumes. Therefore, keep default volume size +and do not limit number of volumes `-volume.max 0` and do not use in-memory +index (rather leveldb) + +Status: done, 200M object upload via Python script sucessfully in about 6 days, +memory usage was at a moderate 400M (~10% of RAM). Relatively constant +performance at about 400 `PutObject` requests/s (over 5 threads, each thread +was around 80 requests/s; then testing with 4 threads, each thread got to +around 100 requests/s). + +``` +$ weed server -dir /tmp/martin-seaweedfs-testrun-4 -s3 -volume.max 0 -volume.index=leveldb +``` + +The test script command was (40M files per worker, 5 workers). + +``` +$ time python s3test.py -n 40000000 -w 5 2> s3test.4.log +... + +real 8454m33.695s +user 21318m23.094s +sys 1128m32.293s +``` + +The test script adds keys from `k0...k199999999`. + +``` +$ aws --endpoint-url http://localhost:8333 s3 ls s3://test | head -20 +2020-04-19 09:27:13 5000 k0 +2020-04-19 09:27:13 5000 k1 +2020-04-19 09:27:13 5000 k10 +2020-04-19 09:27:15 5000 k100 +2020-04-19 09:27:26 5000 k1000 +2020-04-19 09:29:15 5000 k10000 +2020-04-19 09:47:49 5000 k100000 +2020-04-19 12:54:03 5000 k1000000 +2020-04-20 20:14:10 5000 k10000000 +2020-04-22 07:33:46 5000 k100000000 +2020-04-22 07:33:46 5000 k100000001 +2020-04-22 07:33:46 5000 k100000002 +2020-04-22 07:33:46 5000 k100000003 +2020-04-22 07:33:46 5000 k100000004 +2020-04-22 07:33:46 5000 k100000005 +2020-04-22 07:33:46 5000 k100000006 +2020-04-22 07:33:46 5000 k100000007 +2020-04-22 07:33:46 5000 k100000008 +2020-04-22 07:33:46 5000 k100000009 +2020-04-20 20:14:10 5000 k10000001 +``` + +Glance at stats. + +``` +$ du -hs /tmp/martin-seaweedfs-testrun-4 +596G /tmp/martin-seaweedfs-testrun-4 + +$ find . /tmp/martin-seaweedfs-testrun-4 | wc -l +5104 + +$ ps --pid $(pidof weed) -o pid,tid,class,stat,vsz,rss,comm + PID TID CLS STAT VSZ RSS COMMAND +32194 32194 TS Sl+ 1966964 491644 weed + +$ ls -1 /proc/$(pidof weed)/fd | wc -l +192 + +$ free -m + total used free shared buff/cache available +Mem: 3944 534 324 39 3086 3423 +Swap: 4094 27 4067 +``` + +### Note on restart + +When stopping (CTRL-C) and restarting `weed` it will take about 10 seconds to +get the S3 API server back up, but another minute or two, until seaweedfs +inspects all existing volumes and indices. + +In that gap, requests to S3 will look like internal server errors. + +``` +$ aws --endpoint-url http://localhost:8333 s3 cp s3://test/k100 - +download failed: s3://test/k100 to - An error occurred (500) when calling the +GetObject operation (reached max retries: 4): Internal Server Error +``` + +### Read benchmark + +Reading via command line `aws` client is a bit slow at first sight (3-5s). + +``` +$ time aws --endpoint-url http://localhost:8333 s3 cp s3://test/k123456789 - +ppbhjgzkrrgwagmjsuwhqcwqzmefybeopqz [...] + +real 0m5.839s +user 0m0.898s +sys 0m0.293s +``` + +#### Single process random reads + +Running 1000 random reads takes 49s. + +#### Concurrent random reads + +* 80000 request with 8 parallel processes: 7m41.973968488s, so about 170 objects/s) +* seen up to 760 keys/s reads for 8 workers +* weed will utilize all cores, so more cpus could result in higher read throughput +* RAM usage can increase (seen up to 20% of 4G RAM), then descrease (GC) back to 5%, depending on query load |